Lines tangent to four triangles in three-dimensional space

Abstract : We investigate the lines tangent to four triangles in $\mathbb{R}^3$. By a construction, there can be as many as 62 tangents. We show that there are at most 162 connected components of tangents, and at most 156 if the triangles are disjoint. In addition, if the triangles are in (algebraic) general position, then the number of tangents is finite and it is always even.
Type de document :
Article dans une revue
Discrete and Computational Geometry, Springer Verlag, 2007, 37 (3), pp.369-380. 〈10.1007/s00454-006-1278-3〉
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00000598
Contributeur : Sylvain Lazard <>
Soumis le : vendredi 4 novembre 2005 - 16:23:39
Dernière modification le : mardi 25 octobre 2016 - 17:01:38
Document(s) archivé(s) le : vendredi 2 avril 2010 - 18:28:05

Identifiants

Collections

Citation

Hervé Brönnimann, Olivier Devillers, Sylvain Lazard, Frank Sottile. Lines tangent to four triangles in three-dimensional space. Discrete and Computational Geometry, Springer Verlag, 2007, 37 (3), pp.369-380. 〈10.1007/s00454-006-1278-3〉. 〈inria-00000598〉

Partager

Métriques

Consultations de la notice

503

Téléchargements de fichiers

168