Skip to Main content Skip to Navigation
Conference papers

Algorithms (X,sigma,eta) : quasi-random mutations for Evolution Strategies

Olivier Teytaud 1 Mohamed Jebalia 1 Anne Auger 1 
1 TANC - Algorithmic number theory for cryptology
LIX - Laboratoire d'informatique de l'École polytechnique [Palaiseau], Inria Saclay - Ile de France
Abstract : Randomization is an efficient tool for global optimization. We here define a method which keeps : - the order 0 of evolutionary algorithms (no gradient) ; - the stochastic aspect of evolutionary algorithms ; - the efficiency of so-called "low-dispersion" points ; and which ensures under mild assumptions global convergence with linear convergence rate. We use i) sampling on a ball instead of Gaussian sampling (in a way inspired by trust regions), ii) an original rule for step-size adaptation ; iii) quasi-monte-carlo sampling (low dispersion points) instead of Monte-Carlo sampling. We prove in this framework linear convergence rates i) for global optimization and not only local optimization ; ii) under very mild assumptions on the regularity of the function (existence of derivatives is not required). Though the main scope of this paper is theoretical, numerical experiments are made to backup the mathematical results. Algorithm XSE: quasi-random mutations for evolution strategies. A. Auger, M. Jebalia, O. Teytaud. Proceedings of EA'2005.
Document type :
Conference papers
Complete list of metadata

Cited literature [16 references]  Display  Hide  Download
Contributor : Olivier Teytaud Connect in order to contact the contributor
Submitted on : Monday, February 18, 2013 - 7:06:06 PM
Last modification on : Thursday, February 3, 2022 - 11:16:36 AM
Long-term archiving on: : Sunday, May 19, 2013 - 4:06:00 AM


Files produced by the author(s)


  • HAL Id : inria-00000544, version 2



Olivier Teytaud, Mohamed Jebalia, Anne Auger. Algorithms (X,sigma,eta) : quasi-random mutations for Evolution Strategies. Evolution Artificielle, 2005, Lille, France. 12 p. ⟨inria-00000544v2⟩



Record views


Files downloads