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ABSTRACT
A Quasi-Monte-Carlo method based on the computation of
a surrogate model of the fitness function is proposed, and its
convergence at super-linear rate 3/2 is proved under rather
mild assumptions on the fitness function – but assuming
that the starting point lies within a small neighborhood of a
global maximum. A memetic algorithm is then constructed,
that performs both a random exploration of the search space
and the exploitation of the best-so-far points using the pre-
vious surrogate local algorithm, coupled through selection.
Under the same mild hypotheses, the global convergence of
the memetic algorithm, at the same 3/2 rate, is proved.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—Global op-
timization,Unconstrained optimization; F.2.1 [Analysis of

Algorithms and Problem Complexity]: [Numerical Al-
gorithms and Problems]

General Terms
Algorithms, Theory

1. INTRODUCTION
Evolutionary Algorithms (EAs) have to find a trade-off

between exploitation (of the best-so-far individuals) and ex-
ploration (of the yet-unknown regions of the search space).
And though in practice the many successes of EAs witness
the ability of researchers and engineers to actually find ef-
ficient compromises, theoretical results only address one of
the two issues. This is the case in the discrete domain of
Genetic Algorithms for instance: whether the global conver-
gence is proved either asymptotically [16, 17] or in finite time
[3], no estimation whatsoever is available for the convergence
rate. On the other hand, the few results giving hints about
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the convergence rate only use particular (unimodal) func-
tions [18, 4, 8]. And this is true also in the continuous frame-
work, a domain in which the notion of convergence rate is of
utter importance to practitioners using classical determin-
istic methods (e.g. gradient-based Newton-like methods).
Most works address the issue of local convergence, assum-
ing the unimodality of the fitness function, either from the
point of view of the progress rate in Evolutions Strategies
[21, 2], or with global results with linear convergence rates
for quasi-convex functions [19, 1].

In this paper, two algorithms are proposed for continuous
optimization. The first one is a quasi-random optimization
algorithm that makes use of a surrogate model which ap-
proximates the function to optimize and introduces the min-
imum of this surrogate model within the population. This
algorithm with a calibration obtained by a least square min-
imization has been developed in [14]. We will thoroughly
investigate this case but will introduce two differences in
the algorithm. First we make use of quasi-random numbers
to calibrate the model. Quasi-random numbers have already
proved to be successful in many areas one of which is the field
of Monte Carlo methods allowing to speed up the conver-
gence of those methods [5, 13]. Second the step-size update
we use is also different (see Section 3). The first result of
this paper is that this first algorithm exhibits a super-linear
convergence rate 3/2 with mild hypotheses on the fitness
function assuming that we start close enough to the global
optimum of the objective function. When the calibration
is made with a least-square minimization, Θ(dim2)1 evalu-
ations are needed to calibrate the model. Therefore to gain
one order and a half of magnitude Θ(dim2) evaluations are
needed.

Many authors have proposed to couple a global stochastic
algorithm with some local search. Such algorithms are often
called memetic algorithms [12], and have been recognized as
powerful techniques for combinatorial optimization in par-
ticular [7, 11] (see also the Special Issue of Evolutionary
Computation on memetic algorithms [20]). In the continu-
ous framework, however, very few work ni that area have
been published, we refer to [10] for a recent survey on that
domain.

But most work in the area of memetic algorithms use the
standard “memetization” procedure: apply the local search
algorithm to every offspring that is generated by the global

1Where dim is the dimension of the search space



exploration algorithm. Most of the work cited above use
experimental validations of their algorithms. However, Hart
[9] in the framework of Evolutionary Pattern Search pro-
poses a convergence analysis of the algorithm designed. But
the convergence rate of the algorithm remains unknown.

A slightly different coupling between exploitation and ex-
ploration has been explored by O. Franois, in which the two
procedures run somehow in parallel, and the coupling is en-
sured by the selection algorithm alone [6]. A detailed anal-
ysis of the speed of convergence of the local algorithm and
some exploration capabilities of the random global search al-
low to draw some conclusions about the global convergence
of the resulting hybrid algorithm.

The second algorithm proposed here borrows to the later
approach: global search capabilities are added to the quasi-
random local algorithm; but because it has a high conver-
gence speed, the resulting hybrid algorithm exhibits the
same convergence rate than the local algorithm alone: in
that sense, it can be considered as the first evolutionary al-
gorithm for which there exists a theoretical proof of global
convergence with a proved (super-linear) convergence rate.

