
HAL Id: inria-00000564
https://inria.hal.science/inria-00000564

Submitted on 3 Nov 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modelling SystemC scheduler by refinement
Dominique Cansell, Dominique Méry, Cyril Proch

To cite this version:
Dominique Cansell, Dominique Méry, Cyril Proch. Modelling SystemC scheduler by refinement.
IEEE ISoLA Workshop on Leveraging Applications of Formal Methods, Verification, and Validation
- ISOLA’05, Sep 2005, Columbia/USA. �inria-00000564�

https://inria.hal.science/inria-00000564
https://hal.archives-ouvertes.fr


MODELLING SYSTEMC SCHEDULER BY
REFINEMENT

Dominique Cansell
LORIA, Université de Metz

Dominique Méry and Cyril Proch
LORIA,Université Henri Poincaré Nancy 1

ABSTRACT

Systems on Chip, or shortly SoCs, and SoC architectures denote a challenging set of problems of spec-
ification, modelling techniques, security issues and structuring questions. Our methodology, for designing
models of (SoC) system from requirements, leads to formally justify hints on the future architectural choices
of that system; it is based on the B event-based method, which integrates the incremental development of
models using a theorem prover to validate each step of development called refinement. The target system is
generally expressed using a programming language notation like SystemC; the SystemC language is used
by electronic designers to describe different parts of the system (hardware and software); SystemC consti-
tutes a general framework for simulating and validating the design of the system under construction. The
semantics of SystemC is based on its scheduling algorithm described in the language reference manual and
we develop a B model of the scheduling. The B scheduling model left unspecified parameters depending on
the simulated SystemC program and those parameters are instantiated from the operational semantics of the
developed SystemC program. By instantiation, we obtain a B abstract model of the simulated program and
we can study properties of the SystemC program by simulation. B models are completely validated by the
proof assistant of the event-B method. Finally, our models provide a sound framework for understanding
the scheduling process.

Keywords. Event B method, refinement, scheduler, operational semantics, systemC

INTRODUCTION

Modelling the SystemC Scheduler

The refinement of events-based models provides a general framework for developing systems from
requirements and for expressing the semantical relationship between views of a system; the main idea is to
begin the development by a very abstract view or model and to state the fundamental properties required
by the system. The goal of the refinement-based development is to produce a formal validated model of
the system in an incremental way. Benefits of refinement are numerous and first we underline the control
of proof complexity by diffusion through the refined models. Second, the refinement process should start
from a very abstract view of the system that leads to the possibility to tackle non trivial systems. The
main objective is to write a B event-based model [3] of the SystemC [19] scheduler; the modelling is
the part of a general refinement-based methodology for developing systems on chip from requirements to
SystemC-like systems. First, we develop a B event-based model of the scheduler defined in the reference
manual of SystemC and we let informations on the simulated program in parameters; the refinement makes
possible the production of a precise model for the scheduler. Second, since the scheduler’s model has
parameters left unspecified, we can instantiate the scheduler for a specific SystemC program. Subsequently,
the resulting B event-based model is a formal model of the global system made up of the scheduler and the
particular program; the resulting model can be used in further developments and can be compared to another
instantiated model. It means that the generic model provides a framework for defining the operational
semantics for the simulation process, as defined in the reference manual. Since the scheduler is modelled
as a generic model, it is defined and developed only once and the user should only define the parameters

1



specific to the give SystemC program. Moreover, the resulting model is completely validated by the proof
process. Objectives of the paper can be summarized as follows:

• To provide an (formal) operational semantics for the SystemC scheduler and hence for the simulation
of each SystemC program.

• To use the refinement for capturing the semantics of the scheduler.

• To validate the correctness of the translation of B models into SystemC modules.

Proof-based incremental modelling

Proof-based development methods [4, 2] integrate formal proof techniques in the development of soft-
ware systems. The main idea is to start with a very abstract model of the system under development. Details
are gradually added to this first model by building a sequence of more concrete ones. The relationship be-
tween two successive models in this sequence is that of refinement [4, 2]. The essence of the refinement
relationship is that it preserves already proved system properties including safety properties and termination.

A development gives rise to a number of, so-called, proof obligations, which guarantee its correctness.
Such proof obligations are discharged by the proof tool using automatic and interactive proof procedures
supported by a proof engine [8].

At the most abstract level it is obligatory to describe the static properties of a model’s data by means of
an “invariant” predicate. This gives rise to proof obligations relating to the consistency of the model. They
are required to ensure that data properties which are claimed to be invariant are preserved by the events
or operations of the model. Each refinement step is associated with a further invariant which relates the
data of the more concrete model to that of the abstract model and states any additional invariant properties
of the (possibly richer) concrete data model. These invariants, so-called gluing invariants are used in the
formulation of proof obligations related to the refinement.

The goal of a B development is to obtain a proved model. Since the development process leads to a
large number of proof obligations, the mastering of proof complexity is a crucial issue. Even if a proof tool
is available, its effective power is limited by classical results over logical theories and we must distribute the
complexity of proofs over the components of the current development, e.g. by refinement. Refinement has
the potential to decrease the complexity of the proof process whilst allowing for traceability of requirements.

B models rarely need to make assumptions about the size of a system being modelled, e.g. the number of
nodes in a network. This is in contrast to model checking approaches [7]. The price to pay is to face possibly
complex mathematical theories and difficult proofs. The re-use of developed models and the structuring
mechanisms available in B help in decreasing the complexity. Where B has been exercised on known
difficult problems, the result has often been a simpler proof development than has been achieved by users
of other more monolithic techniques.

