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Representation of Functional Data in Neural

Networks

Abstract

Functional Data Analysis (FDA) is an extension of traditional data analysis to func-
tional data, for example spectra, temporal series, spatio-temporal images, gesture
recognition data, etc. Functional data are rarely known in practice; usually a reg-
ular or irregular sampling is known. For this reason, some processing is needed in
order to benefit from the smooth character of functional data in the analysis meth-
ods. This paper shows how to extend the Radial-Basis Function Networks (RBFN)
and Multi-Layer Perceptron (MLP) models to functional data inputs, in particular
when the latter are known through lists of input-output pairs. Various possibilities
for functional processing are discussed, including the projection on smooth bases,
Functional Principal Component Analysis, functional centering and reduction, and
the use of differential operators. It is shown how to incorporate these functional
processing into the RBFN and MLP models. The functional approach is illustrated
on a benchmark of spectrometric data analysis.

Key words: Functional data analysis, smooth data, projection on smooth bases,
irregular sampling, missing data
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1 Introduction

Many modern measurement devices are able to produce high-resolution data
resulting in high-dimensional input vectors. A promising way to handle this
type of data is to make explicit use of their internal structure. Indeed, high-
resolution data can frequently be identified as discretized functions: this is the
case for time series (in the time domain as well as in the frequency domain),
spectrometric data, weather data (in which we can have both time and location
dependencies), etc. Functional Data Analysis (FDA, see [21]) is an extension of
traditional data analysis methods to this kind of data. In FDA, each individual
is characterized by one or more real-valued functions, rather than by a vector
of R

p. Function estimates are constructed from high-dimensional observation
vectors and data analysis (in a broad sense) is carried out on those estimates.

As it is not possible to directly manipulate arbitrary functions, a computer-
friendly representation of functional data must be used: this is obtained
through a basis expansion in the functional space, for instance with a B-spline
approximation. This way of proceeding has numerous advantages over a basic
multivariate analysis of high-dimensional data. Indeed the choice of a fixed
basis allows to introduce prior knowledge: for instance a Fourier basis can be
used to model periodic functions such as daily temperature observations in
a fixed location. A fixed basis also allows to deal with irregularly sampled
functions and with missing data. A side effect of the representation is that
it can be used to smooth the data either individually or globally (see [3]).
Another interesting point is that most FDA methods can work directly on the
numerical coefficients of the basis expansion, leading to far less computational
burden. An additional advantage of dealing with functions is the possibility
of using functional preprocessing such as derivation, integration, etc.

FDA is based on the fact that the first step performed by many data analysis
methods consists in simple operations on the data: distance, scalar product
and linear combination calculations. Those operations can be defined in a
satisfactory way in arbitrary Hilbert spaces that include functional spaces
(such as L2). This means that many data analysis methods can be extended
to work directly with functional inputs. There are of course some theoretical
difficulties induced by the infinite dimension of the considered spaces. Nev-
ertheless, traditional data analysis methods have been successfully adapted
to functional data, both on theoretical and practical point of views. We re-
fer to [21] for a comprehensive introduction to those methods, especially to
functional principal component analysis and functional linear models. For re-
gression and discrimination problems, recent developments of FDA include
nonlinear models such as multilayer perceptrons [26, 25], semi-parametric [15]
and non-parametric models [13, 14].
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In this paper, we extend the results from [11, 23], and introduce two nonlin-
ear neural models for functional data. They are adaptation of classical neu-
ral models, the Radial-Basis Function Network (RBFN) and the Multi-Layer
Perceptron (MLP), to functional inputs. In particular, we show how to im-
plement these functional models in practical situations, when the functional
data are known through a list of numerical samples (regularly or irregularly
sampled input-output pairs). In section 2 we first show that many data anal-
ysis algorithms can be defined on arbitrary Hilbert spaces, that include the
L2 functional space with its elementary operations. We illustrate this general
construction with the proposed models, using distances in L2 for the RBFN
and inner products for the MLP. Section 3 introduces the general FDA method
that uses function representation to actually implement theoretical models de-
fined in L2. We show that the MLP and RBFN models can be implemented
on preprocessed coordinates of the functional data, providing a way to easily
introduce functional data processing in classical neural software. We also in-
troduce in this section natural preprocessings that are available for functional
data, such as functional principal component analysis, derivation, etc. In sec-
tion 4 we report simulation results on a real-world benchmark, a spectrometric
problem in which the percentage of fat contained in a meat sample must be
predicted based on its near-infrared spectrum. We show that functional pre-
processing greatly improves the performances of the RBFN and gives very
good performances with a simple MLP. In section 5, we build a semi-artificial
dataset, introducing randomly placed holes in the spectrum data. This sim-
ulates irregular sampling in its simplest form (missing data). We show that
the functional reconstruction allows to maintain excellent predictions whereas
classical data imputation techniques are not able to reconstruct the missing
information.

2 Working directly in functional spaces

2.1 Introduction

In this paper, we focus on regular functions, i.e. on square integrable functions
from V , a compact subset of R

p, to R. We denote L2(V ) the vector space
of those functions. A L2(V ) space equipped with its natural inner product
〈f, g〉 =

∫

V f(x)g(x) dx, is a Hilbert vector space. In the present section, we will
avoid using specific aspects of L2(V ). We will rather illustrate how elementary
operations available in a Hilbert space as linear combinations, inner product,
norm and distance calculations are sufficient to implement many data analysis
algorithms, at least on a theoretical point of view.

In this section, H denotes an arbitrary Hilbert space. When u and v are
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arbitrary elements of H , 〈u, v〉 denotes their inner product, and ‖u‖ =
√

〈u, u〉
the norm of u.

2.2 Data analysis in a Hilbert space

Even if data analysis algorithms have been defined for traditional multivariate
observations, they seldom use explicitely the finite dimensional character of
the input spaces. The most obvious cases are distance-based algorithms such
as the k-means method.

Indeed, the k-means algorithm clusters input data by alternating between two
phases: an affectation phase and a representation phase. The goal is to obtain
representative clusters; each of them is defined by a prototype that belongs
to the input space. Given the prototypes, the affectation phase puts input
vector x in the cluster defined by the prototype closest to x: obviously we
only need to calculate distances between points in the input space to perform
this affectation operation. The representation phase consists in updating the
prototypes given by the results of the affectation phase. For a given cluster, the
new prototype is defined as the center of gravity of the input vectors associated
to the considered cluster. The new prototype is therefore a linear combination
of input vectors. Hence k-means can be defined for any normed vectorial input
space (an inner product is not even needed); this obviously includes functional
spaces. The k-means method has been adapted to L2 spaces in [2] in which
the consistency of the algorithm is proved (see also [17] for a EM-like version
of a functional clustering algorithm).

More sophisticated clustering methods such as the Self-Organizing Map (SOM,
[18]) are also based on elementary operations (distance and linear combination
calculations). They can therefore be applied to functional input spaces (see
[24] for the SOM applied to functional data).