Of course, those results are theoretical results only, and
the practitioner will immediately find out that the proposed
algorithm is far too costly in large dimensionality. Indeed,
the exploration of the search space is a simple Monte Carlo
technique using the same constant distribution allowing to
cover the whole search space. Moreover, even though the
order of the convergence is super-linear, the values of the
constant appearing in the demonstration are far too large,
and the number of required function evaluations remains un-
affordable when the dimension is large. However we believe
that this is a first step toward a better understanding of how
to design algorithms that realize an optimal compromise be-
tween a competitive local convergence rate and an efficient
global exploration capability.

The paper is organized as follows. We first consider in
Section 2 a rather general global algorithm coupling local
search and exploration. It constitutes the outline of the
global algorithm considered next. Under certain assump-
tion we prove that if the local search allows convergence
with order p then almost sure convergence occurs with or-
der p as well. In Section 3 we specify the local algorithm,
building a quadratic approximation of the objective function
and prove its convergence with order 3/2. Section 4 defines
the global algorithm we consider and proves its convergence
making use of the result of Section 2. Section 5 gives the
details for the proofs of convergence with order 3/2 of the
local algorithm omitted in Section 3 for the sake of clarity.
Section 6 discusses those results and concludes.

Notations and definitions
Notations The notation R

+
∗ will be used to denote strictly

positive real numbers or R
+
∗ = R

+\{0}.
We will denote ||x||2 (or ||x||) and ||x||∞ respectively the Eu-

clidean norm (||x||2 = (
P

i x2
i )

1/2) and the sup norm on R
dim

(||x||∞ = supi|xi|).
For (X, σ) ∈ R

dim ×R
+, B(X, σ) is the ball of center X and

radius σ, and S(X, σ) is the sphere of center X and radius
σ.
Consider Q the vector space of quadratic forms on R

dim. A
is a set of λ − 1 quasi-random points in B(0, 1) such that

the restriction of Q to A has the same dimension as Q. In
particular this implies that λ − 1 ≥ 1 + dim + dim(dim+1)

2
.

The cardinal of a set G will be denoted |G|.
On the objective function f . Consider a real-valued

objective function f , to be minimized, defined on R
dim,

for some positive integer dim. We assume without loss of
generality that its minimum value is 0 and is attained at
least once. We will denote X∗ a global minimum of f and
f(X∗) = 0.
We will denote |||f |||B(X,σ) the following regularity measure
on f

|||f |||B(X,σ) = inf
f̃ quadratic

sup
x∈B(X,σ)

|f(x) − f̃(x)|
σ3

.

And define |||f ||| as |||f ||| = supX,σ |||f |||B(X,σ) Note that if f

has a bounded third derivatives on R
dim, then taking for

f̃ the second order Taylor developement of f proves that
|||f ||| ≤ 1

6
||f ′′′||∞

2. FROM FAST LOCAL CONVERGENCE
TO FAST GLOBAL CONVERGENCE

Consider a general operator op(.) from R
dim to R

dim and
consider the local algorithm induced by consecutive applica-
tions of this operator, i.e. a sequence generated by this al-
gorithm is (opk(x))k≥0. Let p be a real number ≥ 1. We as-
sume that for this local algorithm two scenarios can happen,
either convergence with order p or the sequence (opk(x))k≥0

is uniformly bounded. This assumption amounts to say that
the search space R

dim is split in two, we formalize this as-
sumption as follows.

Assumption A.1. Dichotomy property We assume
that for x ∈ R

dim only two scenarios concerning the se-
quence (opk(x))k≥0 can happen, either convergence with or-
der p or the sequence is lower bounded. More formally,
R

dim = [Rdim]1 ∪ [Rdim]2 where

[Rdim]1 := {x s.t. (opk(x))k≥0 converges with order p}
[Rdim]2 := {x s.t. ∃Kx > f(X∗) s.t. f(opk(x))k≥0 ≥ Kx}

For instance such a local algorithm is the one defined at
section 3 and in that case p = 3

2
.

Now we consider the global algorithm, where at each gen-
eration we apply one iteration of op() to each point of the
current population, and we moreover sample new points (to
ensure the exploration part) according to a distribution µx

which allows us to see with a positive probability a neigh-
borhood of the global optimum. The resulting algorithm
is:

Algorithm 1 .

1. Randomly choose an initial population P0 ;

2. Let n go from 1 to ∞

(a) P ′
n = {op(x)|x ∈ Pn−1} ∪ Gn ;

(b) Pn is the selection of the |Pn−1| best elements of
P ′

n.

where Gn is a set of points randomly generated by sam-
pling a distribution µx. In the sequel, when the sequence



(opk(x))k≥0 generated by successive application of the lo-
cal algorithm will be such that the selection step 2.b will
select all the terms, we will say that the sequence is non-

interrupted (otherwise the sequence is interrupted by the
selection). Note that if at iteration n, points generated at
step 2.a are selected it means that Gn ∩ Pn 6= ∅. We then
make the following assumptions on the global algorithm:

Assumption A.2. 1. 0 < infn |Gn| ≤ supn |Gn| < ∞
2. Assume that cεd ≤ P(f(X) ≤ ε) ≤ aεb, where X is

a random variable of distribution µx. In other words we
assume that the random generation with the distribution µ
allows us to see an ε neighborhood of the global optimum
with a probability upper and lower bounded with respectively
aεb and cεd.

