
HAL Id: inria-00000749
https://inria.hal.science/inria-00000749

Submitted on 16 Nov 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulating Algebraic Specification Genericity on
Languages with Initial Semantics.

Martins Anamaria, Santana Anderson

To cite this version:
Martins Anamaria, Santana Anderson. Simulating Algebraic Specification Genericity on Languages
with Initial Semantics.. Electronic Notes in Theoretical Computer Science, 2003, Electr. Notes Theor.
Comput. Sci., 95, pp.131-148. �inria-00000749�

https://inria.hal.science/inria-00000749
https://hal.archives-ouvertes.fr


WMF 2003 Preliminary Version

Simulating Algebraic Specification Genericity
on Languages with Initial Semantics 1

Anamaria Martins Moreira 3

Departamento de Informática e Matemática Aplicada
Universidade Federal do Rio Grande do Norte — UFRN

Natal, Brasil

Anderson Santana de Oliveira 2,4

Departamento de Informática e Matemática Aplicada
Universidade Federal do Rio Grande do Norte — UFRN

Natal, Brasil

Abstract

This paper discusses the concept of genericity often used in algebraic specification
languages and how this concept can be simulated in a meta level in languages with
purely initial semantics, as it is the case for ELAN and ASF+SDF. This proposal is
being integrated into the FERUS tool, in development for ELAN, and will have the
effect of providing in the meta level better modularity features without any changes
to the language itself, as long as all manipulations are done through the operations
available in the tool.

Key words: algebraic specifications, genericity, transformation
tools, ELAN, ASF+SDF.

1 Introduction

Modularity is a key feature for reuse, and algebraic specification languages
usually provide structuring constructs that support the definition of modu-
lar specifications. Additionally, it is known that more general components
are more likely to be reusable than specific ones. Algebraic specification lan-
guages usually include genericity mechanisms that provide great flexibility in

1 This work is partially supported by a joint research project funded by CNPq and INRIA.
2 Supported by CAPES.
3 Email: anamaria@consiste.dimap.ufrn.br
4 Email: anderson@consiste.dimap.ufrn.br

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



the level of generality of a component by its parameterization. Finally, alge-
braic specifications, with their formal syntax and semantics, can provide great
support for software component reuse, as they allow tools to “understand” the
semantics of the components they are manipulating. Briefly, algebraic speci-
fications are well suited for reuse as they provide the characteristics that are
needed in the construction of specifications from already existing ones, in the
construction of the reusable components and in the implementation of tool
support.

The FERUS tool [13,16], which was first developed to deal with CASL [8]
specifications, has the goal of supporting algebraic specification components
development. It provides an environment for specification design and proto-
typing, that allows to edit, compile and execute specifications (given that the
specification is executable). Its main feature, however, is the possibility to
derive new components through reuse driven transformation operations. For
example, to create an instance of a parameterized (generic) module using the
instantiate operation, and conversely, to create a parameterized (generic) mod-
ule by abstracting some sorts and related declarations, with the generalization
operation.

In order to demonstrate that FERUS is suitable to different contexts and/or
languages inside the domain of algebraic specifications, we proposed to adapt
the tool to the language ELAN [4,22]. The idea was to keep the tool ar-
chitecture unchanged, thus only language specific features were subject of
adaptation. An interesting feature of applying FERUS to the ELAN language
is that although ELAN has many characteristics of an algebraic specification
language, it was not conceived as such and there are some major differences
in semantics and structuring (modularity) constructs. The flexibility of the
tool could then be better tested, with promising results [17].

