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Abstract. DRAFT OF A PAPER PUBLISHED IN EA2005 : Anne Auger, Mo-
hamed Jebalia, Olivier Teytaud. (X,sigma,eta) : quasitoam mutations for Evo-
lution Strategies. Proceedings of Evolutionary Algoribt®005, 12 pages.
Randomization is an efficient tool for global optimizatioe here define a
method which keeps :

— the order0 of evolutionary algorithms (no gradient) ;

— the stochastic aspect of evolutionary algorithms ;

— the efficiency of so-called "low-dispersion" points ;
and which ensures under mild assumptions global conveegeith linear con-
vergence rate. We use i) sampling on a ball instead of Gaussiapling (in a
way inspired by trust regions), ii) an original rule for steige adaptation ; iii)
guasi-monte-carlo sampling (low dispersion points) iadtef Monte-Carlo sam-
pling.
We prove in this framework linear convergence rates i) fabgl optimization
and not only local optimization ; ii) under very mild assuiops on the regularity
of the function (existence of derivatives is not required).
Though the main scope of this paper is theoretical, numegigaeriments are
made to backup the mathematical results.
Algorithm XSE: quasi-random mutations for evolution stgies. A. Auger, M.
Jebalia, O. Teytaud. Proceedings of EA'2005.

1 Introduction

Evolutionary algorithms (EAS) are zeroth-order stocltaggitimization methods some-
how inspired by the Darwinian theory of biological evolutioemergence of new
species is the result of the interaction between naturateh and blind variations.
Among the class of Evolutionary Algorithms, Evolution $égies (ES) [10, 15] are the
most popular algorithms for solving continuous optimiaatproblemsj.e. for opti-
mizing real-valued functiorf defined on a subset &% for some dimensiodin.
The common feature of EAs is to evolve a set of points of theckegpace: at each
iteration, some points of the search space are randomlyledntpen evaluated (thg
value of the points is computed) and last, some of them aeetsel. Those three steps
are repeated until a stopping criterion is met.

Since the invention of ESs in the mid-sixties, researcheémfwove the perfor-
mances of ESs focused on the so-called mutation operatpt$18]. This operator



consists in sampling a gaussian random variable with a gitemsizes and a given
covariance matrixC. The main issue has been the adaptation of the step-sizmeara
ter o and of the covariance matrix. The first step in this direction is the well-known
one-fifth rule [10] based on the rate of successful mutatidhen Rechenberg [10]
and Schwefel [15] proposed to self-adapt the parametetseofiutation operator, by
mutating the step-size as well (this being usually achidwenhultiplying the step-size
by a log-normal random variable). For this technique, theated mutative step-size
adaptation a step size is associated to every individual in the pojmulafhis step-
size undergoes variations and is used to mutate the objesrngters of the individual.
The individual is selected with its step-size and theretheestep-sizes automatically
adapted. Intuitively unadapted step-sizes can not giveessively good individuals.

In this paper, we use a similar concept for adapting the safatbe sampling at
each generation but use a uniform sampling in a ball insté#secstandard Gaussian
distribution. The motivation is that with a ball we have astrtegion-effect ([7])i.e.
the local operator can be trusted in this ball. Note that ¢iotlnis is not classical in
the evolutionary computation community, Rudolph [13] atie introduced —mainly
for theoretical purposes— sampling of the unit ball instefé Gaussian sampling.
We also make use of a deterministic samplinggoasi random samplingvhere we
moreover minimize the dispersion of the quasi-random gd@t17]. Quasi-random
numbers have already proved to be successful in many areasfavhich is the field
of Monte Carlo methods allowing to speed up the convergehtteoge methods [5, 9]
but as far as we know low-dispersion points are new for théugiemary computation
community.

On a theoretical point of view, many papers deal with asymippwoperties of evo-
lutionary algorithms [11, 12] or their finite time convergenin discrete cases [3], but
convergence rates are only given under strong assumptiom@dal functions and/or
very convex functions and/or very smooth functions andfuy docal convergence)
[13,4,6,15,2,14,1]. In this paper we investigate the caysece of the new algorithm
considered and we prove its convergence with order one. @medgo bundle-related
methods (e.g. [16]), which ensure superlinear convergevedere ensure global (non-
convex) convergence and we are strictlyedrder as we do not use sub-gradients.