3. There exists some C > 0 such that

P

“

∃x ∈ Pn ∩ Gn s.t. (opk(x))k≥0 converges to one

optimum with order p without interruption
”

≥ C

Unformally, this assumption means that the probability of
generating and selecting fast-convergence sequences is lower
bounded by some C > 0.

Lemma 1 . Consider p a real number ≥ 1. Let assume
that Assumptions A.1 and A.2 are satisfied, then almost
surely, global convergence occurs with order p.

Proof. In a first step we prove that with probability one,
infinitely many randomly generated points at step 2.a are
selected or more formally

P(∀n0, ∃n > n0 such that Pn ∩ Gn 6= ∅) = 1

Assume that the reverse is true:

∃n0 such that ∀n ≥ n0 Pn ∩ Gn = ∅
We can moreover assume the scenario that there is no non-

interrupted sequence of points converging to the optimum
with order p, i.e.

∀n, ∀x ∈ Pn f(opk(x)) 9 f(X∗) when k → ∞.

Indeed if there exists such a sequence, then we directly con-
clude to the convergence with order p of the algorithm.
Then, by the dichotomy property, all non-interrupted se-
quences of points are lower bounded in fitness, above the
optimal value. In particular ∀x ∈ Pn0

, f(opk−n0 (x)) ≥
ε ∀k ≥ 0. Applying now Assumption A.2.2, we have that
the probability to select elements of Gn is lower bounded
by cεd, i.e. for all k ≥ 0, P(Pk−n0

∩ Gk−n0
6= ∅) > cεd.

Therefore

P(∀n0, ∃n > n0 s.t. Pn ∩ Gn 6= ∅) = 1,

i.e. with probability one, infinitely many randomly gener-
ated points are selected. This is the end of the first step.

Let us now index those infinitely many randomly gener-
ated and selected points as (xg,s

ñ )ñ∈N. Note that by Step 1
with probability one such a sequence exists. From Assump-
tion A.2.3, for all ñ ∈ N, the probability that ((opk(xg,s

ñ ))k∈N

converges without interruption with order p to the optimum
is lower bounded by C. For the following equations, we will

use the abbreviation cv. w.int. order p for “converges with-
out interruption to the optimum with order p“.

P( cv. to the optimum with order p ) =

P(∃ ñ0 s.t. (opk(xg,s
ñ0

))k∈N cv. w.int. order p )

Besides, the right hand side of the previous equation is equal
to

P(∪ñ0
{(opk(xg,s

ñ0
))k∈N cv. w.int. order p })

=1 − P(∩ñ0
{(opk(xg,s

ñ0
))k∈N cv. w.int. order p }c)

≥1 − Πñ0
(1 − C)

=1

Therefore, with probability one, this leads to a conver-
gence with order p.

2

3. A LOCAL ALGORITHM WITH
CONVERGENCE 3/2

We now consider the following algorithm, building a sur-
rogate model of the objective function to minimize and prove
its convergence rate. Let X0 ∈ R

dim, σ0 ∈ R
+
∗ and L ∈ R

+.
The main loop of the local algorithm is the following:

Algorithm 2 .

1. Let (Xn, σn) be the current individual, Bn = B(Xn, σn).

2. Compute An, a quasi-random set of λ − 1 points in
Bn, from the (fixed) set A 2

3. Evaluate all points in An (compute {f(P ), P ∈ An})

4. Build Hn, the least-square approximation of f using
the examples (P, f(P ))P∈An.

5. Compute

X∗
n = argminx∈BnHn(x) (1)

6.

Xn+1 = argmin{f(x), x ∈ An}
[

{Xn, X∗
n} (2)

7. σn+1 = Lσ
3
2
n

Local convergence results

The following assumptions will be assumed for the objec-
tive function f :

Assumption A.3.

1. f is lower-bounded, with at least one global minimum

2. There exists a finite number of global minima, each of
them with a positive definite hessian

3. |||f ||| < +∞
2It means that An is computed by translating by Xn and
dilating with a factor σn the set A : An = Xn + σn × A



Then we shall prove the following convergence result:

Theorem 1 . There exists L′ and σ′
0(L) such that if L ≥

L′, if σn < σ′
0(L), and if X∗ ∈ B(Xn, σn), then Xn+k con-

verges to X∗ with order 3/2, in the following senses:

||Xn+k − X∗|| = O(σn+k) as k → ∞ (3)

|f(Xn+k)| = O(σ3
n+k) as k → ∞ (4)

where both σn+k and σ3
n+k are of order 3/2, i.e.