The FERUS tool works on the new version of ELAN called ELAN 4. This
new version borrows the syntax of the ASF+SDF specification language [10,22],
as well as its semantics if we do not consider some features of ELAN: we are
dealing with most of the language, except for rewriting strategies [5]. Its un-
derlying institution and model semantics are the same as the for the ASF+SDF
language, i.e., Cond= with initial semantics, as classified by Mossakowsky in
[18]. Structuring and parameterization in these languages is very restricted,
however. The FERUS tool may then be used to improve these facilities without
having to extend the language itself. This is particularly tricky and interesting
when it comes to defining genericity in a more standard way (purists in the
algebraic domain may say that ELAN and ASF+SDF do not have genericity,
since they only allow for initial semantics), and this is where we focus our
attention in this paper.

This paper is structured as follows: section 2 gives the main concepts re-
lated to genericity in algebraic specifications, section 3 presents the language
ELAN and discusses its features with focus on modularization and parame-
terization, in section 4 we show how genericity can be simulated in ELAN by



manipulating specifications in a meta level. The paper concludes with issues
related to the integration of this simulation process into the FERUS tool.

2 Algebraic Specifications and Genericity

Algebraic specifications [25] are a classical paradigm for specifying functional
properties of systems. It is a simple and well founded technique which presents
some nice characteristics such as executability (of some particular specifica-
tions), usually carried out by rewriting [9].

An algebraic specification usually consists of sort and operator declara-
tions, defining a signature; and axioms built over this signature (and some set
of variables). Axioms describe properties which are expected to be true in
all models of the specification. Signature and axioms together are called the
presentation of the specification. To this presentation corresponds a seman-
tics, which is traditionally presented as the class of algebras that are models of
the presentation or the set of formulas that constitute the underlying theory.
Recently, starting with Maude [7,11] and the rewriting logic [14], on one hand,
and ELAN and the ρ-calculus [6] on the other hand, some different interpre-
tations of algebraic specifications have been proposed; but it is the classical
approach that we consider here: algebraic structures as models, with a set
of values for each declared sort, a function for each declared operator, and
rewriting as the computational executability tool.

An algebraic specification language is characterized by many different fac-
tors, which can in general be identified as the institution over which specifi-
cation components are written and its modularity constructs. Each different
language has its particularities in both aspects. In this work we consider some
characteristics that are available in most of the existing languages: conditional
equational logic, many-sorted total operators, and the built-in equality pred-
icate as the unique predicate. With this basic building block, we can then
have initial and loose semantics (only the initial algebra or all algebras that
satisfy the specification axioms). We can also have structured specifications
that import previously defined ones with some constraints that define how
imported specification models are to be used in the definition of the models
of the importing specification.

In most algebraic specification languages, the parameter of a generic spec-
ification is supposed or required to present a loose semantics, possibly with
some extra constraints, accepting a large class of possible models. Then, in-
stantiation is the substitution of this generic parameter by some or one of
its “models” (a specification whose models are a sub-class of the models of
the parameter, modulo signature restriction and translation, identified by the
instantiation signature morphism). This specialization condition is needed for
an instantiation to be defined. This is the case, e.g., for LPG [3], CASL [8]
and Maude [7]. In all of them, the parameter specification has the goal of
specifying some set of “minimal” conditions that must be satisfied by a speci-



fication (usually, an abstract data type) to be used as an actual parameter for
the generic module. These conditions may be purely syntactic, in the case of
a parameter with loose semantics and no axioms (only defining a signature),
or syntactic and semantic, if there are any other constraints or axioms. In
this latter case, each model of each potential actual parameter must satisfy
all axioms or constraints specified in the formal parameter to correspond to
a valid instantiation. Furthermore, there is usually an extra condition, called
the instantiation push-out condition, requiring that the instantiation process
do not introduce any new sharing of symbols between the body of the new
specification and the actual parameter. These are then the conditions that
we are proposing to simulate via the meta operations of FERUS in ELAN and
ASF+SDF.

The definition of instantiation that we will be taking into account in the
following is given below in definition 2.1. It is a somewhat abstract definition
that has to be slightly adapted to each application language, but which deals
with the main common features of what is expected to be instantiation in
algebraic specification languages.