A short introduction to B event-based notations

The B event language is based on substitutions; a substitution states the transformation of state vari-
ables from a possible pre-state to a possible post-state. In our B models, we use specific substitutions; the
substitution x := E(x) denotes the transformation leading to the updating of the state variable x according
to the value of E(x) and the substitution x :∈ A(x) denotes the updating of the state variable x according
to a value of A(x) (a set depending on the pre-value of x).The Before-After predicate of a substitution
P (x, x′) defines the relation between values of variables before substitution (x) and values of variables af-
ter substitution (x′). For the substitution x := E(x), the predicate P (x, x′) is x′ = E(x) whereas for the
substitution x :∈ A(x), the predicate is x′ ∈ A(x). Each event has a guard controlling the substitution and
the occurrence of the event. A Before-After predicate of event is defined from Before-After predicate of
substitution and guard of event. We denote by S(x) any substitution form and an event is built with respect
to three schemata recalled in the figure 1.

Finally, the B model language provides the way to define a B event-based model. A (abstract) model is
made up of a part defining mathematical structures related to the problem to solve and a part containing el-
ements on state variables, transitions and (safety and invariance) properties of the model. Proof obligations

2



Event : E Guard Before-After Predicate

begin S(x) end true P (x, x′)

select G(x) then S(x) end G(x) G(x) ∧ P (x, x′)

any t where G(t, x) then S(x) end ∃ t· ( G(t, x)) ∃ t· ( G(t, x) ∧ P (x, x′, t) )

Figure 1: Definition of events and before-after predicates of events

Name Syntax Definition
Binary Relation s ↔ t P(s × t)

Domain dom(r) {a |a ∈ s ∧ ∃b.(b ∈ t ∧ a 7→ b ∈ r)}
Codomain ran(r) dom(r−1)

Co-restriction r B t r; id(s)
Anti-co-restriction r B− t r B (ran(r) − t)

Image r[w] ran(w C r)
Overwrite q C− r (dom(r) C− q) ∪ r

Partial Function s 7→ t {r | r ∈ s ↔ t ∧ (r−1; r) ⊆id(t)}
Total Function s → t {f | f ∈ s 7→ t ∧ dom(f) = s}

Figure 2: B set notations

are generated from the model to ensure that properties are effectively holding: it is called internal consis-
tency of the model. A model is assumed to be closed and it means that every possible change over state
variables is defined by transitions; transitions correspond to events observed by the specifier. A model m is
defined as follows. A model has a name m; the clause sets contains definitions of sets of the problem; the
clause constants allows one to introduce information related to the mathematical structure of the problem
to solve and the clause properties contains the effective definitions of constants: it is very important to list
carefully properties of constants in a way that can be easily used by the tool. Another point is the fact that
sets and constants can be considered like parameters and extensions of the B method exploit this aspect
to introduce parameterization techniques in the development process of B models. The second part of the
model defines dynamic aspects of state variables and properties over variables using the invariant called
generally inductive invariant and using assertions called generally safety properties. The invariant I(x)
types the variable x, which is assumed to be initialized with respect to the initial conditions and which is
preserved by events (or transitions) of the list of events. Conditions of verification called proof obligations
are generated from the text of the model using the first part for defining the mathematical theory and the
second part is used to generate proof obligations for the preservation of the invariant and proof obligations
stating the correctness of safety properties with respect to the invariant.

The B event-based method includes the B data modelling language, the B events language and the
B models language. The figure 2 gives set-theoretical notations of the B data modelling language and it
borrows notations and concepts of Bourbaki’s group. If f is a function then the substitution f(x) := E is
equivalent to f := f C−{x 7→ E}.

Due to the lack of space, we do not introduce formally the refinement models and they will be effectively
used later. A complete introduction of B can be found in [6].

Applications to SoC development

The scheduler model was developed for validating a system on chip produced for measuring the service
performance (TS level) in a DVB environment. Formal modelling techniques [12, 1, 5] provide hints on
the architecture of the future system and the formal model has been developed using the B event-based
method; the resulting B model provides an invariant, which is incrementally built and validated through the

3



refinement process and the details are extracted from the documentation [9]. However, the resulting B model
should be translated into an equivalent code and the question of the adequacy of the resulting code with the
B model should be solved by defining a semantical framework for asserting the semantical relationship. It
is why we have developed the B model for the SystemC scheduler. Our case study is a monitoring tool for
measurement in Digital Video Broadcasting Television (DVB-T) and problems are related to the number of
computations and real-time constraints. The implementation of this tool is driven by the hierarchy derived
from invariant of models. The refinement allows us to classify parameters into a consistent hierarchy; the
hierarchy has properties for deriving a so-called abstract architecture for the system. The hierarchy of the
abstract model is not falsified by the hierarchy of the concrete one, thanks to the refinement. Obviously,
events of the model can be used to derive algorithmic methods for computing the value of each parameters.
Explanations to non specialists of refinement are given through graphs, which capture the relation between
parameters. The project includes colleagues of the electrical engineering department and three industrial
partners; the project leads to the effective design of a tool correct with respect to the hierarchy among
parameters and the B event-based method helps in validating the final choice of implementation. However,
it is out of the scope of the current paper which focuses on the model of the scheduler.

Related works

The definition of an operational semantics is not new [15, 17]; the main fact is that we use the B event-
based methodology for writing the abstract scheduler; for instance, the ASM language is used to define the
simulation semantics of SystemC [15, 10] as the semantics of SpecC [13], an equivalent language of Sys-
temC, or semantics of VHDL [11]. Unfortunately, these works [15, 10] consider the scheduler of SystemC
V1.0 which is really different of the actual version (V2.0). The major goals of these works are the definition
of precise specifications for future implementation of a scheduler or to investigate SystemC interoperability
with Verilog, SpecC and VHDL. Our goal is to provide a formal semantics to the SystemC scheduler and we
use the B framework for expressing the semantics. A second difference is that we write incrementally the
operational semantics and the incremental process improve the understanding of the scheduler. Finally, the
resulting B event-model for the simulation semantics can be used as a parametric framework for analysing a
specific SystemC program and this point is not addressed elsewhere in the literature. Others works [18, 16]
aim to develop abstract models of SystemC programs and use model checking techniques; those approaches
are verification-oriented and we are dealing mainly with design-oriented ones.