The paper is organized as follows: Section 2 presents owrittigr, Section 3
presents the theoretical results and Section 4 investigaimerically the theoretical
results; Section 5 comments the results obtained and adeslu

2 Definitions and properties

In this section we introduce the algorithm considered is fmaper. As for the self-
adaptive Evolution Strategies (SA-ES), a step-size iscata to each individual,
moreover for reasons that will become clear in the sequelindigidual is a triplet
(z,0,n) and not only(z, o) as for the SA-ES. To create new points, the so-called
scentoperator is applied. It consists in choosing the best paidrag /N neighbors ofc

(where the scale of the neighborhood is givervynd updatings with » (see below).
At each generation, new individuals are also randomly sachgFinally individuals



created from both sides are submitted to selection. Aft@angisome definitions, we
formally describe thelescenbperator and the algorithm:

2.1 General definitions

We consider the minimization of a real valued objective fiorc f defined onX a
subset of the real spad™. We assume that the minimum g¢fis reached orX and
denotef* = min,cx f(x) € R. Thereforef := X +— [f*, oo[. Letopt denote the set
of optima,i.e.

opt = {z € X/f(x) = f*}.

Letz € R¥™ be a vector oR%™ andr a positive real number. We will denof(z, )
the closed ball of center and radius-.

For a setF’ embedded inX we will denoteE the complementary ok in E C X. |E|
will denote the cardinal of.

The Euclidean distance dr™ will be denotedi(., .), i.e.let (z,y) € R¥™ x Rdm

2.2 Exploitation operator "descent"

Let B be a set ofV points of the search spacB,= { By, ..., By}, we definedescent
as
descent(x,0,m) = (x + 0By, no, M)

wherex = argmin;ei,ny f(x + o Bj;) (@ny of the optimal in case of equality).

2.3 Algorithm

The algorithm we investigate in the sequel is an evolutipadgorithm where a popu-
lation P,,, wheren is the iteration or generation index, is evolved. Each iidtial of
the population is a tripletr, o, ) € R¥™ x Rt x R+,

1. Sampling ofN pointsB = { B, ..., By} included inB(0, 1).
2. Sampling of the initial populatioR, of (x, o, )
3. Forn varying from0 a +co
(@) Creation ofP?, |, empty population.
(b) Descent step:for each(z,0,n) € P,, adddescent(z,o,n) in P7,, ; the
population at the end of this stepiy, ;.4
(c) Random sampling step:Random sampling of new individuals, o, 7) (see
the Assumption subsection for the detailBj;l, the new population is

c _ b b
n+1l — Pn+1 U Pn+1

“ Atthe end of this step, we hay®2 1| = |P.|.



(d) Selection step:Selection of the beg, | element of P, the population so
generated i$,11.
(e) IncreaseV by 1 and regeneratB, if at least one local descent is interrupted.

Local descent: We call local descent a sequence of successive points
((x1,01,m), .-, (Tn,0n,nn)) generated at Step 3be.

For i > 1 (z;,04,m;) = descent(x;—1,0-1,7i—1)-

Interrupted local descent: We will say that a local descent is interrupted if for soime
(x4, 04,m;) is removed by the selection step.
Dispersion of B: We noteA(B) (or A for short) the dispersion a8 defined as

AB)= sup inf |[z—y]|.
(B)= sw infle-yl

3 Results

The convergence of the algorithm previously defined is a@alyn this Section.

3.1 Assumptions

We consideV = f=1([f*, f* + s|) for a givens, and assume thaf is a neighborhood
of opt = f~1(f*).

Assumption A. 1. We require that Step 1 and 3e ensure tha B, that A is non-
increasing inN and thatA — 0 as N — oo. For example, we might assume that
each newB generated minimized(B) under the constraint € B.

2. We forbidn > 1 orn < 0; in all casesn €0, 1].

3. The generation method (Step c¢) must generate 3-yples») in an i.i.d man-
ner ; the number of generated 3-tuples is upper bounded byengionstantz,
and the density is lower bounded by> 0 and upper bounded by < oo on
V'x]0,28up(q pyevxv || @ —b || [x]0,1[, andz, o andn are independent. More-
over, we generate at each Step c at least one point (which earroved in the
selection step).

4. We keep, at Step d, the,| best elements for the fitness. This selection depends
on z only (not ono andn) : in particular, |P,+1| = |P,| andV(z,0,,1.) €
Py, Yy, oy,my) € Py \ Priyy flz) < f(y)-

5. We assume thatif € V, the following holds :

fr+dd(z,opt)’ < f(x) < f* + ad(z, opt)”

with 3 > 0and0 < o < a.