Definition 2.1 [Instantiation Operation] Given

(i) a specification sp with generic parameter spgp and body (including im-
ported specifications) spb;

(ii) a candidate actual parameter spap, and

(iii) a signature morphism m from the signature Σgp of spgp into Σap of spap;
then,

the instantiation of sp by spap with respect to m is defined if

(i) all models of spap, restricted via m into models of the signature Σgp, are
models of spgp, and

(ii) the instantiation push-out condition is satisfied.

It defines the specification sp′ where

• spap substitutes spgp, and is added on top of the list of imports of sp, and

• all local and imported items of sp are renamed according to m.

Note that the specification sp′ in the definition above may be explicitly
generated, as it happens when we have a meta-operation (e.g., in FERUS),
or only implicitly, as it is the case with the corresponding construct in LPG,
CASL and Maude. In this latter case, this definition states the application
conditions of the instantiation construct and the semantics of the specification
that contains it.

This definition roughly corresponds to the classical instantiation diagram
(see figure 1) found for instance in [12].

The main variations of the above definition are generally due to differences
in the structuring constructs for each language. For instance, in CASL, the



spgp
-spb

? ?

m

spap
-sp′

b

Fig. 1. Instantiation diagram

parameter specification may rely on a list of imported specifications, and may
not be a stand-alone specification (this is not the case if we only work with
named specifications). Also, it is often allowed to provide a mapping of sym-
bols instead of a morphism, as it happens in CASL. This definition takes into
account the morphism derived from it, when it can be correctly and uniquely
derived. On the other hand, in (full) Maude, every item identification includes
its origin, making the push-out condition trivially satisfied. Because this is
not the case with ELAN and ASF+SDF, we will need the push-out condition.
Also, in (full) Maude, if the actual parameter is still a theory, it is added as for-
mal parameter, instead of import, allowing for further instantiation. All these
variations have minor influence on the semantics of the resulting specification,
however, and for our purposes, this abstract definition is enough.

3 The ELAN language

ELAN is a specification and prototyping framework for algebraic specifications
whose main application areas include theorem proving, constraint solving, and
logical programming [4].

It is based on rewrite theory with user defined strategies. Using ELAN’s
programming language it is possible to define non-deterministic (as well as
deterministic) computational systems, as it provides operators for combin-
ing conditional rewrite rules; iterators, to control how many times they can
be applied; and selection operations corresponding to deterministic and non-
deterministic choices of strategies [5].

Maintenance issues related to changes in syntax of ELAN language have
demanded more flexibility of the parsing technology under use. This led to
the adoption of ASF+SDF syntax, parsing tools, and exchange data format
as reported in [23], originating the current version of the environment, called
ELAN 4. Consequently, most of the syntax and semantics of ELAN 4 is the
same of ASF+SDF with exception of strategies definition and application. For
this reason, when we talk here of ELAN (without strategies), one can also
think of ASF+SDF and vice-versa.

The new version of the ELAN language presents constructs for definition of
lexical and context-free syntax, including sort declarations, character classes
represented as regular expressions, production definitions corresponding to the
context-free syntax, variable declarations, and finally, rewrite rules definition.
Both syntactic and lexical definitions can be exported or hidden, meaning



global or local declarations respectively. The following example briefly intro-
duce part of the language our tools deal with. In order to make development
cycles faster in an incremental software development paradigm, we have de-
layed the treatment of specifications containing lexical syntax, user defined
priorities, infix operators, and strategies. Of those, only the inclusion of strate-
gies may have a significant impact on the work we present here, because it has
significant impact on the semantics of the corresponding ELAN specifications
(we do not claim that our work is directly applicable for algebraic specification
languages with strategies). The other items cited above, however, may be seen
as syntactic sugar and their inclusion in the language does not invalidate any
of the results presented here.