Summary

Section 2 describes the SystemC programming language and its concepts; the principles of simulation
are sketched by the simulation algorithm. Section 3 reports the incremental development of the SystemC
scheduler using the refinement process; the section is the main technical aspect of the paper. A simple
example illustrates the technique of model instantiation in the section 4. Section 5 concludes the work.

SYSTEMATIC B MODELS FOR SYSTEMC SIMULATION

Requirements for the SystemC Simulation

SystemC [19, 14] is a set of C++ class definitions with hints for using these classes. The SystemC
library of classes and simulation kernel extend C++ to enable the modelling of systems. Extensions include
handling for concurrent behavior, time sequenced operations, data types for describing hardware, structure
hierarchy and simulation support. The core language consists of an event-driven simulator as the base
(scheduler). The scheduler uses events and processes.

SystemC: Quick Overview

A SystemC system consists of a set of modules. A module is a container class and provides the ability
to describe structure. Module is a hierarchical entity that can have other modules or processes inside it.
Modules typically contain processes, ports, internal data channels and possibly instances of other modules.
Ports are used to describe structure, while channels are used to represent communication. Processes are
concurrent and are used to model the functionality of the module. Processes are contained inside modules
and are particular methods of modules. SystemC provides different process abstractions for hardware and
software designers. Channels or signals handle communications between processes but communications

4



between processes inside different modules is supported by ports, interfaces and channels. The port of a
module is the object through which the process accesses a channel. Events are the basic synchronization
objects for processes. Processes are triggered with respect to sensitivity on events. Concretely, an event is
used to represent a condition that may occur during the simulation and to control the triggering of processes.
Static sensitivity is defined before simulation starts but dynamic sensitivity is defined after simulation starts
and can be altered during simulation.

SystemC: Execution Semantics

The function sc main() is the entry point from the library to the user’s code (as the function main()
in C++ programs). Elaboration is defined as the execution of the sc main() function from the start of
sc main to the first invocation of scheduler. During elaboration, the structural elements of the system
are created and connected throughout the system hierarchy. The structure of the system is created during
elaboration time and does not change during simulation.

Before first invocation of scheduler, initialization is the first step of simulation. Each process is executed
(you can turn off initialization for particular processes with calls of methoddont initialize()) during
initialization. The order of execution of processes is unspecified but two simulations run using the same
version by the same simulator must yield identical results. The next figure presents an example of SystemC
modules with concurrent processes, channels and events.
# i n c l u d e ‘ ‘ sys t emc . h ’ ’

SC MODULE( my module ) {
s c i n<bool > p o r t 1 ;
s c o u t<bool > p o r t 2 ;
e v e n t e2 , e3 ; / / e v e n t s d e c l a r a t i o n
s c s i g n a l <in t > c o u n t ; / / i n t e r n c h a n n e l

vo id proc1 ( ) {
i f ( c o u n t . r e a d ( ) < 1 0 ) {

c o u n t . w r i t e ( c o u n t . r e a d ( ) + 1 ) ;
e2 . n o t i f y ( ) ; / / immed ia te n o t i f i c a t i o n

} e l s e {
e3 . n o t i f y ( 5 , SC NS ) ; / / t i m e d n o t i f i c a t i o n

}
}

vo id proc2 ( ) {
i f ( c o u n t . r e a d ( ) < 1 1 ) {

c o u n t . w r i t e ( c o u n t . r e a d ( ) + 2 ) ;
} e l s e {

e3 . n o t i f y ( 4 , SC NS ) ; / / t i m e d n o t i f i c a t i o n
}

}

vo id proc3 ( ) { c o u n t . w r i t e ( 0 ) ;}
}

SC CTOR( my module ) {
c o u n t . w r i t e ( 0 ) ;
SC METHOD( proc1 ) ; s e n s i t i v e << c o u n t ;
SC METHOD( proc2 ) ; s e n s i t i v e << e2 ;
d o n t i n i t i a l i z e ( ) ;
SC METHOD( proc3 ) ; s e n s i t i v e << e3 ;
d o n t i n i t i a l i z e ( ) ;

}
} ;

The SystemC scheduler controls the timing and order of process execution, handles event notifications
and manages updates to channels. It supports δ-cycles. A δ-cycle consists of the execution of evaluate
and update phases. There may be a variable number of δ-cycles for every simulation time. SystemC
processes are non-preemptive. It means that for thread processes, code delimited by two wait statements
will execute without any other process interrupt and a method process completes its execution without
interrupt by another process. The scheduler may be invoked such that it will run indefinitely. Once started
the scheduler continues until either there are no more events, or a process explicitly stops it, or an exception
condition occurs.

5



Event Notification

Events can be notified in three ways: immediate, δ-cycle delayed and timed. Immediate notification
means that the event is triggered in the current evaluation phase of the current δ-cycle. A δ-cycle delayed
notification means that the event will be triggered during the evaluate phase of the next δ-cycle, the event
is scheduled for the next δ-cycle. Timed notification means that the event will be triggered at the specified
time in the future.

Events can have only one pending notification, and retain no “memory” of past notifications. Multiple
notifications to the same event, without an intermediate trigger are resolved according to the following rule:

timed ≺ δ ≺ immediate

An earlier notification will always override a scheduled one to occur later, and an immediate notification
is always earlier than any δ-cycle delayed or timed notification, rules imply non determinism.