Regression models can also be constructed when the explanatory variable be-
longs to arbitrary normed vector spaces. Let us consider for instance the linear
regression: the goal is to model a random variable Y (the target variable with
values in R) as a linear function of a random vector X (the input variable), i.e.
E(Y |X) = l(X). If X has values in R

p, an explicit numerical representation of
the linear function can be written such as l(X) =

∑p
i=1 αiXi, where Xi is the

i-th coordinate of X. More generally if X has values in an arbitrary normed
vector space M , it is still possible to model Y by E(Y |X) = l(X) by request-
ing l to belong to M∗, the topological dual of M , i.e. the set of continuous
linear functions from M to R. In the particular case of a Hilbert space H , the
identification of H with its dual H∗ is used to obtain a simpler formulation.
More precisely, any continuous linear form l on H can be represented through
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an element v ∈ H such that l(u) = 〈u, v〉. We have therefore E(Y |X) = 〈X, v〉
for a well chosen v ∈ H .

Of course, the linear model is a very limited regression model. Non-parametric
models are a possible solution to overcome those limitations: they have been
extended to functional data in [13, 14]. Semi-parametric models have also
been adapted to functional inputs in [15]. We propose in this paper to build
neural network based nonlinear regression models. In the following sections,
we show how to define Radial-Basis Function Networks (RBFNs) and Multi-
Layer Perceptrons (MLPs) with functional inputs.

2.3 Radial-Basis Function Networks

Radial-Basis Function Networks (RBFN) are popular nonlinear models that
have several advantages over other nonlinear regression paradigms. Besides
their simplicity, their intuitive formulation and their local approximation abil-
ities, their most important advantage is probably the ability of various learning
procedures to avoid the local minima issue, for example when the parameters
of the model are the solution of a linear problem.

The first operation performed by RBFN models on the input data is based on
the notion of distances. The following of this section shows how this notion
can be inserted in a functional data context and more generally in any metric
space such as a Hilbert space.

The output of a RBF network is expressed by

y =
p
∑

i=1

αiϕi (di(x, ci)) , (1)

where x is the input of the network, y its scalar output, ϕi(·) are radial-basis
functions from R to R, ci are centers chosen in the input data space of x,
di(·, ·) are associated distances and αi are weighting coefficients. We see that
the predicted output is expressed as a weighted sum of basis functions with
radial shape (each basis function has a radial symmetry around a center).
This property is very general; any distance measure between the input x and
the centers ci could be used. Most frequently the RBF are Gaussian ϕi(r) =
exp(−r2).

Equation 1 easily generalizes to any metric space by replacing all distances
di by the distance used to define the space. In the particular case of a func-
tional space, distance di(x, ci) between vectors is simply replaced by a distance
di(g(·), ci(·)) between the functional input g(·) and the functional centers ci(·).
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Some RBF (e.g. Gaussian functions) can define the positive definite kernel of a
Reproducing Kernel Hilbert Space (RKHS) k(x, x′) = ϕ(d(x, x′)). Regulariza-
tion networks [16] and Support Vector Machines (SVM) result from a learning
theory within this RKHS context [31, 12]. Therefore the following discussion
straightforwardly applies to these models too.

RBF networks have the universal approximation property [20]. In practice,
when a finite number of observed data is available, the way the distance is
defined plays a crucial role on the generalization performances of the network.
Dealing with functional data, the kind of distance to be used must be specified.
For example, considering functions from L2(V ), the Euclidean distance in this
space could be chosen:

di(g(·), ci(·)) =
(
∫

V
(g(x) − ci(x))

2dx

)1/2

. (2)

While this choice might reveal adequate in some situations, the Euclidean
distance is in fact quite restrictive. In the vectorial case, one could use a
weighted distance (for example the Mahalanobis one) instead of the Euclidean
distance; generalizing to functional spaces, a weighted version of the Euclidean
distance could be used to characterize the measure of locality around each
center:

di(g(·), ci(·)) =
(
∫

V

∫

V
(g(x′) − ci(x

′))wi(x
′, x)(g(x) − ci(x))dxdx

′
)1/2

, (3)

where wi(x
′, x) is a positive definite bivariate function over V ×V . While this

last definition is very general, there is unfortunately no simple way to choose
the weighting function wi(x

′, x). It seems reasonable to look for a weighting
function that shows approximately the same complexity as the input data (the
complexity of a function being often measured through its second derivative).
Using a smooth weighting function leads to the so-called functional regular-
ization. In other words, working with functional data necessitates a functional
regularization of the parameters defining the distance measure.

Another possibility resulting from the use of functional data is that differential
operators can be applied. This could reveal interesting for example when the
shape of the functional inputs is known to be more important than their
absolute levels (or means); see section 4.3 for an application example. In the
framework of RBF networks, differential operators can also be included in the
distance function, which becomes a semi-metric:

di(g(·), ci(·)) =
(
∫

V
(Dg(x) − ci(x))

2
dx

)1/2

, (4)

where D(·) is a differential operator (for example the first or second derivative,
as used in sections 4 and 5).
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2.4 Multi-layer Perceptrons

A multilayer perceptron (MLP) consists in neurons that perform very simple
calculations. Given an input x ∈ R

p, the output of a neuron is

T (β0 +
p
∑

i=1

βixi), (5)

where xi is the i-th coordinate of x, T is a nonlinear activation function from
R to R, and β0, . . . , βp are numerical parameters (the weights of the neuron).

As for the linear model considered previously, this calculation can be gener-
alized to any normed vector space M (see [27, 28, 29]). If l is a linear form
in M∗, it can be used to define a neuron with an input in M and whose out-
put is given by T (β0 + l(x)) for x ∈ M . The linear form replaces parameters
β1, . . . , βp. Obviously, the case M = R

p corresponds exactly to the traditional
numerical neuron.

In a Hilbert space H , linear forms are represented by inner products and
define a generalized neuron with an input in H : given an input vector u, the
neuron output is T (β0+〈u, v〉). The “connection weights” of the neuron are the
numerical value β0 and the vector v ∈ H . In the particular case of H = L2(V ),
given an input function g, the neuron output is T (β0 +

∫

V g(x)w(x) dx). The
neuron is called a functional neuron and w is its weight function.

As the output of a generalized neuron is a numerical value, we need such
neurons only in the first layer of the MLP. Indeed, the second layer uses only
outputs from the first layer which are real numbers and therefore consists in
numerical neurons.