6. Fore > 0 sufficiently small, the probability of generating (by ramdgeneration
at Step 3c) an optimal point withinis lower bounded by ¢ and upper bounded
by K'e¢ for someC, K, K' > 0 (consequence of Assumptiéns and Assump-
tion A.3),i.e. K€ < P(f(x) < f* +¢) < K'eC.

Comments: The fact that the coefficierit is the same on the left-hand and on the right-
hand side in AssumptioA.5 is, for us, the strongest assumption. Assumpfiohcan
be removed, with some technical modifications of the proof.



3.2 Preliminary results

We prove that ifA(B) is sufficiently small in front of the constants of the problarmd
of n,,, and if the optimum is inside the initial ball, then lineaneergence occurs.

Lemmal (Linear descent)lf z, € V andopt N B(z,,0,) # 0 and

m= {f(&am

thend(descent”(z,,, 01, mn), opt) < nkoy,

PROOF By induction, we show that allcy, 7y, €) = descent®(z,,,0,,1,) are in
V (by definition of V = f=1([f*, f* + s[)). By induction alsoB(c, 7 ) N opt is non-
empty (thanks to Assumptioh.5). As the radius of the ball is upper-boundediy;*,
the result follows.

O
We now prove the following Lemma:

Lemma 2. Let (z, 0x,7n) = descent®(z,0,7), then eitherP 1 or P 2 (but not both
simultaneously) holds:

P 1. for k sufficiently large f (xx) < f* + a(on®/(1 —n))?,
P 2. f(xy) is lower bounded by a constant f*.

Interpretation: Some sequences converge quickly to the optimum and somersezg!
are lower bounded. There is no sequence converging slovelgagqurence whose succes-
sive fithess accumulate around the optimum without conagrty it.

PROOF Assume thaff (z;) — f*. Ascoy = on¥, for anyp > 0 we have

Az, Thap) < onf(1+n4.. +nP™h)
(1—n") < ont
(I-m) ~— (Q-n)

Then (zx)ken is @ Cauchy sequence which therefore convergeszLebe its limit,
from the previous equation, the following holds

= o‘nk

d(zy, To0) < o /(1 —1).
Only two situations can occur

1. Eitherf(zx) — f* and consequently fak sufficiently largex;, € V. With As-
sumptionA.5 we have

flae) < f*+alon”/(1—n))°

which is the property 1.



2. Either f(x)) does not converge tp* but asf(z;) decreases it is lower bounded
by a value> f* which is the property 2.

O

Satisfactory individual: The 3-uple (z, o,7n) is saidsatisfactory if the propertyP 1.
defined in Lemma 2 holds.

Lemma 3. Let (n;);cn be the subsequence of the index generation N such that
there exists an individualz;), o(;), 7¢;y) in Py generated at Step and selected at
Stepd.

In other words|n;);cn is the increasing enumeration of the sehafuch that some
pointis generated at epoehand selected (z(;), o(;), ;) is the element among these
points with the minimum value ¢f.).

When(z;), o;y,7(:)) iS not unique, we choose it arbitrarily among possible pwint
minimizing f (z ;).

Assume that there are infinitely many interrupted local das¢which is equivalent
to the fact that there are infinitely mamguch that»; is well defined). Then, for a given
C, P((w(), o), 1)) satisfactory and non-interruptgd> C' > 0 infinitely often.

Interpretation : Lemma 3 states that if infinitely many new local descent gdtien
infinitely many of these new descents have a lower boundedubpitity of being unin-
terrupted. Lemma 3 will be used in the main Theorem to get &radittion : if infinitely
many new descents are started, by Lemma 3 (almost surelyit@hfimany of them are
non-interrupted, so there are more and more non-interdiggtguences, so, as the pop-
ulation is bounded after a finite time there is no more roonafaew descent (see the
Theorem for more details).

PROOF

1. Assume that; is well defined for alk € N. Note that this implies that decreases
to 0 (by AssumptionA.1).

2. Notew,, the worst fithness amon@f;. By constructionw,, is non-increasing. As it
is lower-bounded, it converges.

3. Let us show that it almost surely convergegtoThe proof is as follows :

— Assume, in order to get a contradiction, that is lower bounded by some
f* + e wheree = 1/2* for some integek > 0.