σn+k = O(σ
3/2
n+k−1) as k → ∞ (5)

(σn+k)3 = O((σ3
n+k−1)

3/2) as k → ∞ (6)

L′ only depends upon f and σ′
0(.) is a decreasing function of

L, depending only upon f and L.

Proof. We choose L′ such that 1/(L′)2 is small enough
in the sense of Lemma 3 (i.e. if σn < 1/(L′)2 then the
assumption “small enough” for σn in Lemma 3 is satisfied).
Let L ≥ L′, and let σ′

0(L) = 1/L2.

Let σn < σ′
0(L) = 1/L2, then σn+1 = L

p
(σn)σn < L 1

L
σn,

therefore

σn+1 < σn. (7)

Since σn+1 = L
√

σnσn we deduce that L
√

σn < 1. As

σn+k ≤ (L
√

σn)kσn+1

we have that σn+k → 0 when k → ∞, and for any k ≥ 0,
σn+k−1 > σn+k. Besides by definition of σn+k (σn+k =

L(σn+k−1)
3/2 ) σn+k → 0 when k → ∞ with order 3/2.

Therefore Eq. 5 and Eq. 6 are satisfied. From Lemma 3
(Eq. 7 and the choice of L′ give us that the assumptions of
the Lemma are satisfied), we have that for any k ≥ 0, X∗ ∈
B(Xn+k, σn+k/2). This implies first that the Assumptions
of Lemma 2 are satisfied and second that if Xn converges,
it converges to X∗.
We prove now the order 3/2 for the convergence of Xn.
We have that ||Xn+k+l − Xn+k+l−1|| is upper bounded by
σn+k+l−1 which is of order 3/2. Besides

||Xn+k − lim
l→∞

Xn+l|| = ||
∞X

l=1

Xn+k+l − Xn+k+l−1||

≤
∞X

l=1

||Xn+k+l − Xn+k+l−1||

≤
∞X

l=1

σn+k+l−1 = σn+k

∞X

l=1

(L
√

σn+k
| {z }

<1

)l

As liml→∞ Xn+l = X∗, we have shown that ||Xn+k−X∗|| =
O(σn+k) (Eq. 3). Thanks to Assumptions A.3.2, this con-
vergence of order 3/2 is transposed to f(Xn+k) (Eq. 4).

2

This results relies on the two following Lemmas.

Lemma 2 . There exists K∞ such that if X∗ ∈ B(Xn, σn/2),
then the L∞ approximation error εn defined as supx∈Bn |Hn(x)−
f(x)| can be bounded as follows:

εn ≤ K∞σ3
n. (8)

Proof. See section 5.

Lemma 3 . Assume that σn is small enough and that
σn+1 < σn. Assume that X∗ ∈ B(Xn, σn

2
) then

X∗ ∈ B(Xn+1,
σn+1

2
).

Proof. See section 5.

4. THE GLOBAL ALGORITHM
From the previous local algorithm, we build a global al-

gorithm. The basic idea of the global algorithm is to make
use of the previous algorithm for the local search and to
ensure the exploration stage by sampling some new points
of the search space independently at each generation. The
reasonable assumption made for this independent sampling
is that it allows to see with a lower bounded probability an
epsilon-neighborhood of the global optimum. Without loss
of generality, we assume that the value of the fitness function
at the global optimum is zero.

To formalize this algorithm, let us now denote loc(.) the
local operator which associates to a triplet (x, σ, L) ∈ R

dim×
R

+
∗ ×R

+ one iteration from the local algorithm 2 (Section 3).

loc() : R
dim × R

+
∗ × R

+ → R
dim × R

+
∗ × R

+.

In other words loc(Xn, σn, L) = (Xn+1, Lσ
3/2
n , L), where

Xn+1 is given by Equation 2. The kth iterates of the op-
erator loc() will be denoted lock().

The reason why we include L is the definition of the op-
erator loc whereas it is not changed by Algorithm 2 is be-
cause when building the global algorithm we will generate
randomly different values for L (see the Random generation
description of Algorithm 3 for more details).

We will now call elements of the population some triplets
(x, σ, L) ∈ R

dim × R
+
∗ × R

+. Moreover we will sometimes
use the notation f(x, σ, L) to design the fitness of x first
element of the triplet (x, σ, L). In the same way we will use
the notation f(lock(x, σ, L)).

Algorithm 3 (Global Algorithm).