We have presented in [26] and [22] some theoretical properties of MLPs con-
structed by combining a layer of generalized neurons with inputs in L2(V ) and
at least one layer of numerical neurons. We use specific properties of L2(V )
that allow to restrict the set of “connection weights”: rather than working
with arbitrary weight functions in L2(V ), we use weight functions that can be
exactly calculated by a traditional MLP or by any other sufficiently power-
ful function approximation method. An important result is that MLPs with
functional inputs are universal approximators as long as they use sufficiently
regular activation functions, exactly as numerical MLPs: given a continuous
function G from K a compact subset of L2(V ) to R and ǫ > 0 an arbitrary
positive real number, there is an one-hidden layer perceptron that calculates
a function H such that |G(g) − H(g)| < ǫ for all g ∈ K. This MLP uses
functional neurons in its first (hidden) layer and one numerical neuron (with
the identity activation function) in its output layer. We have also shown in
[7] that even if the MLP is implemented through a function representation
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(as it will be described in the following section), the universal approximation
property is still valid.

3 Function representation

3.1 Functional data in practice

The previous section shows that it is possible to define many data analysis
algorithms for arbitrary Hilbert spaces. However, the proposed solutions are
purely theoretical; it is in general impossible to manipulate arbitrary func-
tions from L2(V ) on a computer. Moreover, functional data coming from sen-
sors, measurements or collected in other ways do not consist in mathematical
functions. On the contrary, as stated in the introduction, observations are dis-
cretized functions: each of them is a list of input/output pairs. These lists may
include missing data or more generally show irregular sampling: the sets of
inputs for each observation do not necessarily coincide.

More precisely, let us assume that we observe n functions such that function
i is given by the (xi

j , y
i
j)1≤j≤mi list of mi pairs, with xi

j ∈ V and yi
j ∈ R. FDA

main assumption is that there is a regular function gi (in L2(V )) such that
yi

j = gi(xi
j) + ǫij , where ǫij is an observation noise. In this model, both the

number of observations mi and the (xi
j)1≤j≤mi can depend on i.

The gi functions are not known. This prohibits the straightforward application
of the models developed in the previous section. Even with known functions,
calculating elementary operations, such as integrals, is difficult. Nevertheless
the rationale of FDA is to implement theoretical models on those functions. A
possible solution, quite common in FDA methods, is to construct an approx-
imation of the (gi)1≤i≤n and then to work on these approximations. One way
to build them is to project the original gi on a known subspace.

3.2 Representation on a subspace

FDA introduces some specific needs that have to be taken into account to
choose a representation subspace. A first need is that the representation must
be computed for every input list; this computation should therefore be as fast
as possible. A second constraint is that the operations performed on the recon-
structed functions must approximate as exactly as possible the corresponding
operations on the original gi functions.
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3.2.1 An approximate projection

A simple and efficient solution is provided by a projection approach which
makes use of the L2(V ) Hilbert structure. A set of q linearly independent
functions from L2(V ), (φk)1≤k≤q is chosen. Rather than working on L2(V ), we
restrict ourselves to A = span(φ1, . . . , φq) and use (φk)1≤k≤q as a basis for this
subspace. Each function u ∈ A is represented by its αk(u) coordinates, such
that u =

∑q
k=1 αk(u)φk.

Given a list (xi
j , y

i
j)1≤j≤mi , the underlying function gi is then approximated by

a function g̃i in A. The best approximation in the functional sense would be to
choose g̃i as the orthogonal projection of gi on A. Obviously, such projection
cannot be calculated exactly as we do not know gi. Therefore, g̃i is defined by
its numerical coefficients (αk(g̃

i))1≤k≤q chosen to minimize:

mi

∑

j=1

(

yi
j −

q
∑

k=1

αk(g̃
i)φk(x

i
j)

)2

. (6)

This minimization is a standard quadratic optimization problem that can be
conducted very efficiently with cost at most O(miq2) (see [21] chapter 3 for
instance). Moreover, some specific functional bases such as B-splines lead to
even faster algorithms with cost O(miq) in some situations.

In the next subsection, it is shown that this representation approach also
allows to transform the functional operations on g̃i into calculations on the
αk(g̃

i) coordinates.

3.2.2 Working with the coefficients

As A is a finite-dimensional space, it is possible to work with the coordinates
αk(g̃

i) instead of working directly on the g̃i functions. Nevertheless, it is shown
in the following that additional precautions must be taken if the basis functions
(φk)1≤k≤q are not orthonormal.

Once each functional input data is transformed into a vector in R
q that cor-

responds to its coordinates in A, traditional data analysis algorithms can be
used directly on those vectors. However, while this simple approach can give
good results in some situations, it introduces an unwanted distortion in the
input function representation.

The case of linear operations does not introduce any problem. Indeed a linear
combination of functions may be expressed as a linear combination of their
coordinate vectors: if u and v are functions in A and λ and µ are real numbers,
then αk(λu+ µv) = λαk(u) + µαk(v) for all k.



3 FUNCTION REPRESENTATION 11

On the contrary, inner products, and therefore distances, are a source of prob-
lems. Indeed the inner product between two functions in A can also be defined
in terms of their coordinate vectors. The inner product between u and v in A
is given by:

〈u, v〉 =
q
∑

k=1

q
∑

l=1

αk(u)αl(v)〈φk, φl〉

If we denote α(u) = (α1(u), . . . , αq(u))
T , where T is the transposition operator,

the inner product becomes:

〈u, v〉 = α(u)TΦα(v),

where Φ is the matrix defined by Φkl = 〈φk, φl〉 and independent from u and
v.

This last formula shows that a distortion corresponding to Φ results from
the transition between the inner product 〈u, v〉 in A and the canonical inner
product in R

q. The norm of the difference between functions of course shows
the same behavior: in general, ‖α(u) − α(v)‖2 is different from ‖u − v‖2,
as the latter is given by (α(u) − α(v))TΦ(α(u) − α(v)), while the former is
simply (α(u) − α(v))T (α(u) − α(v)). If the set of functions (φk)1≤k≤q is not
orthonormal, Φ is different from the identity matrix and the inner product that
should be used in R

q is not the canonical one. Unfortunately, some very useful
sets of functions, such the B-splines (see section 3.3.1), are not orthonormal.

A simple solution to this problem is to use the Choleski decomposition of Φ,
i.e. a square matrix U such that Φ = UTU . The coordinate vectors can then
be scaled by matrix U to give β(u) = Uα(u). Obviously, we have:

β(λu+ µv) = λβ(u) + µβ(v)

and

β(u)Tβ(v) =
q
∑

k=1

βk(u)βk(v) = 〈u, v〉.

This means that performing elementary operations in R
q (with its canonical

inner product) on the coordinates β(u) is exactly equivalent to performing the
same operations in the inner product space A.