— Then with Assumptior. 6, infinitely many new points (generated in steps 2c)
are generated with fitness f* + e.

— The number of points i’ with fitness> f* + ¢ is decreased of one at each
generation of points with fitness f* + e. As this occurs infinitely often,
after a finite time (almost surelyl;,, must decrease belof* + e. This is true
for anye = 1/2F with probability 1; by countable intersection, it is true with
probability1 for all e = 1/2F.

— Thereforew,, decreases t¢* + e.

4. Note thatf(z(;y) < wn, (because iff(z;)) > wy,, then by constructiong;
would not be selected). Therefore, the fitness@f converges tgf*.



5. Let us show that the event
{(z@, o), n@)) satisfactory angy;) < 0.9}

occurs with probability at least— D for someD < 1 if i is sufficiently large.

— The event{(z«;,0(;),n.;)) satisfactory ang;) < 0.9} in particular holds
if the assumptions of Lemma 1 and < 0.9 are verified. This is the case
whenevers > d(opt,V) and0.9 > n > A{/a/o/ and if f(z) < f* +
o’d(opt, V)P.

— The latter inequality holds ifis sufficiently large, ag(x(;)) converges tgf*.

— Other inequalities occur independently with probabilityver bounded by a
constant> 0, provided thatA is sufficiently small.

— The probability of these three inequalities simultanepisslower-bounded by
a positive constant — D (D < 1), provided thatA is sufficiently small.A
goes ta) (point 1 above) and therefor# is sufficiently small ifi is sufficiently
large.

6. Note E! the event that > d(opt,V) and0.9 > n > A{/a/a’ and f(x) <
f* + a’d(opt, V)P, We have shown above th&(-E!) > 1 — D.
7. Note E; the event{(x ), o), n¢;) verifies E] and is never interruptedl in the
sense that its successive sons generated in Step b are leweated in Step d.
. By Lemmaz2, if E! occurs, then thek!" iterate of the local descent (from
(1), 03y, 7(3))) has fitness bounded above & (o)) /(1 — 1(:)))”.
9. Therefore, conditionally td!, the probability of interruption of thé!” iterate is
upper bounded by’ o (o)) /(1 — 1)) "€
10. SoP(~E;|E) is upper bounded by thE: ) K'a (o)1 /(1 — 1i))) ¢ .
11. Now, recall thatP(—FE;) = P(—E;|E})P(E!) + P(—E}) (asE; implies E!), and
thereforeP(—FE;) < P(—E;|E!) + P(~E}).
12. Then, combining points 11, 10 and 6 abowB(-E;) < 1 — D +

o K/O‘C(U(i)né)/(l - n(i)))ﬁc-

13. o having a density lower-bounded by a constan® in the neighbourhood dj,

P(E;) is infinitely often larger than a givei > 0 (for exampleW =1 — D/2).

oo

Hence the expected resulk;, having probability> W > 0 for any (conditionally to
the past and current epochs of the algorithm), occurs alsusty infinitely often.

O

3.3 Almost sure convergence with order one

We now investigate the global convergence properties ofatyorithm. The delicate
partis that it is not enough to have the fact that after a fimiteber of iterations we are
close to the optimum and therefore convergence holds. thdeere is always a risk that
alocal descentis interrupted. Therefore we are going taétize in the proof below the
fact that with probabilityl, under minimal assumptions, there is a non-interrupteal loc
descent that converges linearly. We emphasize the facttisgbroof could be applied
for other operators as well. The only requirement is to hax@igh fast convergence
for the local operator. The heart of the proof can be outlimeébllows:



— any non-satisfactory local descent will be interruptech@amuence of Lemma 2
and of AssumptiorA.6) by a new local descent; each new local descent has a
probability lower bounded by a constant( of being satisfactory ; so, there are
infinitely many satisfactory local descent (this is Step lthed proof below) as
long as none of them is satisfactory and non-interrupted wealways have a
satisfactory local descent among the future populations ;

— these local descents have a probability of being interdiptkich decreases so
quickly (by Lemma 3), that after some time they are no morermpted (this is
the Step 2 of the proof) ;

— hence, the convergence is linear (Step 3) and more®vsrbounded (Step 3).

The detailed proof comes after the Theorem:

Theorem 1. We have almost sure convergence at least linear of the egittre optimal
error, i.e.infi, o mep, (f(x) — f*) < A/B™ for someA > 0 andB > 1. Moreover,
N is almost surely bounded.