Example 3.1 In ELAN, the algebra of natural numbers can be defined using
prefix operations as follows:

module NATURAL

imports BOOLEAN

exports

sorts Nat

context-free syntax

zero -> Nat

succ (Nat) -> Nat

add (Nat, Nat) -> Nat

eq (Nat, Nat) -> Bool

variables

"x" -> Nat

"y" -> Nat

rules

[] add(zero, x) => x

[] add(x,succ(y)) => succ(add(x,y))

[] eq(zero,zero) => true

[] eq(zero,succ(x)) => false

[] eq(succ(x),zero) => false

[] eq(succ(x),succ(y)) => eq(x,y)

In the example above BOOLEAN is assumed to be a specification for the
boolean algebra, with contents that can be seen in example 3.2. Additionally,
in ELAN 4 all modules with rules need to import a predefined specification
ElanLayout, that we omit here. However, this specification only contains
definitions of what should be regarded as syntactic layout, like whitespace and
comments, and does not have any influence in the semantics of the resulting
specification.

In the next section we present in some more detail the modularization
constructs available in ELAN and ASF+SDF, as it is the point that we are
trying to improve with our proposal.



3.1 Structuring and Parameterization in ELAN 4 and ASF+SDF

ASF+SDF has as modularization constructs: imports, renamings and parame-
terization [24]. Renamings contribute to the reuse of specifications, adapting
identifiers in a module to their new context. It states that all occurrences of
the items to be renamed are to be replaced by the corresponding symbols in
the renaming map. The purpose of renamings is to adapt the identifiers of
a certain module to a different context, and also to avoid name clashes. On
the other hand, parameterization provides the possibility to create reusable
modules through the declaration of formal parameters, but in a restricted way,
since parameters are seen just as a list of symbols (sort names) that have to
be replaced. In fact, parameterization is a special case of renaming.

When considering the semantics of ASF+SDF (borrowed by ELAN 4) one
may find in [2,19] that it is defined over the normalized form of a structured
module: “the semantics of module m in the context of the specifications S is
the initial algebra of its normal form N(m, S), provided the latter has no void
sorts and no unbound parameters” [2]. This normalization process consists in
removing all syntactic sugar and modularization, generating a “flat” module
in an abstract syntax format. For the example 3.1 above, one would get
a specification like the one in example 3.2. The main consequence is that
there is no hierarchical semantics organization, in the sense that one can not
compose the semantics of a module from the initial models of its sub-modules.

Example 3.2 The normal form representation of the example 3.1 is:

module NATURAL

exports

sorts Nat

Bool

context-free syntax

zero -> Nat

succ (Nat) -> Nat

add (Nat, Nat) -> Nat

eq (Nat, Nat) -> Bool

true -> Bool

false -> Bool

or (Bool , Bool) -> Bool

and (Bool, Bool) -> Bool

not (Bool) -> Bool

variables

"x" -> Nat

"y" -> Nat

"B1" -> Bool



rules

[] add(zero,x) => x

[] add(x,succ(y)) => succ(add(x,y))

[] eq(zero,zero) => true

[] eq(zero,succ(x)) => false

[] eq(succ(x),zero) => false

[] eq(succ(x),succ(y)) => eq(x,y)

[] and(true,B1) => B1

[] and(false,B1) => false

[] or(true,B1) => true

[] or(false,B1) => B1

[] not(true) => false

[] not(false) => true

4 Simulation of Genericity in ELAN

Because there is no loose interpretation of specifications in ELAN and ASF+SDF
(only initial semantics), genericity cannot be treated in the same way as de-
scribed in section 2. Parameterization and instantiation in these languages
are just special cases of the more general imports and/or renaming constructs,
and there is no specialization or push-out requirements in the instantiation
of a “generic” parameter. We propose then to use a “meta-genericity” pat-
tern via meta operations of instantiation and generalization 5 to obtain this
semantically more controlled behavior of genericity and instantiation found in
some algebraic specification languages.

In the following, we present in more detail, through an example, what can
be done in ELAN, the related problems and what we propose in substitution
to this.