Working with the coordinate vectors β(g̃i) is thus strictly equivalent to work-
ing directly on the g̃i functions, and equivalent to working with gi under the
approximation resulting from equation 6. A nice consequence of this property
is that functional models can be implemented as a preprocessing phase before
any classical data analysis software: the preprocessing consists in choosing the
projection space (see the following section) and in calculating the coordinate
vectors β(g̃i). Then, those vectors can be submitted to a RBFN or a MLP
exactly as classical multivariate data. Optionally, some additional functional
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preprocessing can be implemented before the final transformation (see sec-
tion 3.5). In general, the calculation of Φ does not introduce any additional
problems as the basis functions are under the practitioner control. With an
orthonormal basis such as Fourier series, Φ is the identity matrix. For other
bases, quadrature methods or Monte-Carlo methods can be used to calculate
an arbitrarily accurate approximation of Φ.

3.3 Choosing the projection space

As the underlying functions are reconstructed according to their approxima-
tion in the projection space, the choice of this space has an important impact
on the data analysis. The projection space must for instance provide a good
approximation of arbitrary functions in L2(V ) as there is no a priori reason
to restrict the functions to a subspace of L2(V ).

3.3.1 Basis

Good candidate bases are provided by Hilbert bases of L2(V ). Given such
a basis (φk)1≤k, truncation allows to define finite-dimensional subspaces:
Aq = span(φ1, . . . , φq). An interesting theoretical property of Hilbert bases
is that functions from L2(V ) can be approximated more and more accurately
by increasing the number q of basis functions. In practice, when the Hilbert
basis is fixed, a leave-one-out technique allows to choose q directly from the
data (see section 3.3.2). An example of Hilbert basis is given by the Fourier
series for L2([a, b]), where [a, b] is an interval in R.

Another interesting solution is provided by B-splines. Let us assume that
V = [a, b] and let π = (t0, t1, . . . , tl+1) be a sequence such that t0 = a, tl+1 = b

and tk < tk+1 for all k. With ν a positive integer, we denote Sν
π the subset

of L2([a, b]) defined as follows: a function f ∈ L2([a, b]) belongs to Sν
π if f is

Cν−2 on [a, b] and if f is a polynomial of degree ν − 1 on each sub-interval
[tk−1, tk] for 1 ≤ k ≤ l + 1. Sν

π is the set of splines of order ν on π. Elements
of π are the knots of the splines. Splines have interesting properties (see for
example [10]). For instance, they can approximate arbitrarily well functions in
L2([a, b]), provided enough knots are used (i.e. l is large enough). Moreover,
Sν

π has a basis which is made of l+ ν functions called the B-splines of order ν
on π and denoted Bν

k,π for 1 ≤ k ≤ l+ ν. B-splines are easy to calculate, have
local support and have very good numerical properties: finding coordinates of
projected functions with equation 6 is both fast and accurate.

The choice of B-splines as basis functions leads to A =
span(Bν

1,π, . . . , B
ν
l+v,π) = Sν

π . As for truncated Hilbert bases, l can be
automatically chosen by a leave-one-out method. The choice of ν is more
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complex as it corresponds to a regularity assumption. The most common
choice is ν = 4, which corresponds to C2 functions. In some situations, it is
interesting to work with derivatives of the original functional data, in which
case higher values of ν will be more adapted. The last point to address is the
choice of π. While expert prior knowledge can justify irregular positioning of
the knots (for instance more knots in rough parts of the studied functions),
in general regular knot positions are used, i.e. tk = a + k b−a

l+1
.

Of course, this section only presented some of the possible choices for the
basis. We refer the interested reader to [21], especially to chapters 3, 4 and 15,
for a more detailed discussion on function representations.

3.3.2 Leave-one-out

While expert knowledge or practical considerations can help to choose the
basis among several possibilities such as B-splines or truncated Hilbert bases,
the ideal projection space cannot in general be fixed a priori. A simple solution
is to rely on leave-one-out to compare different function approximation models.

Let us consider the situation in which we have to compare two candidate
projection sub-spaces, A = span(φ1, . . . , φq) and B = span(ψ1, . . . , ψl). Let us
consider for now only one function g given by the list (xj , yj)1≤j≤m. We denote

g̃(xj ,A) =
q
∑

k=1

αkφk(xj),

where αk is the k-th coordinate of the optimal projection of g in A determined
by minimizing equation 6. Similarly, we denote

g̃(xj ,B) =
l
∑

k=1

γkψk(xj),

where γk is the k-th coordinate of the optimal projection of g in B deter-
mined by minimizing equation 6 adapted to the (ψk)1≤k≤l basis. Comparing
the reconstruction errors given by equation 6 is not relevant, as it leads to
overfitting. Instead, a leave-one-out estimate of the reconstruction errors of
both models is preferred. More precisely, the α

(−p)
k are defined as the optimal

coefficients found when one observation is removed from the list that defines
the considered functional data. The α

(−p)
k thus minimize

m
∑

j=1,j 6=p

(

yj −
q
∑

k=1

α
(−p)
k φk(xj)

)2

.

The β
(−p)
k coefficients are defined in a similar way on the B subspace, using

the ψk basis instead of the φk one. The leave-one-out score associated to A is
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then given by:

LOO(g,A) =
1

m

m
∑

i=1

(

yi −
q
∑

k=1

α
(−i)
k φk(xi)

)2

,

and similarly for B:

LOO(g,B) =
1

m

m
∑

i=1

(

yi −
l
∑

k=1

γ
(−i)
k ψk(xi)

)2

.

In our functional data context, we do not have only one function g given by
the list (xj , yj)1≤j≤m, but a set of gi functions known through (xi

j , y
i
j)1≤j≤mi .

In that case, in order to choose between the A and B projection subspaces, the
total cross-validation scores that are obtained by summing the leave-one-out
scores obtained on each function gi must be compared.

In general, leave-one-out is a very computationally-intensive operation. For-
tunately, this is not the case with linear representations, as the expansions
on A and B chosen in the previous section. Indeed, as the optimization
problem of equation 6 is quadratic, there is a matrix S(A) (resp. S(B))
such that g̃(x,A) = S(A)y (resp. g̃(x,B) = S(B)y), where g̃(x,A) =
(g̃(x1,A), . . . , g̃(xm,A))T and y = (y1, . . . , ym)T . Then, we have (see [21] chap-
ter 10 for instance):

LOO(g,A) =
1

m

m
∑

i=1

(

yi − g̃(xi,A)

1 − S(A)ii

)2

A similar equation is satisfied by LOO(g,B). In general, the calculation of S
is much more efficient than the direct calculation of the cross-validation score.

3.4 Functional principal component analysis

Even if the representation on a subspace allows to take into account irregular
sampling and very high original input dimensions, it happens frequently in
practice that a rather high number of basis functions has to be used to keep
a good accuracy for the input function reconstructions. Unfortunately, many
data analysis methods suffer from the curse of dimensionality and are therefore
not really adapted to a high number of input features. In traditional numerical
settings, a simple solution consists in working on a few principal components.