PROOF

1. Step 1: Let us show that with probability 1, there exists infinitely many values
of n such that there exists(x, o, 1) satisfactory in P<.
Let us make the hypothesis H1 (to get a contradiction), tvaarfiyn > ng, there is
no(z,o,n) in P2 such thatf (descent”(z,o,n)) — f* for k — oo (independently
of any interruption ; we consider the theoretical sequeriagescent®(.) ask —
Moreover, let us assume (one again in order to get a contimoljcthe hypothesis
H2: there exists; such that for any:. > ny, the Step c of generation of points
does not provide any point better than the worst point regpftom Step b.
Then, ifn > ny, P¢ = {descent" " (z,0,n)|(z,0,n) € PZ} ; moreoverN,
B and A become constant. Th&descent” ™ (z,0,7)) are lower bounded by a
given f* + ¢, for a givene > 0. This is proved by the application of:

— H1 (which states that none of the local descents converges) a
— Lemma 2 (which states that if local descents do not convergé then they
are lower bounded).

to the finit set of local descents frofy. .

Then for each, at Step 3c, the probability of generating a new point, oy, 7r.)
better than the local descents is lower bounded by sBmeavherePx is provided
by AssumptiorA.6.

So, such a generation necessarily occurs, with probalbility

So, we have a contradiction with H2. So, under hypothesisH21does not hold,
infinitely often, a new pointz, o, ) generated at Step c is added?0.

We have assumed H1, and proved that H2 does not hold. Let udaodwfor a
contradiction, so that we can prove that H1 does not hold.

N increases for each such that the followings holds : "a point generated at Step ¢
is integrated taP?". As this occurs infinitely often (a2 is false),A — 0.
Consider the probability of generatitig, o, ) satisfactory.



T = P((z,0,n) satisfactorys) >
P(xz € V|s) X P(o > sup,eyd(z,opt)|s)

7,

11>
x P(n> ¥ a/a' A(B)|s)

JIE
where P(E|s) is the probability of an event' conditionnally to the fact that the
point(z, o, n7) coming from the generation Step c is selected and is the élesttsd
point.
I1, is asymptotically lower bounded by a constant) (and indeed converges to
1), I15 is lower bounded by a positive constant thanks to Assum@i@n andils
is lower bounded by a positive constant whérns sufficiently small, what occurs
asA — 0.
The probability of getting &z, o, ) satisfactory and non-interrupted is thus lower-
bounded for each step during which a new point is generated at Step c. Conse-
guently this event occurs necessarily for infinitely manlea ofrn, with probabil-
ity 1.
S¥) with probabilityl, we have contradiction with hypothesis H1. So we can claim
that there exists infinitely many valuessofuch that there exists sore, o, ) in
P2 such thatdescent”(z,0,n) — opt if k — oo.
. Step 2 : Let us show that finitely many points(z, o,7) generated in (c) are
selected in (d).
Note (x(;), 0iy, 1(s)) the sequence df-uples generated at Step ¢ and selected in
P2 (not removed by the selection step) and satisfactory (i,irathe first case
of Lemma 2) and are the best (from the point of view of the fé)esnong the
(x,0,7m) generated in Step ¢ and incorporatedip,.
Letus do, in order to get a contradiction, the hypothesisttissequence is infinite
(which is equivalent to assuming that there are infinitelypyxuples generated in
Step c selected in Step d).
Then, fori large enougtP ((z (), o(;), n¢;y) verifies Lemma 1 and is not interrupted
is infinitely often lower bounded by a positive constant (lrean3).
So, this occurs, almost surely, infinitely often. As the nembf non-interrupted
local descents is bounded above by the population sizeg theontradiction.
. Conclusion :
By Step 1, we know that with probability 1, infinitely magyuples(z, o, ) satis-
factory are in somé?.
By Step 2, we know that theSeuples can only a finite number of times come from
random generations (as only a finite number of points can domeStep ¢ and be
included toPY). So, finitely many local descents are interrupted (eadrinption
is the integration in (d) of a point coming from Step c).
So after a finite time, no more local descent is interrupf€dis now constant
(and so, does not go to infinity) and the satisfactory locatdat (whose existence
is almost sure thanks to Step dges to the optimum, with linear convergence
thanks to Lemma 2.