1. Randomly choose an initial population P0 ;

2. Let n go from 1 to ∞

(a) P ′
n = {loc(x, σ, L)|(x, σ, L) ∈ Pn−1} ∪ Gn

(b) Pn is the selection of the |Pn−1| best elements of
P ′

n.

Where Gn is a set of randomly generated points that we
detail now:

Random generation For the random generation at step
2.a, we of course need to sample points of the search space
R

dim but we also need to sample step-sizes σ as well as
constants L that will be needed once one will apply the local
search operator defined by Algorithm 2 to one such point
(if it is selected at step 2.b). Therefore a finite number of
triplets (x, σ, L) are generated. We assume that the points x
of R

dim are generated using a same distribution that we will
denote µx. The step-sizes σ are sampled using a distribution
µσ with support in R

+
∗ and the constants L are sampled

using a distribution µL with support in R
+
∗ .

The required assumptions on µx, µσ and µL will be stated
in Lemma 1 and Theorem 2 .



Note that at the selection step 2.b, the step-size and con-
stant L are selected with an individual. This technique is
inspired from the mutative step-size technique introduced
by Rechenberg [15] and Schwefel [21].

All Pn have the same cardinality. In case of equality be-
tween fitnesses at step 2.b, elements generated by applica-
tion of loc(.) are preferred to randomly drawn elements.

The global convergence of this algorithm relies in fact on
a more general result proved in Lemma 1 , stating that the
previous construction ensures that if the local operator en-
sures a fast local convergence, then the global algorithm will
converge globally fast as well. Section 2 states and proves
this result.

Global convergence result

To prove the global convergence, we will use Lemma 1 .

Assumption A.4.

1. There is a finite set of optima ;

2. The fitness function f is twice differentiable and at
each global optimum X∗, the Hessian matrix is positive
definite.

3. |||f ||| < ∞ (this assumption could be slightly weakened
by a restriction to a neighborhood of X∗)

4. cεd ≤ P (f(X) ≤ ε) ≤ aεb, for X with distribution µx

(see Lemma 1 for the interpretation of this assump-
tion)

5. For some α and β, for all δ > 0, ∀x ∈ R
dim with

f(x) ≤ δ, there exists an optimal X∗ such that d(x,X∗) ≤
αδβ,

6. In the random generation part of step 2.a, σ is drawn
according to the distribution µσ where we assume that
µσ([σ1, σ2]) > 0 for all segments [σ1, σ2] included in
R

+
∗ .

7. In the random generation part of step 2.a, L is drawn
according to the distribution µL where we assume that
µL([c, +∞[) > 0 for all positive constant c.

8. The selection step 2b will discard all points such that
L ≥ 1/

√
σ.

Theorem 2 . We assume that Assumptions A.3 and A.4
are satisfied. Then Algorithm 3 converges almost surely with
order 3/2.

Proof. The proof consists in showing that the different
assumptions of Lemma 1 are satisfied and then applying
Lemma 1 . We start by proving assumption A.1 (Dichotomy
property).

Hypothesis A.4-8 (removal of points such that L ≥ 1√
σ
)

ensures the dichotomy property of lemma 1 : the sequence
f(lock(x, σ, L)) is non-increasing and lower bounded by f(X∗) =
0, and so

• either it is lower bounded by a quantity > 0 and x ∈
[Rdim]2;

• or it converges to 0, and then

– ||lock(x, σ, L)− limk lock(x, σ, L)|| → 0 as k → ∞
with order 3

2
thanks to hypothesis A.4-8 which

ensures L < 1√
σ

;

– thanks to A.4-5, limk lock(x, σ, L) = (X∗, 0, L) ;

– A.4-2 transposes the convergence of lock(x, σ, L)
with order 3/2 to the convergence of f(lock(x, σ, L))
with order 3/2.

and in that case x ∈ [Rdim]1.

Assumption A.2.2 is satisfied with Assumption A.4.4.
We verify now Assumption A.2.3.
We have to find a lower bound on the probability of con-

vergence with order 3/2 without interruption.
Consider some real number M > 0 to be specified later.