Principal Component Analysis (PCA) was one of the first data analysis meth-
ods adapted to functional data (see [8, 9, 4]). On a theoretical point of view
functional PCA consists, as traditional PCA, in finding an optimal subspace
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representation. Given n functions g1, . . . , gn in L2(V ), their q principal func-
tions are defined as q orthonormal functions ξ1, . . . , ξq such that the following
distortion is minimized:

n
∑

i=1

∥

∥

∥

∥

∥

gi −
q
∑

k=1

〈gi, ξk〉ξk

∥

∥

∥

∥

∥

2

. (7)

As explained previously, an exact implementation of such a minimization is
not possible: the functions gi are not known and exact calculation of inner
products and other elementary operations is difficult. A possible solution is
to apply the general method exposed in section 3.2, i.e. to work in a sub-
space A. In this context, as demonstrated in [21] (chapter 6), it appears that
functional PCA can be implemented by performing a classical PCA on the
transformed coordinates (the β(g̃i) = Uα(g̃i) vectors in R

q, see 3.2.2) of the
studied functions.

This method produces principal vectors in R
q that can be transformed back

into principal functions in A. For instance if τ is such a vector and U is the
Choleski factor of Φ defined in 3.2.2, then U−1τ gives the coordinates of the
corresponding principal function ξ on the chosen basis for A. Coordinates of
the original functions on the principal function basis are obtained through in-
ner products in A. In practice they are obtained by canonical scalar products
in R

q between β(g̃i) and τ . Note that unlike conventional PCA, functional
PCA usually works on centered, but not reduced to unit variance, data, be-
cause functional data must be seen as a unique entity rather than a set of
unrelated coordinates with individual scales.

3.5 Functional transformation

A very interesting aspect of FDA is the possibility to implement a functional
transformation before the data analysis phase. We will not cover in this paper
registering techniques that allow to get rid of time shifting and other problems
that can be interpreted as noise or distortion in the measurement process, i.e.
problems related to the xi

j . We refer the reader to [21] chapter five for an
introduction on this complex topic.

We focus here on simpler functional transformations that provide different
views of the same data. For instance, it is quite common in FDA to focus on
the shape of the functions rather than on the actual values. A simple way to
do this is to center and scale functions on a functional point of view, that is
function by function. More precisely, we center g by replacing it by gc defined
as:

gc(x) = g(x) −
1

|V |

∫

V
g(x) dx.



4 SIMULATION RESULTS 16

In this equation, |V | is the volume of the compact V (i.e. |V | =
∫

V dx). The
centered function is then scaled into gs defined as:

gs(x) =
gc(x)
1
|V |

‖gc‖
.

An interesting aspect of those transformations is that they are based on ele-
mentary operations in the considered functional space. Therefore, they can be
implemented using the coefficients that represent the input functions on the
chosen projection space, as explained in section 3.2.2.

Another way to focus on shapes rather than on values is to calculate derivatives
of the considered functions. To do so, we have to choose a projection space with
a basis formed by derivable functions. Then, if g̃i =

∑q
k=1 αk(g̃

i)φk, obviously

g̃i(s) =
∑q

k=1 αk(g̃
i)φ

(s)
k , where f (s) corresponds to the s-th derivative of f . It

is therefore possible to work in A(s) = span(φ
(s)
1 , . . . , φ(s)

q ) exactly as we did in

A (note that (φ
(s)
1 , . . . , φ(s)

q ) might not be a free system anymore).

The special case of B-spline bases is very interesting. Indeed, it is clear that
the derivative of a spline from Sν

π is a spline of Sν−1
π ; therefore it uses the

same knots. Moreover, the coordinates of the derivative spline on the order
ν − 1 B-spline basis can be calculated exactly and very easily with a finite
difference equation, using the coordinates of the original spline on the order ν
B-spline basis (see [10]). This allows to work with derivatives exactly as with
the original functions.

4 Simulation results

The functional approach to Radial-Basis Function Networks and Multi-Layer
Perceptrons is illustrated on spectrometric data coming from the food indus-
try. This benchmark has been chosen here for illustration purposes: it permits
to show which kind of functional (pre)processing is expected to give results
similar to those on the original data, and which ones could lead to improved
results. The models (RBFN and MLP) are optimized as detailed below. Nev-
ertheless, their learning algorithm is chosen a priori, and no attempt is made
to improve the results by comparing to other learning strategies; only compar-
isons between the possible ways to handle the functional data are discussed
here.
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4.1 Tecator spectra benchmark

The Tecator data set [1] consists of 215 near-infrared absorbance spectra of
meat samples, recorded on a Tecator Infratec Food and Feed Analyzer. Each
observation consists in a 100-channel absorbance spectrum in the 850-1050 nm
wavelength range. Each spectrum in the database is associated to a content
description of the meat sample, obtained by analytic chemistry; the percentage
of fat, water and protein are reported. The goal of the benchmark here is to
predict the fat percentage from the spectra; this percentage is in the [0.9, 49.1]
range.

From the 215 100-dimensional spectra, 43 are kept aside as a test set; the
test set will not be used neither for model learning, nor for cross-validation
(selection of the number of splines, of the number of PCA components, of the
number of parameters in the models, etc.). The 172 remaining samples are
used for model learning and validation, as detailed below.

It should be mentioned that the spectra are finely sampled, leading to very
smooth curves; some of them are illustrated in Figure 1(a). It is therefore
not expected that a functional preprocessing of the rough data, such as a
spline decomposition, will lead to improved results, except if some a priori
information is added, or if irregular sampling is artificially created by omitting
data. This last point will be detailed in section 5.

4.2 Preprocessing the Tecator spectra

In addition to working with rough spectra (100-dimensional measured vectors),
three types of preprocessing are considered in the experiments.

First of all, a standard Principal Component Analysis (PCA) is performed.
Unsurprisingly because of the smooth character of spectra, most of the infor-
mation in terms of percentage of variance is contained in a few PCA compo-
nents; this is illustrated in Figure 2 that shows the percentage of variance of
the original data associated to each eigenvalue. As usually, data have been cen-
tered and reduced before applying the PCA; this induces a scaling that may
have influence on the inner products and distance computations. The PCA is
a non-functional preprocessing, as the continuous structure of spectra is not
taken into account. It can be seen easily that the first principal component
almost exactly represents the spectrum means, as illustrated by figure 3.

To take into account the smooth character of spectra, a functional preprocess-
ing is performed using bases of splines. Splines of degrees 3, 4 and 5 (respec-
tively order 4, 5 and 6) are used; the two last ones are aimed to be derived
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Figure 1. Five spectra from the Tecator benchmark; (a) original samples, (b)
4th-order spline approximation, (c) derivative of 5th-order spline approximation,
(d) second derivative of 6th-order spline approximation, (e) 4th-order spline ap-
proximation after functional centering and reduction

(respectively once and twice) in order to work with derivatives of spectra
rather than with the original ones.