Complete Algorithm of Scheduler

The semantics of the SystemC simulation scheduler is defined by the following eight steps in [14]. A
δ-cycle consists of steps 2 through 4.

1. Initialization Phase:

2. Evaluate Phase: From the set of processes that are ready to run, select a process and resume its
execution. The order in which processes are selected for execution from the set of processes that are
ready to run is unspecified.
The execution of a process may cause immediate event notifications to occur, possibly resulting in
additional processes becoming ready to run in the same evaluate phase.

3. Repeat step 2 for any other processes that are ready to run.

4. Update Phase: Execute any pending calls to update() from calls to the request update()
function executed in the evaluate phase.

5. If there are pending delta-delay notifications, determine which processes are ready to run and go to
step 2.

6. If there are no more timed event notifications, the simulation is finished.

7. Else, advance the current simulation time to the time of the earliest (next) pending timed event noti-
fication.

8. Determine which processes become ready to run due to the events that have pending notifications at
the current time. Go to the step 2.

We propose to develop the algorithm by refinement from the description of the language reference
manual. By this way, we provide an abstract simulation framework which can be instantiated later for a
given SystemC program. By instantiation of abstract scheduling model, we define operational semantics of
SystemC programs.

INCREMENTAL CONSTRUCTION OF THE SYSTEMC SCHEDULEr

Our B models models the SystemC scheduling and different parts of algorithm are introduced by re-
finement. Dynamic sensitivity is not considered in our models for simplifications reasons.

6



Initialisation

Evaluate

Update

runnable ≠ ∅

HALT

runnable = ∅

runnable ≠ ∅

runnable ≠ ∅

runnable = ∅

runnable = ∅

runnable = ∅

model
Abstract Scheduler

sets
PROCESSES;
STATE = {init, run, stop}

variables
runnable

invariant
runnable ⊆ PROCESSES ∧
phase ∈ STATE ∧
(phase = stop ⇒ runnable = ∅)

initialisation
runnable :∈ P(PROCESSES) ‖
phase := init

Figure 3: Automaton and header of abstract model

Abstract Model

The first abstract model describes, in a very abstract way, SystemC scheduler during simulation of
program. As shown in previous algorithm, scheduler has two important phases: during the evaluate phase,
runnable processes are executed and are removed from list of runnable processes. During the update phase,
a new list of runnable processes is built. In particular cases, processes are adding to the list in evaluate
phase. The abstract model captures the essence of scheduler and an automaton presented in figure 3 shows
the different states of our model. Only processes are considered and there are no clocks, signals and events.
The abstraction plays with processes of abstract program. Our abstract model contains three distinct events
to animate variables and represent SystemC scheduler reactions. The three events are represented by the
three states of figure 3. Because of the abstraction level, the automaton is not deterministic, from particular
state (Update for instance), many transitions are possible with the same conditions. As shown figure 3,
initialization, δ-cycle and, possibly stop are modelled in the system. Remember that, when refining models,
the main idea is to reduce non-determinism but we should start by a very abstract model.

More precisely, abstraction is built very simply: PROCESSES is the set of processes defined in an
abstract SystemC program. The abstract model uses a variable runnable which is a sub-set of PROCESSES,
runnable processes at the current time. Last, a variable phase is introduced. This variable is used to separate
different states of the system. Header of model with constants, properties of constants, variables, invariant
and initialization of system are presented in figure 3. First, set STATE and value of variable phase model
three different states of the system:

• phase = init, means than system is in initialization phase.

• phase = run, means than system is in execution phase i.e. in evaluate phase or update phase.

• phase = stop, means than system is halting and simulation finished.

A first interesting safety property about runnable is phase = stop ⇒ runnable = ∅. It means
than simulation is finished only, when there is no more runnable process. This is an important property of
simulation presented in the language reference manual. The invariant property is preserved by events of
abstract model. The runnable variable is updated during evaluate phase, after executions of processes:

• when a process p is executed, it is suppressed from set runnable.

• execution of p could add new processes in the same current evaluate phase.

7



proc1

proc2

exe
cutio

n1 execution2

if (count < 10) {
   count.write(count.read()+1);
   e2.notify();
} else {
   e3.notify(5,SC_NS);
}

Figure 4: Possible executions of same process

In general case, a same process can have different executions between context of its current execution.
For example, figure 4 shows a process with an if then else instruction. The process proc1 is con-
sidered as runnable and different executions are produced by different activations of the process. Figure
4 presents the two subsets of processes generated by executions of proc1. These two subsets are very
simple: only one process for the first and the second is empty.

The two next events model the dynamic of system and scheduling of SystemC design during simula-
tion. Event Evaluate represents a non-deterministic choice of process p in runnable (see guard of event:
runnable 6= ∅) and resulting consequences of its execution. Event Evaluate suppresses processes in
runnable and builds a new set of runnable processes. In this abstract level, details of the list construction
are not presented but the main information is stated: after each process execution a new list of processes is
built.

After one or more activations of event Evaluate, value of variable runnable can be the empty set (∅).
In the SystemC point of view, it means than all runnable processes have been executed and scheduler must
begin its update phase. Event Update models the update phase of scheduler. Its abstracts level of modelling
can not express how the new list is built but our model shows that a new list of runnable processes is built
in update phase. Details of new list built will be presented in the first refinement.

Evaluate =
select

phase 6= stop

then
runnable :∈ P(PROCESSES) ‖
phase := run

end

Update =
select

phase = run ∧
runnable = ∅

then
runnable :∈ P(PROCESSES)

end

At last, event HALT models the ending of simulation. In the ab-
stract model, without SystemC event notion, simulation can halt,
when variable runnable is empty. The invariant properties are
preserved and event is consistent with invariant and requirement
of SystemC scheduler. After ending of simulation (modelled by
B event HALT), system is deadlocked and no event can be acti-
vated.