Let Π be the probability that (lock(x))k≥0 converges with
order 3/2 and L ≤ M , for (x, σ, L) randomly generated at
step 2a and selected at step 2b. This probability depends
on n and M . With Theorem 1 we have

Π = P(L ≤ M∧(lock(x, σ, L))k≥0 converges with order3/2))

Π ≥ P(L′ ≤ L ≤ M ∧ σ ≤ σ′
0(L) ∧ d(x, x∗) ≤ σ)

Π ≥ P(L′ ≤ L ≤ M ∧ σ ≤ σ′
0(M) ∧ d(x, x∗) ≤ σ)

as σ′
0(.) decreases. Consider σ1 < σ′

0 to be defined later,
then we can split the above probability by independence
and we get

Π ≥ P(L′ ≤ L ≤ M)P(σ1 ≤ σ ≤ σ′
0(M))P(d(x,x∗) ≤ σ1)

Thanks to A.4-5,

Π ≥ P(M ≥ L ≥ L′)
| {z }

P1

P(σ1 ≤ σ ≤ σ′
0)

| {z }

P2

P(f(x) ≤ β
p

σ1/α)
| {z }

P3

Let M be sufficiently large to ensure that P(L′ ≤ L ≤ M) >
0, then We have proved that Π ≥ P1P2P3. P1 and P2 only
depend upon f and are > 0. P3 is > 0 and non-decreasing
as n increase (points are more strongly selected, which in-
creases P3). So, Π can be lower bounded by P1P2P

min
3 for

some P min
3 . Therefore, Π can be lower bounded by some

Π0 > 0. We have lower bounded Π.
We now need to lower bound Π′, the probability of con-

vergence to the optimum with order 3/2 and of no inter-
ruption. The probability of interruption of k 7→ lock(x) by
one given random generation (x′, σ′, L) at step k is less than
P(f(x′) ≤ f(lock(x))) (we omit σ and L for short)

Consider points (x, σ, L) satisfying E.
Note that for σ small enough, as L is upper bounded by

M , the rule σ′ = Lσ3/2 ensures that σ′ ≤ σ × (σ1/2 ×
M) ≤ σ/2. In particular, d(x, lock(x)) ≤ σ × (1 + 1

2
+

1
4

+ . . . ) ≤ 2σ. On the other hand, for σ small enough,

f(lock(x)) is upper bounded by some g × d(lock(x),X∗)2

(because of the assumption on the hessian of the fitness).
For σ small enough, we have therefore established that :

d(lock(x), X∗) ≤ 2σ/2k

and

P(interruption) ≤
X

k

a(g × d(lock(x),X∗)2)b



Therefore, there exists some σ2 such that for σ ≤ σ2

P(interruption) ≤
X

k

a(g(σ/2k)2))b

This is upper bounded by 1/2 if σ is small enough, say for
σ ≤ σ3. We now consider Π0 associated to σ1 ≤ min(σ2, σ3),
M sufficiently large, and we define E the event M ≥ L ≥
L′ ∧ σ1 ≤ σ ≤ σ′

0 ∧ f(x) ≤ β
p

σ1/α. Hence,

Π′ = P(no interruption and convergence with order 3/2 )

≥ P(no interruption and convergence

...with order 3/2 |E)P(E)

≥ P(no interruption|E)P(E)

≥ P(no interruption|E)Π0 ≥ 1

2
Π0

Therefore, the probability of generating a never inter-
rupted sequence of points with convergence order 3/2 is
lower bounded by 1

2
Π0 at each new generated point which

is selected (for n large enough).
All assumptions in Lemma 1 are satisfied. Hence the

expected result.

2

5. THE DETAILED PROOFS OF LOCAL
CONVERGENCE

5.1 Proof of Lemma 2
We want to derive bounds on εn = supx∈Bn |Hn(x)−f(x)|.
Let us introduce f̃n, best quadratic approximation of f

on Bn for the L∞-norm (this is different from Hn, best
quadratic approximation of f on the sample points in An

for the L2-norm). We can then write εn ≤ ζ1 + ζ2 with

ζ1 = supx∈Bn
|f(x) − f̃n(x)|

ζ2 = supx∈Bn
|f̃n(x) − Hn(x)|

By definition of |||.||| and of f̃n, we have

ζ1 ≤ |||f |||Bn σ3
n. (9)

For ζ2, note first that both f̃n and Hn are quadratic func-
tions defined on Bn: f̃n is the best possible quadratic ap-
proximation of f while Hn is the best possible quadratic
approximation of f built from the values of f associated to
the points of An.

Let D be 1 + dim + dim(dim + 1)/2, for x ∈ Bn, let define
h as follows:

h :=

8

><

>:

R
dim → R

D

x → (1, x̃2
1, x̃

2
2, . . . , x̃

2
dim, x̃1, x̃2, . . . , x̃dim,

x̃1x̃2, x̃1x̃3, . . . , x̃dim−1x̃dim)

where x̃ = (x − Xn)/σn.