The numbers of basis functions selected by the leave-one-out procedure de-
tailed in section 3.3.2 are respectively 48, 43 and 32 for the 4th-, 5th- and
6th-order splines. Figures 1(b), (c) and (d) respectively show the spectra
approximated by 4th-order spline, the derivative of the 5th-order spline ap-
proximation, and the second derivative of the 6th-order spline approximation.

A last preprocessing takes into account a priori information on the spectra.
As spectrometry experts know that the shape of the spectra is by far more
important than their mean value (for the fat prediction problem), centering
and reducing them (to unit variance) avoids that their average could influence
the models. Figure 1(e) shows the results of this functional centering and
reduction (performed on the 4th-order spline approximation).
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4.3 Using the Radial-Basis Function Network model

A number of experiments have been conducted on the Tecator benchmark,
with the Radial-Basis Function Network model described in section 2.3. The
model parameters are learned through an OLS procedure, as detailed in [6]. In
short, the OLS procedure is a forward selection algorithm that incrementally
chooses centers (and associated Gaussian functions) among a set of candi-
dates; here the candidates are the data in the learning set. The error criterion
used for the selection is the sum of the squared errors made by the model
and a regularization term [19]; the contribution of each candidate to the error
criterion is measured, and the one that minimizes this contribution is cho-
sen. The incremental procedure is performed up to a high number of selected
Gaussian functions (100 in the following experiments). Next, a 4-fold cross-
validation procedure is used on the learning set (172 spectra) to select the
optimal number of Gaussian functions, according to the sum-of-squares error
criterion.

Ten experiments are performed:

(1) The 100-dimensional rough spectra are used as inputs to the RBFN.
(2) The spectra are preprocessed by PCA, and the first 20 PCA components

are kept (100% of the original variance is preserved, as shown in Figure
2).

(3) The same PCA preprocessing is used, but now the number of PCA com-
ponents that are kept is selected according to a 4-fold cross-validation
procedure on the learning set; this optimization leads to a choice of 5
PCA components.

(4) The PCA components are used, but they are whitened (centered and
scaled to unit variance); unlike the functional centering and reduction
detailed in the previous section, the whitening here is a conventional one,
i.e. it is applied component by component. The purpose of this whitening
is to allow each component to have the same importance. Without this
whitening, the first component would have much more importance than
the other ones, while its influence on the fat prediction problem is known
to be low. The number of PCA components that are kept is selected by
4-fold cross-validation as above: 6 components are selected.

(5) The 48 coefficients of the 48 4th-order splines are used as inputs to the
RBFN.

(6) A functional PCA (see Section 3.4) is performed on the 4th-order splines
with 48 coefficients; 20 coefficients are kept.

(7) A functional PCA is performed on the 4th-order splines with 48 coeffi-
cients, and the PCA coefficients are whitened; A 4-fold cross-validation
selects 6 components.

(8) A functional centering and reduction is applied to the 4th-order spline



4 SIMULATION RESULTS 21

approximation; the 48 resulting coefficients are used as inputs to the
RBFN.

(9) The 5th-order spline is derived, and the 42 resulting coefficients are used
as inputs to the RBFN.

(10) The 6th-order spline is derived twice, and the 30 resulting coefficients are
used as inputs to the RBFN.

Table 1 shows the results of these ten experiments. All results are given in
terms of Root Mean Square Error (RMSE) on the test set.

Experiment # Experiment Result on test set

1 100-dimensional original data 4.97

2 PCA, no whitening, 20 components 4.99

3 PCA, no whitening, a 4-fold cross-
validation selects the 5 first compo-
nents

4.85

4 PCA, whitening, a 4-fold cross-
validation selects the 5 first compo-
nents

1.94

5 4th-order B-splines, 48 coefficients,
no whitening

4.59

6 4th-order B-splines, 48 coefficients,
functional PCA, no whitening, 20
components

4.59

7 4th-order B-splines, 48 coefficients,
functional PCA, whitening, a 4-fold
cross-validation selects the 6 first
components

1.83

8 4th-order B-splines after functional
centering and reduction, 48 coeffi-
cients, no whitening

1.64

9 first derivative of 5th-order B-splines,
42 coefficients, no whitening

0.90

10 second derivative of 6th-order B-
splines, 30 coefficients, no whitening

0.81

Table 1
RMSE on the test set for the RFBN experiments (see text for details)

The following conclusions can be drawn.

• The results of experiments 1 and 5 are roughly the same. Indeed the decom-
position into splines does not bring any improvement, as there is a nearly
perfect correspondence between the original spectra and their spline ap-
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proximation. The use of the scaling after Cholesky decomposition of the Φ
matrix (see section 3.2) guarantees that the results obtained after spline
preprocessing will be similar to those on the original spectra, as the latter
are very smooth (therefore almost perfectly approximated by splines).

• The non-functional PCA reduction (experiments 2 and 3) does not bring
any improvement to the results; the reduction to unit variance included in
the PCA does not seem to be advantageous here; actually the variances
of the original data components are more or less identical in the data set,
therefore the reduction has little effect.

• The centering and reduction of the PCA coefficients (experiment 4) im-
proves the results; indeed the influence of the first PCA component is
strongly decreased in this process. The first PCA component is propor-
tional to the spectrum averages (see Figure 3), which are known to be of
little influence in the fat prediction problem.

• Similarly to the fact that experiments 1 and 5 give approximately the
same results (the decomposition into splines does not bring much additional
smoothness as the original spectra are already very smooth), experiments
2 and 6 on one side, and experiments 4 and 7 on the other side, lead to
similar results. In experiments 2 and 4 an initial reduction to unit variance
is performed and not in experiments 6 and 7, but as mentioned above this
reduction does not bring any improvement.

• The functional centering and reduction (experiment 8) also improves the
predictions compared to the original ones. The improvement also results
from the removal of the spectrum averages, and is comparable to the cen-
tering and reduction of the PCA components.

• As expected, taking the first and second derivatives of the spectra (more
precisely, taking the first and second derivative of their 5th- and 6th- order
spline approximations respectively) focuses on the differences in the spectra
shapes, therefore allowing a better prediction of fat content.

4.4 Using the Functional Multi-layer Perceptron model

The original contributor of the Tecator data set used traditional MLP together
with PCA to build a regression model [5, 30]. In [5] Borggaard and Thodberg
use a standard MLP on the 10 first principal components. They use early stop-
ping to avoid overfitting and report a RMSE of 0.65. In [30] Thodberg reports
better results based on a more complex training algorithm and model: he uses
a weight decay regularization term and chooses meta-parameters through a
Bayesian approach. More precisely, he uses an one hidden layer perceptron
with additional direct connections from the inputs to the output node (intro-
ducing this way a linear term) and three separate regularization terms, one
for each layer and one for the weights of the linear term. The values of those
weight decays as well as the number of hidden neurons are determined by a
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Bayesian estimation of the generalization error. Using the 10 first principal
components Thodberg obtains a RMSE of 0.55. In order to improve the re-
sults, he combines the 10 best MLPs obtained out of 40 trained MLPs in an
ensemble model that reaches a RMSE of 0.52. Finally, he embeds into the
Bayesian meta-parameters selection the determination of the optimal number
of principal components. He selects this way 12 principal components for a
RMSE of 0.42. Using a smoothed version of this input selection (based on two
other weight decay parameters) he even managed to reach a RMSE of 0.36
with 13 principal components.