HALT =
select

phase 6= stop ∧
runnable = ∅

then
phase := stop

end

Finally, our first model sketches the core of SystemC scheduler and simulation principles. Our ab-
straction presents evolution of processes (runnable thereafter not) during simulation but does not explain
scheduling algorithm. Next refinement add details of SystemC simulation principles and the role of sched-
uler.

First Refinement: SystemC Events

The first refinement introduces SystemC events and notifications of SystemC events. Addition of Sys-
temC events notion implies to split B event Update to specify algorithm of scheduling. Splitting concrete

8



Initialisation

Evaluate

runnable ≠ ∅

runnable = ∅

runnable ≠ ∅

runnable ≠ ∅

ProgressTime DeltaCycle

delta ≠ ∅

delta = ∅
timed ≠ ∅

time ≠ EOS

noEvent

EndingSimulation

delta = ∅
timed = ∅

time = EOS
delta = ∅

runnable = ∅

UpdateValue

runnable = ∅

Figure 5: Concrete automaton of the scheduler

events refines abstract event Update. In the same way, abstract B event is refined by two concrete events
to model different terminations. The figure 5 shows the new concrete automaton produced from the refined
model. The non-deterministic transitions of abstract model (see figure 3) are now deterministic because the
new refined model introduces more details. New set and constants are introduced:

• SC EV ENTS is the set of events used during execution of abstract SystemC program.

• sensitivity is a relation from PROCESSES to SC EV ENTS which models the static sensitiv-
ity list of each processes defined in program. Because a process can be sensitive on many events,
sensitivity is a relation. The relation sensitivity is constant because our models do not consider
dynamic sensitivity.

• EOS is a number which represents the ending-of-simulation time. Scheduler can be invoked with a
integer parameter which represents the total time of simulation.

• trigger is a relation from PROCESSES to P(SC EV ENTS). The relation represents events
produce by execution of processes. Because of the code structure, trigger is a relation; a conditional
instruction can produce two different executions as presented in figure 4.

SystemC event and sensitivity of processes notions are introduced, we must model different kinds of
event notification. To represent notifications, time must be considered in the refined model. Header of
refined model is presented below:

9



refinement
Event Scheduler

refines
Abstract Scheduler

sets
SC EV ENTS

constants
sensitivity, trigger,EOS

properties
sensitivity ∈

PROCESSES ↔ SC EV ENTS ∧
trigger ∈

PROCESSES ↔ P(SC EV ENTS) ∧
EOS ∈ N

variables
runnable, time, phase,

timed, δ

invariant
time ∈ N ∧
EOS ≥ time ∧
timed ∈ SC EV ENTS 7→ N ∧
∀t.(t ∈ ran(timed) ⇒ t > time) ∧
δ ⊆ SC EV ENTS ∧
dom(timed)∩ δ = ∅ ∧
(phase = stop ⇒ δ = ∅) ∧
(phase = stop ⇒ time = EOS ∨

timed = ∅)
initialisation

time := 0 ‖
phase := init ‖
runnable :∈ P(PROCESSES) ‖
timed := ∅ ‖
δ := ∅

New concrete variables help to model scheduling algorithm. The two variables timed and δ correspond
to different kinds of event notifications. δ is the subset of SystemC events which have a pending delta-delay
notification whereas timed is a function from SC EV ENTS to N which models the subset of pending time
notification events. An important invariant predicate is the disjunction of the two subsets: SystemC events
can have only one pending notification and multiple notifications of the same event are resolved by priority
rule. New natural variable time models the current time of the system. The variable is very important and a
new invariant predicate ∀t.(t ∈ ran(timed) ⇒ t > time) translates that timed notifications indicate future
occurrences of events.

The new concrete version of B event Evaluate must now precise behaviors of SystemC events triggered
by execution of process p selected in runnable. First, the set E models the set of events triggered by an
execution of process p (E ∈ trigger[{p}]). We must partition the set E:

• let i, a subset of E, the set of SystemC events related to immediate notification.

• let d, a subset of E, the set of SystemC events related to δ-delay notification.

• let t, a subset of E, the set of SystemC events related to timed notification.

These subsets are only composed of explicit invoked events. At
this abstract level, the model uses only explicit SystemC events
and not events produced by channels updates. These three sub-
sets partition E as defined in the guard of B event Evaluate. The
next box presents a part of B event Evaluate guard:

E ∈ trigger[{p}] ∧
t ∈ SC EV ENTS 7→ N ∧
dom(t) ⊆ E ∧ d ⊆ E ∧ i ⊆ E ∧
dom(t) ∩ d = ∅ ∧ dom(t) ∩ i = ∅ ∧
d ∩ i = ∅ ∧ dom(t) ∪ d ∪ i = E ∧

Rules of priority about multiple event notifications imply important properties on function t and on the
new subset of events with pending timed notifications represented by domain of the function newT imed.
The function is built with the function timed (old set of timed notification events) and the function t which
represents events with timed notifications triggered by execution of process p. Because of priority rules
presented in section* , we establish these properties:

newT imed ∈ SC EV ENTS 7→ N ∧
dom(newT imed) = dom(timed C− t) − (d ∪ i) ∧
∀e.(e ∈ (dom(timed) ∩ dom(t)) ⇒ newT imed(e) = min({timed(e), t(e)})) ∧
∀e.(e ∈ dom(newT imed) ∧ e 6∈ dom(t) ⇒ newT imed(e) = timed(e)) ∧
∀e.(e ∈ dom(newT imed) ∧ e 6∈ dom(timed) ⇒ newT imed(e) = t(e))