Example 4.1 Consider the ELAN 4 specification of lists with an accumulation
operation below where variable declarations have been omitted:

module LIST[Elem]

exports

sorts Elem List[[Elem]]

context-free syntax

k -> Elem

bin (Elem, Elem) -> Elem

nil -> List[[Elem]]

cons (Elem, List[[Elem]]) -> List[[Elem]]

sum (List[[Elem]]) -> Elem

5 The generalization operation [15] is used to generate generic specifications from non-
generic ones, contributing to their reusability. It is briefly described in section 5.



rules

[] sum(nil) => k

[] sum(cons(x,l)) => bin(x, sum(l))

Note that this specification does not have a semantics, as explained in section
3.1 (its parameters must be instantiated first). On the other hand, we would
like to specify it in a more modular way, separating the generic part definition
from the fixed part that is constructed from it, by something like

module LIST[PARAM]

exports

sorts List

context-free syntax

nil -> List

cons (Elem, List) -> List

sum (List) -> Elem

rules

[] sum(nil) => k

[] sum(cons(x,l)) => bin(x, sum(l))

with

module PARAM

exports

sorts Elem

context-free syntax

k -> Elem

bin (Elem, Elem) -> Elem

But this is not allowed in ELAN (parameters cannot be modules, but only
sorts). We can import PARAM in the specification LIST, as shown below,

module LIST

imports PARAM

exports

sorts List

context-free syntax

nil -> List

cons (Elem, List) -> List

sum (List) -> Elem

rules

[] sum(nil) => k

[] sum(cons(x,l)) => bin(x, sum(l))

but we would not get the desired semantics, because we would only have iso-
morphic models to the term algebra, with values k, bin(k,k), bin(k,bin(k,k)),
etc., for Elem. In a classical model semantics approach, we would expect PARAM
to have a loose interpretation, accepting as models every algebra with a set of
values for Elem, a constant value corresponding to k, and a binary operator



corresponding to bin. The module LIST would then specify lists of Elem, for
each of these possible models. Of course, with initial semantics, many usual
“instances” of LIST (e.g., lists of NATURAL) would not be valid models of this
specification which only accepts isomorphic models to the term algebra.

In the user manual for ASF+SDF [21] this kind of structuring with imports
and renaming is proposed as a way to define “generic” specifications and their
instances, as in the example 4.2 below.

Example 4.2 Given the specifications below for SIMPLELIST and ELEM:

module SIMPLELIST

imports ELEM

exports

sorts List

context-free syntax

nil -> List

cons (Elem, List) -> List

module ELEM

exports

sorts Elem

we can “instantiate” by renaming the sort Elem.

module ListNat

imports NATURAL

SimpleList[Elem => Nat]

Of course, this proposal contradicts the idea of actual parameters being
specializations the formal parameters as required in definition 2.1. Further-
more, only sort identifiers may be “instantiated” this way, and this is often
not enough. In the list specification of example 4.1, for instance, this would
not work, as the operators k and bin would not be instantiated by zero and
add. It would only work if PARAM was purely composed of sorts.

Assume now that we have an operation capable of substituting PARAM by
NATURAL and Elem, k and bin by Nat, zero and add. Through this operation
we can obtain the specification of lists of natural numbers, with a sum oper-
ation computing the sum of all elements of a given list. We may also specify
lists of boolean values, with sum giving the conjunction of all of the values of
a list, through the substitution of PARAM by BOOLEAN and of Elem, k and bin

by Bool, true and and, for instance. It is then possible to simulate classical
parameterization and instantiation in the context of ELAN, and this is what
we do in the FERUS tool.