The goal of the proposed simulations is not to reproduce Thodberg’s results
but simply to illustrate the positive effects of the functional methodology.
Therefore, a simplified neural model has been used in order to focus on the pre-
processing. The chosen model is a single classical one hidden layer perceptron
with no direct connection, together with a single regularization term (which
is not used for bias terms). Meta-parameters (the weight decay, the number of
hidden neurons, etc.) are chosen through the same 4-fold cross-validation pro-
cedure (as with the RBFN models). No ensemble model or smooth variable
selection is used. Training itself is done by a second-order gradient descent
method starting from 60 different initial random weight vectors (for each ex-
periment). The best MLP obtained from those random weight is kept accord-
ing to the sum-of-squares error criterion (on the training set) combined with
the regularization term. The number of hidden neurons varies from 1 to 6. In
all experiments, the best 4-fold cross-validation was obtained with 2 hidden
units.

Five experiments were conducted:

(1) The spectra are preprocessed by PCA and the number of PCA compo-
nents is selected by the 4-fold cross-validation procedure on the learning
set. This experiment plays the role of the reference one as we do not use
the sophisticated method of Thodberg.

(2) The spectra are converted into their 4th-order B-splines representation,
a functional PCA is conducted and the number of components to retain
is again selected by the 4-fold cross-validation procedure.

(3) We do the same as in the previous experiment but we apply a functional
centering and reduction before the functional PCA.

(4) The 5th-order spline is derived; a functional PCA is conducted on the
resulting functions and the number of components to retain is again se-
lected by the 4-fold cross-validation procedure.

(5) The 6th-order spline is derived twice; functional PCA is conducted on
the resulting functions and the number of components to retain is again
selected by the 4-fold cross-validation procedure.

An important point is that PCA coordinates are always whitened before being
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used by the MLP. Indeed as the explained variance is very much concentrated
in the first coordinate, the variation range is quite different from the different
inputs of the MLP. This means that the corresponding weights should be very
different: this is not compatible with the weight decay regularization as large
weights (corresponding to large range) are more heavily penalized than small
weights.

Another difference with the RBFN experiments is that a PCA (functional or
classical) is always done before submitting the data to the MLP. Our goal was
to avoid huge training times as well as high dimensionality related problems
induced by the size of the data. The experiments have been limited this way to
at most 18 principal components to use a reasonable input size for the MLP.

Table 2 summarizes the results of those five experiments. All results are given
in terms of Root Mean Square Error (RMSE) on the test set.

Experiment # Experiment Result on test set

1 PCA, a 4-fold cross-validation selects
the 12 first components, whitening

0.49

2 4th-order B-splines, 48 coefficients,
functional PCA, a 4-fold cross-
validation selects the 12 first compo-
nents, whitening

0.49

3 4th-order B-splines, 48 coefficients,
functional PCA on centered and
reduced functions, a 4-fold cross-
validation selects the 11 first compo-
nents, whitening

0.44

4 first derivative of 5th-order B-splines,
42 coefficients, functional PCA, a 4-
fold cross-validation selects the 15
first components, whitening

0.50

5 second derivative of 6th-order B-
splines, 30 coefficients, functional
PCA, a 4-fold cross-validation selects
the 13 first components, whitening

0.61

Table 2
RMSE on the test set for the MLP experiments

These results justify the following comments.

• The reference experiment (number 1) shows that the chosen experimental
setting is comparable to the one used by Thodberg. Indeed, the obtained
MLP performs slightly better than the one selected by Thodberg (0.49 ver-
sus 0.55) probably because we choose automatically the appropriate num-
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ber of principal components. On the other hand, our simpler setting cannot
reach the best performances reported in [30] probably because the regular-
ization method is less flexible than the one used by Thodberg.

• The best functional preprocessing allows to improve slightly the test per-
formances (from 0.49 to 0.44, that is about 10 %) in a rather simple way.
Moreover, a higher-level 4-fold cross-validation in which the method itself is
automatically chosen in addition to the number of hidden neurons, of prin-
cipal components, etc., chooses the model produced by experiment number
3, i.e. the functional preprocessing that leads to the best test performances.

• MLP performances are better than RBFN ones, but the price to pay in
terms of calculation time is huge. A full experiment with MLPs takes about
200 times more computational time than a similar experiment with a RBFN
network. We face here one of the classical tradeoffs between model design
time and model accuracy. As the functional approach introduces additional
possibilities such as functional preprocessing (derivative, centering, etc.), it
makes the training problem even more important. Exploring all the available
functional preprocessing solutions can become nearly impossible for MLP
models while remaining feasible for RBFN networks. Moreover, it appears
clearly that RBFN results cannot be used as a guideline for the construction
of a good MLP model. Indeed, derivatives were really useful for improving
the RBFN results, whereas they give worse performances in the case of the
MLP.

5 Missing data

5.1 A semi-artificial benchmark

A nice property of FDA is its ability to deal with irregular sampling. In some
situations, it happens that the sampling process has some variation between
input functions. This is the case for instance in medical time series where
patients decide on their own when to be monitored by doctors. Irregular sam-
pling appears also for gesture recognition like cursive handwriting recognition
for personal digital assistant: while the sampling rate is fixed, gestures have
different execution times that depend on the context of execution rather than
on the gesture performed. Therefore, some registration is needed; its effect is
to transform the regular sampling into a gesture-specific one.

The goal of this section is to illustrate the way FDA solves irregular sampling
problems in its simplest form: a regular sampling with missing data. To do so, a
semi-artificial data set was created by removing data from the Tecator data set
used in the previous section. More precisely, 10 % of the observations in each
spectrum of the data set were removed at random (therefore 90 absorbances
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out of 100 are kept). Of course, spectrometers provide regular spectra and the
obtained data are not representative of spectrometric problems. The goal is
simply here to illustrate the possibilities of FDA with data for which we have
reference performances.

5.2 Functional preprocessing

The function representation strategy described in section 3 applies to arbi-
trary sampling. Therefore the procedure followed in section 4.2 does not have
to be modified: the coordinates of the considered functions on B-spline bases
of various orders are calculated. The leave-one-out procedure selects less B-
splines than with complete data. Indeed, the number of basis functions are
respectively 28, 27 and 21 for the 4th-, 5th- and 6th-order splines. This re-
duction is easily explained by the fact that B-splines are localized functions.
When the number of knots is high, the support of individual B-splines is small
and it can happen that for a given spectrum no observation is available on the
whole support of a B-spline. In this case, the corresponding coordinate cannot
be calculated. Before this extreme situation, coefficients become numerically
unstable because some B-spline supports do not contain enough observations
to allow a correct estimation of the corresponding coefficients.