10



In the same way, variable δ is updated by rules of scheduler; immediate notifications are more prioritary
than δ-notifications (δ := δ∪d−i). In another hand, the set runnable is updated by suppression of executed
process p and by addition of the set of processes sensitive to immediate notifications of events of i subset.
The new concrete version of B event Evaluate is finally:

Evaluate =
any

p, E, t, d, i, newT imed

where
p ∈ runnable ∧
E ∈ trigger[{p}] ∧
t ∈ SC EV ENTS 7→ N ∧
dom(t) ⊆ E ∧ d ⊆ E ∧ i ⊆ E ∧
dom(t) ∩ d = ∅ ∧ dom(t) ∩ i = ∅ ∧
d ∩ i = ∅ ∧ dom(t) ∪ d ∪ i = E ∧
newT imed ∈ SC EV ENTS 7→ N ∧
dom(newT imed) = dom(timed C− t) − (d ∪ i) ∧
∀e.(e ∈ (dom(timed) ∩ dom(t)) ⇒ newT imed(e) = min({timed(e), t(e)})) ∧
∀e.(e ∈ dom(newT imed) ∧ e 6∈ dom(t) ⇒ newT imed(e) = timed(e)) ∧
∀e.(e ∈ dom(newT imed) ∧ e 6∈ dom(timed) ⇒ newT imed(e) = t(e)) ∧
dom(t) ∩ δ = ∅ ∧ ∀x.(x ∈ ran(newT imed) ⇒ time < x)

then
runnable := (runnable − {p}) ∪ sensitivity−1[i] ‖
timed := newT imed ‖
δ := δ ∪ d − i ‖
phase := run

end

Now, we detail the update phase of SystemC simulation. Because of different kind of notifications,
update phase is more complex. The update phase begins when the set runnable is empty. It means that
all runnable processes have been executed in the previous evaluate phase. This important precondition was
present in the guard of first abstract B event Update. The splitting of abstract B event Update produces
three concrete events, updateValue, DeltaCycle, ProgressTime.
The concrete event updateValue is a non-
deterministic event which adds a subset S to the
set δ of events with δ-notifications. It means that
sometimes, in update phase, SystemC scheduler pro-
duces new events notifications. Details will be added
in the second refinement. Invariant properties are
preserved by activation of this event. New concrete
event DeltaCycle models the update phase due to
pending δ-notifications (see guard of event:δ 6= ∅
). At this abstract level, the model explains the
construction of new list of runnable processes: this is
the set of processes sensitive to events with pending
δ notification.

updateValue =
any

S

where
S ⊆ SC EV ENTS ∧
runnable = ∅ ∧
S ∩ dom(timed) = ∅ ∧
phase = run

then
δ := δ ∪ S

end

In the other hand, B event ProgressTime represents the update phase due to pending timed event
notification. The event is activated only when there is no more δ-delay notifications. B event ProgressTime
advances the current simulation time to the time of the earliest (next) pending time event notification. New
list of runnable processes is built with sensitivity relation and events which occur at new current simulation
time.

11



DeltaCycle =
select

runnable = ∅ ∧
δ 6= ∅ ∧
phase = run

then
runnable := sensitivity−1[δ] ‖
δ := ∅

end

ProgressTime =
select

runnable = ∅ ∧
δ = ∅ ∧
timed 6= ∅ ∧
EOS ≥ min(ran(timed)) ∧
phase = run

then
runnable :=

sensitivity−1[timed−1[{min(ran(timed))}]] ‖
time := min(ran(timed)) ‖
timed := timed −B {min(ran(timed))}

end

Finally, the abstract event HALT is refined into two more concrete events. First, the event noEvent
models the ending of simulation, because of lack of event notifications. The simulation stops because
of lack of activities: no more event notifications implies no more runnable processes. Second, the event
EndingSimulation models ending simulation, because of the simulation time is the ending-of-simulation
time and no more events notifications can occur.

EndingSimulation =
select

runnable = ∅ ∧
δ = ∅ ∧
time = EOS ∧
phase 6= stop

then
phase := stop

end

noEvent =
select

runnable = ∅ ∧
δ = ∅ ∧
timed = ∅ ∧
phase 6= stop

then
phase := stop

end

Second Refinement: Complete Model

Channels are introduced in this final refinement. New automaton is not presented because only some
transitions (ie guards of events) are strengthened to consider adding of channels and values of them.

New constants are introduced in this final refinement. First, a new set CHANNELS models the set
of used channels in a SystemC program. Another set is V ALUE which represents the set of abstract values
of considered channels. Our model introduces a subset C EV ENTS which represents the set of implicit
events of the program. The implicit event is an event used by system to indicate a modification of channel’s
value. SystemC users can not access directly to this kind of events. Our model introduces the next properties
which translate previous remarks:

C EV ENTS ⊆ SC EV ENTS ∧
∀S.(S ∈ ran(trigger) ⇒ S ∩ C EV ENTS = ∅)

Another constants are introduced in this model. The function produce is a total function from CHANNELS

to C EV ENTS and represents implicit events triggered by modifications of channel. The current model
deals with abstract channels and does not detail generation of implicit events for positive and negative sen-
sitivity lists ( keywords sensitive pos and sensitive neg). These kinds of sensitivity lists are only
used with particular (boolean) channels and, in the same way, we could model these lists.

A new variable value is introduced to represent the current values of channels. A second new variable
newV alue is introduced to construct the new valuation of channels after update phase. The two variables
value and newV alue are total functions from CHANNELS to V ALUE.

New concrete version of event Evaluate considers channels. A partial function f is introduced to
represent modifications of channels made by process p. The variable function newV alue is built with the
partial function f during the evaluate phase. It is easy to prove that the new version of event Evaluate
refined the oldest abstract version.