O



4 Practical experiments

We have experimented our method on different simple objedtinctionsf; (z) =

{/> «¥ satisfying the assumptions we made for the convergencard-iyshows the
linear convergence of the method. We observe the changesneéigence rates due
to the changes of associated to the best point in the population and the iseseaf
N leading to aN-points quasi-random sampling. The choice®for a given value
of N has been performed by optimizing the disrepancy of the poirttis part of the
procedure is time-consuming whé&hincreases. Note that such sets of points in the ball
could of course be evaluated off line. Very efficient and &égbrithms exists for quasi-
monte-carlo generation in the sense of standard discrgplamicas far as we know no
equivalent algorithms exist for the optimization 4f Interestingly, experiments with
random sampling once per increaseMdfleads to similar results (note that the result
about linear convergence remains theoretically true)imitase with one new sampling
at each 3c step leads to much worse results. This suggestgiigi-random mutations
(at least, stabilizing the random part by keeping the s&wumtil NV increases) are not
only of theoretical interest (for proving our results ofdar convergence on a very large
family of fithess functions) but also of practical interddtte that on the other hand,
we need random points for the almost sure convergence anibwetproceed to any
quasi-randomization of this random part - in this work glatsion remains the work
of random.

These results are naive results coming from an Octave ingiéation. A more op-
timized implementation, based on EO classes in C++, is igness. First in dimension
2, fornormL, withp = 1,p = 3, p = 5 ; "increasing QMC" denotes epochs at which
N«—N+1:

Figure 2 presents the histogram of the distributionogf /1., ) after500 x (d/3)>
fitness-evaluations.

5 Discussions - Conclusions

We have designed a new algorithm using a representétion n) instead of(z, o).
This algorithm takes into account different areas of apifimthematics:

— quasi-random points (low-dispersion points, [9]);

— trust-regions ([7]);

— adaptive step-size coming from evolution strategies [50), 1
— random diversification of the population for global optiatinn.

A very important remark is that as for classical ES, the atgor considered here
only use the information given by the fitness through the iregkf individuals. There-
fore everything is invariant with respect to monotonic sfammation of the fitness. In
particular all the results holds far — g(f(z)) wheref satisfies the assumptions re-
quired for our Theorems anglis a strictly increasing function. This implies notably
that convexity is not required for the convergence.

Compared to state-of-the art theoretical results for cayesece of adaptive evolu-
tion strategies [1], our assumptions are here weaker. thitegl] asymptotic linear
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dim=10. In the second case, convergence did not occur yelogffitness) stays at -3.

Fig. 1. Fitness value in logarithmic scale vs number of generationgz, (z) = {/>_ =¥ with
respectively from left to rightp = 1, 3, 5. Due to numerical precisionsg(fr,) can be equal
to —co. A cross indicates when a neyis chosen. A circle indicates wheM is increased byt.
The random generation far is uniform on[—1, 1]¢, n is uniform on[0, 1], 10¢ is the absolute
value of a standard Gaussian, the population size is 5, tmbeuof random generations at Step
3cis 25 andN is initialized to1. A cross indicates when a neyvis chosen. A circle indicates
when N is increased by. It may be observed thaf” quickly stabilizes.



convergence is proved for any— ¢(f(x)) whereg is monotonic and is the sphere
function. The main points here are i) useof o, ) instead of(z, o) ; ii) generation of
points on a close ball, instead of Gaussian sampling, sahgagalgorithm can ensure
(under some conditions which are asymptotically satisfiét probability 1) that the
fact that the optimum lies iB(x, o) is preserved from parents to children ; iii) use of
quasi-random sequences ensuring thagoes to) asN — oo.

Experiments confirm the theoretical study but are very pri@lary. In fact, we im-
plemented the precise Algorithm, where each generatiorept® has to be generated
independently with the same distribution at each epochredseintuition suggests that
better heuristics for new generations should dramaticetiyice the time before reach-
ing linear convergence; such implementations, and theesponding proofs are yet to
be done. Note that even in dimension 10, our very simple imphgation, thanks to
linear convergence, could reach the limit of the machineipien. These results are
not at all results due to multiple attempts and empiricabcation of the parameters;
we simply implemented the algorithm in a naive manner, witramy heuristic added,;
our results are the most immediate consequences of theowngab
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Fig. 2. Histogram of the distribution dbg(fz,) after500 x (d/3)? fitness-evaluations for the
dimension indicated at the top of the graphs. For each caniptgaph, on the left with low-
dispersion points resulting from gradient-based optitioreon A(B); on the right, with random

points