5.3 Results

The Tecator benchmark with 10 % of missing data as described above was
used for experiments with a RBFN network. Only the most interesting meth-
ods from section 4.3 were used on these data, namely experiments number 9
and 10, on the first and second derivative of the 5th- and 6th-order splines
respectively. Table 3 gives the results of the two experiments (to simplify the
comparison with section 4.3, the same experiment numbers are kept). It clearly
appears that the functional approach solves the problem of missing data in
this particular situation.

Experiment # Experiment Result on test set

9 first derivative of the 5th-order B-
splines, 26 coefficients, no whitening

1.05

10 second derivative of the 6th-order B-
splines, 19 coefficients, no whitening

0.80

Table 3
RMSE on the test set for the RBF experiments with missing data

As for the RBFN, experiments were limited to the best preprocessing meth-
ods for use with the MLP, namely raw functional data followed by a func-
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tional PCA as well as centered and reduced functional data also followed by
a functional PCA. All meta-parameters (including the number of principal
components) were selected by a 4-fold cross-validation, exactly as in section
4.4. Table 4 gives the results of the two experiments. It also clearly appears
that the functional approach solves here the problem of missing data.

Experiment # Experiment Result on test set

2 4th-order B-splines, 28 coefficients,
functional PCA, a 4-fold cross-
validation selects the 12 first compo-
nents, whitening

0.52

3 4th-order B-splines, 28 coefficients,
functional PCA on centered and
reduced functions, a 4-fold cross-
validation selects the 11 first compo-
nents, whitening

0.44

Table 4
RMSE on the test set for the MLP experiments with missing data

5.4 Alternative solutions

The standard way of dealing with missing data is to use an imputation method
that will reconstruct the needed values. The simplest imputation method con-
sist in replacing a missing value by the mean of available values for the corre-
sponding variable.

A more interesting method consists in using a k-nearest neighbors approach:
given an input with missing values, its k-nearest neighbors, among inputs that
do not miss the corresponding value, are calculated and the missing value is
replaced by the mean of this variable for the k-nearest neighbors. Of course
the distance has to be adapted to take care of the missing data problem. A
possible solution is simply to discard missing values. Let us denote nm(x) the
set of indices j for which xj is not missing. Then the distance used for the
nearest neighbor y calculation is:

d(x, y) =
1

|nm(x) ∩ nm(y)|

∑

j∈nm(x)∩nm(y)

(xj − yj)
2,

where |A| is the cardinal of the set A.

When imputation has been done, a standard processing method can be ap-
plied. Section 4.3 showed that non-functional approaches give very bad results
for the RBF network; therefore it has been decided to study the imputation
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method associated to a standard processing approach only for the MLP model.
Two experiments have been conducted in this way:

(1) Missing values are imputed using the mean approach to reconstruct spec-
tra in R

100; then a standard PCA is applied. The number of principal
components to retain is determined by the 4-fold cross-validation used
for other meta-parameters optimization.

(2) Missing values are imputed using the k-nearest neighbors approach. Re-
sulting spectra are processed by a regular PCA. Both k and the number
of principal components are determined by 4-fold cross-validation.

Table 5 summarizes the obtained results, which are quite bad, especially for
the mean approach. It appears in fact that the reconstruction is very bad be-
cause of the mean spectrum effect already encountered with the RBFN model.
Indeed, spectra with similar shape but very different means can correspond to
similar values of fat. Unfortunately, this means that reconstructing the shape
of the spectra without using an expert knowledge is very difficult.

Experiment # Experiment Result on test set

1 mean imputation, PCA, a 4-fold
cross-validation selects the 5 first
components, whitening

7.13

2 4-nearest neighbors imputation,
PCA, a 4-fold cross-validation
selects the 12 first components,
whitening

1.87

Table 5
RMSE on the test set for the MLP experiments with missing data and classical
imputation methods

A possibility to take into account this kind of expert knowledge into the impu-
tation process without relying on a functional approach is to center and scale
each spectrum before applying the imputation method. More precisely, in a
way modeled after the functional scaling described in section 3.5, x is replaced
by xs defined by:

xs
i =

xi −
∑

j∈nm(x) xj
√

∑

j∈nm(x)

(

xj −
∑

k∈nm(x) xk

)2

The same experiments as described above were conducted with this additional
preprocessing phase. Table 6 summarizes the obtained results, which are much
better than without the inclusion of the expert knowledge. Even so, results are
still worse than the ones obtained by the functional preprocessing. Moreover,
the expert knowledge corresponds clearly to a functional point of view and
the imputation methods based on it should be considered as almost functional
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methods.

Experiment # Experiment Result on test set

1 expert pre-processing, mean imputa-
tion, PCA, a 4-fold cross-validation
selects the 9 first components,
whitening

1.82

2 expert pre-processing, 8-nearest
neighbors imputation, PCA, a 4-fold
cross-validation selects the 9 first
components, whitening

0.85

Table 6
RMSE on the test set for the MLP experiments with missing data and expert
imputation methods

6 Conclusion

Functional Data Analysis (FDA) is an extension of traditional data analy-
sis to functional data, lying in an infinitely-dimensional space. Examples of
functional data are spectra, temporal series, spatio-temporal images, gesture
recognition data such as cursive handwriting patterns, etc. Functional data
are rarely known in practice; instead lists of input-output pairs (one for each
functional data) are usually known. Their sampling can be irregular, even
different from one functional data to another.

This paper shows how to extend the Radial-Basis Function Network (RBFN)
and Multi-Layer Perceptron (MLP) models to functional data inputs. A par-
ticular emphasis is put on how to handle functional data in practical situa-
tions, i.e. when they are known through list of sampled values. In particular,
various possibilities for functional processing are presented, including the pro-
jection on smooth bases, Functional Principal Component Analysis (FPCA),
functional centering and reduction and the use of differential operators. It is
shown how to incorporate these functional preprocessings into the RBFN and
MLP models, and how to take into account the non-orthogonality of basis
vectors in the case of preprocessing by projection.

The methods are applied to a benchmark in spectroscopy. The advantages and
limitations of the various FDA approaches are discussed on this benchmark,
both in the RBFN and MLP cases. It is shown how an adequately chosen
functional preprocessing can improve the way functional data are handled
into data analysis methods.

The case of irregularly-sampled functional data is discussed through the same
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benchmark where a percentage of values have been artificially removed. It is
shown that the FDA approach is robust to such missing data, while traditional
imputation techniques fail to provide adequate results.

The FDA approach, combined with an appropriate choice of how to represent
the functional data, may reveal interesting in a variety of situations where
the smooth character or the irregular sampling of data has to be taken into
account.
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