12



Evaluate =
any

p,E, t, d, i, newT imed, f

where
p ∈ runnable ∧
t ∈ EV ENTS 7→ NATURAL ∧
E ∈ trigger[p] ∧
dom(t) ⊆ E ∧
newT imed ∈ EV ENTS 7→ NATURAL ∧
d ⊆ E ∧ i ⊆ E ∧
...

f ∈ CHANNELS 7→ V ALUE

then
runnable := (runnable − p) ∪ sensitivity−1[i] ‖
timed := newT imed ‖
δ := δ ∪ d − i ‖
newV alue := newV alue C− f ‖
phase := run

end

The new concrete version of event updateValue
is deterministic and explain the adding of δ-
delay notification during update phase. When
values of channels are updated, δ-delay events
notifications occur, when the new value is dif-
ferent from old value. The set δ is updated with
these new δ-delay notifications. The event ex-
plains the behavior of scheduler when multiple
channels modifications: only the last modifica-
tion is considered.

updateValue =
select

runnable = ∅ ∧
value 6= newV alue ∧
phase = run

then
value := newV alue ‖

δ := δ ∪ produce

»

c | c ∈ CHANNELS ∧
value(c) 6= newV alue(c)

ff–

end

The new concrete versions of other events are not too different from abstract versions and for limited
size reasons we do not present the concrete versions of B events.

Producing a B model from a SystemC program

From a particular SystemC program or design, we can produce a B event model which represents the
simulation of the program by the scheduler. The new B model must be a particular instantiation of abstracts
models of scheduler. For each process of SystemC program we produce events (one at least) which represent
execution of process. The set of events produced must refine event Evaluate from abstract models, which
represent abstract executions of abstract processes.

Abstract sets and constants are concretized with particular values of program. Sets and constants
of instantiated model must preserve properties of abstract sets and constants. For example, concrete set
CHANNELS is composed by the channels used in Systemc programs modelled. In the same way, ab-
stract set PROCESSES is the set of particular processes of current SystemC program.

EXAMPLE

Our abstract models can be instantiated to simulate execution of particular program by the SystemC
scheduler. Instantiation of abstract scheduler for particular program is very easy: sets, constants and vari-
ables are specified for particular SystemC program studied. Abstract event Evaluate is split into particular
events, which model execution processes of particular SystemC program. As previously announced, other
abstract events are unchanged: algorithm of SystemC scheduler did not evolve with programs simulations.

Sets and constants

We use a toy example presented in section page 5. Instantiation is made with the concrete sets:

13



Abstract set PROCESSES is instantiated by three processes
(proc1, proc2, proc3) of the toy example. Abstract set
SC EV ENTS is instantiated by SystemC events e2 and e3, de-
fined by user, and by SystemC event e which is an implicit event.
In the same way, abstract set CHANNELS is instantiated by
only one element, count channel. Event e is gluing to channel
count in relation produce. Abstract set V ALUE is instantiated
by the integer set.

PROCESSES = {proc1 , proc2 , proc3}
SC EVENTS = {e, e2 , e3}
CHANNELS = {count}
VALUE == N

Concrete constants are defined for the particular SystemC program considered. It is easy to show that
concrete constants satisfy abstract properties of abstract constants. The major part of properties is type-
checking and concrete constants trivially preserve these properties.

C EVENTS = {e}
produce = {count 7→ e}
trigger = {proc1 7→ {e2},

proc1 7→ {e3},
proc2 7→ ∅,
proc2 7→ {e3},
proc3 7→ ∅}

sensitivity = {proc1 7→ e, proc2 7→ e2 , proc3 7→ e3}

variables
runnable, time, phase,

δ, timed , value, newValue

invariant
dom(timed) ⊆ {e3} ∧ e3 6∈ δ ∧ e2 6∈ δ

initialisation
time := 0 ‖
runnable := {proc1} ‖
phase := init ‖
timed := ∅ ‖δ := ∅ ‖
value := {count 7→ 0} ‖
newValue := {count 7→ 0}

The invariant predicates of model precise relations between concrete instantiated variables. In the
current SystemC program, only event e3 is concerned by time event notifications. This fact is translated
into an invariant predicate dom(timed) ⊆ {e3}.

Instantiation: concrete event EvaluateXXX

From structure of the three processes of listing page 5 we derive five B events:

• Process proc1 contains conditional statement and it implies that two different executions can occur.
Two different events model the process. Guards of events are disjunctive.

• As process proc1, process proc2 uses a conditional statement. Equivalently, two B event simulate
behaviors of process proc2.

• Process proc3 does not contain conditional statement. Only one event is needed to represent its
execution.

EvaluateProc1Then =
select

proc1 ∈ runnable ∧
value(count) < 10

then
runnable := runnable − {proc1}∪

sensitivity−1 [{e2}] ‖
newValue := newValue C−
{count 7→ value(count) + 1} ‖

phase := run

end

EvaluateProc1Else =
select

proc1 ∈ runnable ∧
value(count) ≥ 10

then
runnable := runnable − {proc1} ‖
timed := {e3 7→

min(ran(timed) ∪ {time + 5})} ‖
phase := run

end

Finally, the two previous B events simulate executions of process proc1 during SystemC simulation.
All instructions of each block of conditional statement are translated/considered in the corresponding event.
Guards of B events represent test of conditional instruction and context of simulation.

As previously, two next events are built and model behavior of process proc2 during SystemC simu-
lation. This two events give operationnal semantics of process proc2.

14



EvaluateProc2Then =
select

proc2 ∈ runnable ∧
value(count) < 15

then
runnable := runnable − {proc2} ‖
newValue := newValue C−
{count 7→ value(count) + 2} ‖

phase := run

end

EvaluateProc2Else =
select

proc2 ∈ runnable ∧
value(count) ≥ 15

then
runnable := runnable − {proc2} ‖
timed := {e3 7→

min(ran(timed) ∪ {time + 4})} ‖
phase := run

end

The next event represents executions of process proc3.