Because f̃n −Hn is quadratic, there exists a linear appli-
cation w from R

D to R such that

w(h(x)) = (f̃n − Hn)(x) ∀x ∈ R
dim (10)

We can now rewrite ζ2 as supx∈Bn
|w(h(x))| and by intro-

ducing for all x ∈ Bn the point x̂ which is the closest point
in An from x we get

ζ2 ≤ sup
x∈An

|w(h(x))| + sup
x∈Bn

|w(h(x)) − w(h(x̂))| (11)

and we can bound the second term of equation 11:

|w(h(x)) − w(h(x̂))| = |w(h(x) − h(x̂))|

= ∆|w(
h(x) − h(x̂)

∆
)|

≤ ∆|w(z)| for z = ((h(x) − h(x̂))/∆) ∈ B(0, 1)

where ∆ = supx∈Bn
infy∈An d(h(x), h(y)) is a constant only

depending upon A (by dilatation/translation of B(0, 1) and
A, see definition of An in algorithm 2 ).

Let us now consider the matrix P whose lines are h(P ) for
P ∈ A. Because λ ≥ D (by definition of A), we can extract
from this matrix a D ×D square matrix of rank D, that we
will denote P ′. The D lines of P ′ that we denote (p′

i)1≤i≤D

form a basis of R
D. Therefore each element z ∈ h(B(0, 1)) is

a linear combination of those lines, and can be written ΓP ′

where Γ is a D × 1 vector. Hence the bound above becomes

|w(h(x)) − w(h(x̂))| ≤ ∆|w(ΓP ′)|

≤ ∆|w(
DX

i=1

Γip
′
i)|

≤ ∆|
DX

i=1

Γiw(p′
i)|

For each i, |w(p′
i)| ≤ supx∈An

|w(h(x))| and |PD
i=1 Γi| ≤

D||Γ||2 . Therefore

|w(h(x)) − w(h(x̂))| ≤ ∆D||Γ||2 sup
x∈An

|w(h(x))| (12)

But ||Γ||2 = ||z(P ′)−1||2 ≤ 1
v
||z||2 ≤ 1

v
, where v is the smallest

eigenvalue of the matrix P ′. Hence

|w(h(x)) − w(h(x̂))| ≤ ∆D

v
sup

x∈An

|w(h(x))| (13)

From Eq. 10, Eq. 11, Eq. 13 we have

ζ2 ≤ (1 +
∆D

v
) sup

x∈An

|(f̃n − Hn)(x)|. (14)

We now investigate an upper bound for supx∈An
|(f̃n−Hn)(x)|

and start by introducing f :

sup
An

|(f̃n − Hn)| ≤ sup
An

|(f̃n − f)| + sup
An

|(f − Hn)| (15)

Besides

sup
x∈An

|(f − Hn)(x)| ≤
s

X

x∈An

|(f − Hn)(x)|2

From the definition of Hn (see algorithm 2 ) :
s

X

x∈An

|(f − Hn)(x)|2 ≤
s

X

x∈An

|(f − f̃n)(x)|2



Moreover it holds
s

X

x∈An

|(f − f̃n)(x)|2 ≤
√

λ − 1 sup
x∈An

|(f − f̃n)(x)|

From the previous equation and from Eq. 15 we get

sup
An

|(f̃n − Hn)| ≤ (1 +
√

λ − 1) sup
An

|(f̃n − f)|

≤ (1 +
√

λ − 1)σ3
n|||f |||B(Xn ,σn)

Introducing this inequality in Eq. 14, we have

ζ2 ≤ (1 +
∆D

v
)(1 +

√
λ − 1)σ3

n|||f |||B(Xn ,σn) (16)

Therefore with Eq. 9 we get

ζ1 + ζ2 ≤ (1 + (1 +
∆D

v
)(1 +

√
λ − 1))σ3

n|||f |||B(Xn ,σn)

Hence the expected result.
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5.2 Proof of Lemma 3
Let X∗ ∈ B(Xn, σn

2
), let H be the Hessian matrix of f at

point X∗ and λmin,H be its smallest eigenvalue. Let λmin,Hn

be the smallest eigenvalue of the hessian of Hn. We want to
prove that X∗ ∈ B(Xn+1,

σn+1

2
).

Let X∗
n defined at Eq. 1. From its definition we have that

X∗
n ∈ B(Xn, σn). A straightforward consequence (see Eq. 2)

is that

Xn+1 ∈ B(Xn, σn) (17)