EvaluateProc3 =
select

proc3 ∈ runnable

then
runnable := runnable − {proc3} ‖
newValue := newValue C−{count 7→ 0} ‖
phase := run

end

CONCLUSION AND OPEN ISSUES

The refinement is the key concept for developing complex systems, since it starts by a very abstract
model and incrementally adds new details of the set of requirements; the main result of our work is the
production of a formal model for the SystemC scheduler with proved invariant properties correct with
respect to the properties required by the scheduling process; the incremental proof-based construction of
the formal model allows us to produce a understandable and well structured documentation for the SystemC
simulation. The complexity of the proof process is indicated by the assessment:

B Models Automatic Proofs Interactive Proofs %automatic/interactive P.
AbstractScheduler 4 0 100/0

Scheduler1 22 5 82/18
Scheduler2 10 2 84/16

Instanciation 20 10 66/34
Total 56 17 77/23

The SystemC scheduler allows us to instantiate parameters according to the current SystemC program
to simulate and hence we obtain an instance of the scheduler that can be used for simulation and for further
studies of the current instantiated SystemC program. Another result is directly related to the methodology
for producing an operational semantics for a given algorithm and the refinement proves that the definition
of an operational semantics can be incrementally written and can be proved by checking proof obligations.
However, the result is applied to our case study which is an effective tool for measuring the quality of
audio/video signals in the Digital Video Broadcasting (DVB) [9]; the tool is built from the B modelling
and the SystemC code is certified by the use of a proof assistant. Further works should implement a tool
for helping the manipulation of abstract scheduler and for checking conditions over the instantiation for a
given SystemC program; the tool should integrate a function for defining the parameters to instantiate in the
scheduler model. New case studies should be developed, as well as others properties over SoC should be
taken into account like confidentiality, access control, . . . .

References

[1] Abraham, D., Cansell, D., Ditsch, P., Méry, D., and Proch, C. Synthesis of the QoS for digital TV
services. In IBC’05, The Netherlands (2005).

[2] Abrial, J. The B Book - Assigning Programs to Meanings. Cambridge University Press, 1996. ISBN
0-521-49619-5.

15



[3] Abrial, J.-R. B# : Toward a synthesis between Z and B. In ZB’2003 - Formal Specification and
Development in Z and B (Turku, Finland, June 2003), D. Bert, J. P. Bowen, S. King, and M. Waldén,
Eds., vol. 2651 of Lecture Notes in Computer Science (Springer-Verlag), Springer, pp. 168 – 177.

[4] Back, R. J. R. On correct refinement of programs. Journal of Computer and System Sciences 23, 1
(1979), 49–68.

[5] Cansell, D., Culat, J.-F., Méry, D., and Proch, C. Derivation of SystemC code from abstract system
models. In Forum on specification & Design Languages - FDL’04, Lille, France (Sep 2004).

[6] Cansell, D., and Méry, D. Logical foundations of the B method. Computers and Informatics 22 (2003).

[7] Clarke, E. M., Grumberg, O., and Peled, D. A. Model Checking. The MIT Press, 2000.

[8] ClearSy. Web site b4free set of tools for development of b models.
http://www.b4free.com/index.php, 2004.

[9] European Broadcasting Union. Digital video broadcasting (DVB)- measurement guidelines for DVB
systems. Tech. Rep. TR 101 290 v1.2.1., ETSI, 05 2001.

[10] Gawanmeh, A., Habibi, A., and Tahar, S. An executable operational semantics for SystemC using
Abstract State Machines. Tech. rep., Concordia University, Department of Electrical and Computer
Engineering, mar 2005.

[11] Glässer, U., Börger, E., and Müller, W. Formal definition of an abstract VHDL’93 simulator by EA-
machines. In Formal Semantics for VHDL (1995), C. Delgado Kloos and P. T. Breuer, Eds., Kluwer
Academic Publishers.

[12] Méry, D., Cansell, D., Proch, C., Abraham, D., and Ditsch, P. The challenge of QoS for digital
television services. EBU Technical Review 302 (Apr 2005).

[13] Mueller, W., Dömer, R., and Gerstlauer, A. The formal execution semantics of SpecC. In ISSS ’02:
Proceedings of the 15th international symposium on System Synthesis (New York, NY, USA, 2002),
ACM Press, pp. 150–155.

[14] Open SystemC Initiative. SystemC 2.0.1 Language Reference Manual, 2004.

[15] Ruf, J., Hoffmann, D., Gerlach, J., Kropf, T., Rosenstiehl, W., and Mueller, W. The simulation
semantics of SystemC. In DATE ’01: Proceedings of the conference on Design, automation and test
in Europe (Piscataway, NJ, USA, 2001), IEEE Press, pp. 64–70.

[16] Ruf, J., Hoffmann, D., Kropf, T., and Rosenstiel, W. Simulation-guided property checking based on a
multi-valued AR-automata. In DATE ’01: Proceedings of the conference on Design, automation and
test in Europe (Piscataway, NJ, USA, 2001), IEEE Press, pp. 742–748.

[17] Salem, A. Formal semantics of synchronous SystemC. In DATE ’03: Proceedings of the conference
on Design, Automation and Test in Europe (Washington, DC, USA, 2003), IEEE Computer Society,
pp. 376–381.

[18] SOCFV Project. System on chip formal verification home page.
http://www.ensta.fr/˜hammami/resproj.SOCFV.html, 2004.

[19] SystemC. Official web site of SystemC community. http://www.systemc.org/, 1999.

16