Let x ∈ (B(Xn, σn) \ B(X∗
n, 1

4
σn+1)). Then

f(x) = f(X∗
n) + f(x) − Hn(x)

| {z }

≥−εn

+

Hn(x) − Hn(X∗
n)

| {z }

≥ 1
2

λmin,Hn
σ2

n+1
/16

+Hn(X∗
n) − f(X∗

n)
| {z }

≥−εn

where εn = supx∈Bn
|Hn(x) − f(x)|. Taking the min of the

previous equation, we derive

inf
x∈B(Xn,σn)\B(X∗

n,
σn+1

4
)

f(x) ≥ f(X∗
n)+

1

2
λmin,Hn

σ2
n+1

16
−2εn

From Lemma 2 , εn < K∞σ3
n and from Lemma 4 , λmin,Hn

is lower bounded, therefore for σn small enough, we have
f(x) > f(X∗

n) for every x ∈ B(Xn, σn)\B(X∗
n,

σn+1

4
). More-

over f(X∗) ≤ f(X∗
n) and f(Xn+1) ≤ f(X∗

n) (see Eq. 2), we
deduce that

X∗ /∈ B(Xn, σn) \ B(X∗
n,

σn+1

4
)

and Xn+1 /∈ B(Xn, σn) \ B(X∗
n,

σn+1

4
). As X∗ ∈ B(Xn, σn)

(initial assumption) and Xn+1 ∈ B(Xn, σn) (see Eq. 17),
we have that X∗ ∈ B(X∗

n,
σn+1

4
) and Xn+1 ∈ B(X∗

n,
σn+1

4
).

Therefore the distance between Xn+1 and X∗ is smaller than
σn+1

2
, i.e. X∗ ∈ B(Xn+1,

σn+1

2
).

2

Lemma 4 (A lower bound for λmin,Hn).

λmin,Hn ≥ 1

4
min(Sp(H)) + O(σn)

where H denotes the Hessian matrix of f and min(Sp(H))
its smallest eigenvalue.

It remains to find a lower bound for λmin,Hn , the smallest
eigenvalue of the hessian of Hn. This will come from the
fact that f has a positive definite Hessian at X∗ and that
Hn is a quadratic approximation of f .

Let us show first that X∗
n ∈ B(Xn, 3σn/4) and that this

minimum is unique. Remember that X∗
n is defined as the

minimum of the quadratic approximation Hn of f built on
points from An.
For all x in S(Xn, 3

4
σn) we have from Lemma 2

Hn(x) ≥ f(x) − εn

Besides from the definition of |||f |||
f(x) − εn ≥ H(x − X∗) − εn − |||f |||σ3

n

≥ 1

2
min Sp(H)σ2

n/16 − εn − |||f |||σ3
n

But from Lemma 2 we also know that |Hn(x∗)| ≤ εn

Hence if we have

2|||f |||[1+(1+
√

λ − 1)(∆
√

dim/v+1)]σ3
n+|||f |||σ3

n <
1

2
wσ2

n/16

i.e.
n

2|||f |||[1 + (1 +
√

λ − 1)(∆
√

dim/v + 1)] + |||f |||
o

σn <
1

2
w/16

then the minimum of Hn will be inside B(Xn, 3
4
σn).

Denote Hn(x) = Q(x − X∗
n) sor some quadratic positive

definite Q, and let g = f − Hn.
Let x ∈ B(Xn, σn). We know that g = O(σ3

n) and that
f(x) = H(x − X∗) + O(σ3

n), hence g(x) = H(x − X∗) −
Q(x − X∗

n) + O(σ3
n).

From which we derive that Q(x − X∗
n) ≥ H(x − X∗) +

O(σ3
n).

Consider now the line that has direction Vn, the eigen-
vector corresponding to the smallest eigenvalue λmin,Hn of
Hn going through X∗

n. It meets the sphere S(Xn, σn) in
2 points. Because X∗ lies in B(Xn, σn

2
), those 2 points

are at distance at least σn/2 from X∗. Moreover, at least
one of them, say x, satisfies ||x − X∗

n|| ≤ σn. For this x
we can write Q(x − X∗

n) ≥ H(x − X∗) + O(σ3
n), that is

1
2
λmin,Hn ||x − X∗

n||2 ≥ 1
2

min(Sp(H))||x − X∗||2 + O(σ3
n),

and hence it shows that λmin,Hn ≥ 1
4
min(Sp(H)) + O(σn).

2

6. DISCUSSION AND CONCLUSIONS
In this paper we built up a memetic algorithm and ana-

lyzed its convergence properties. The valuable property of
the algorithm is that the order of convergence of the local
algorithm is conserved when constructing the global algo-
rithm.

The order 3/2 (with Θ(dim2) evaluations at each gener-
ation) for the convergence of the local algorithm relies on
the use of pseudo-random numbers instead of random num-
bers. Though losing a stochastic part for the algorithm we
gain in terms of convergence properties. Therefore, the re-
sult suggests that this technique which is now very popular
in other communities should also be used for evolutionary
computation.

The technique used for this analysis is rather general: Sec-
tion 2 establishes a general Lemma to prove that global
convergence occurs almost surely with order p when local



convergence occur with order p. We believe that it could be
applied for analyzing other algorithm. The next step would
be to consider more realistic scenario for the exploration
part, in particular to have a better scaling in the dimension.
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