We propose then to annotate the importation of a specification with a
comment (e.g., %% formal parameter), stating that this import is supposed
to represent a formal parameter for the module. This comment is ignored
by regular ELAN tools as any other comment, but will be taken into account



by FERUS. The instantiation operation provided by FERUS will then consider
this annotated import as a formal parameter that may be instantiated. Once
the user defines the desired actual parameter and instantiation mapping (or
morphism), the instantiation operation will check if the conditions for the
operation to be defined (def. 2.1) are satisfied and will carry out the transfor-
mation, generating a new ELAN specification, with the substitutions described
above: substitution of the importation of the annotated formal parameter by
the importation of the actual parameter (without any annotations this time),
and substitution of all items of the formal parameter by the corresponding
ones in the actual parameter. It is important to stress that all substitutions
are actually carried out, generating a new specification module without any
renamings (except possibly for previously existing ones). So, this approach
may also be used for languages that do not provide the renaming construct.

Throughout the rest of the paper, we will then consider that an ELAN
imported specification annotated with the formal parameter comment is a
formal parameter in the classical sense, and that instantiation requires the
specialization and push-out conditions as described in section 2. Conversely,
generalization will aim at substituting regular imports of a specification by an
annotated formal parameter.

5 Integration to the FERUS tool

The FERUS tool was designed to formally support the development of reusable
algebraic specification components. This is accomplished through the use
of meta operations capable of preserving algebraic properties. When such
transformation operations are applied to a given component, FERUS generates
a new component which has a well defined relationship with the one who
has originated it. For instance the renaming operation available in FERUS
changes sort and operator identifiers and generates isomorphic specifications
(isomorphic signatures and the same class of models).

One may argue that a simple text editor would do this task well, but
this approach is error prone, besides, FERUS operations provide more control
over the properties of the components. This feature may be used in conjunc-
tion with other tools, as the development graphs [1] for CASL, facilitating
“bookkeeping” activities related to reuse of a maximum of verifications of the
original components in the newly generated ones. Furthermore, application
conditions for the transformation operations may be quite complex, and in
this case, tool support is extremely welcome.

The FERUS architecture, illustrated in figure 2, was conceived to be reusable,
easily distributable, and maintainable. Considering these aspects, its compo-
nents are organized as follows:

• Internal Format Library: library that implements an internal graph format
representing the abstract syntax of an ELAN module. All operations are
performed over this format, making them more efficient, since each graph



User Interface

Compiler Decompiler Transformation Library

Internal Format Library

Fig. 2. FERUS Architectural Components

node represents uniquely a sort, operator, or variable declaration [16].

• Transformation Library: library that implements the transformations, mak-
ing the operations easily available to be used and helping to separate user
interface concerns and component manipulation.

• Compiler: interacts with some ELAN tools to obtain the parse tree of a
module in ATerms format [20]. Then it is converted into the FERUS internal
format.

• Decompiler: performs the often necessary task of retrieving the textual
representation of a module stored in FERUS graph format.

• User Interface: integrates the above services with a wizard support (see
figure 3).

Additionally, the tool disposes of functionalities like editing and executing
(through ELAN environment) ELAN specification components.

The FERUS operations we’ve been referring to in this paper (instantiation,
generalization and renaming) constitute the Transformation Library. Other
available operations in this library are extension, an operation that adds new
elements to the signature and/or axioms of a component; and reduction, that
eliminates elements from the signature or from the axioms set. In the fol-
lowing, the three main operations in the context of this paper are presented
through simple examples.

Renaming

Example 5.1 The result of the application of the FERUS renaming operation
to the module SIMPLELIST of example 4.2, changing the sort identifier List

to List2 and the identifier of the operator cons to cat is:

module LIST2

imports Elem

exports

sorts List2

context-free syntax

nil -> List2

cat (Elem, List2) -> List2

The main differences between the FERUS rename operation and the ELAN
and ASF+SDF built in renaming are shown in the table below.



Rename - FERUS Renaming - ELAN

Renames sort and operator identi-
fiers

Renames symbols, in our context,
sort identifiers

Generates a new specification The renaming is valid only in the
context of the current specification

The generated specification is iso-
morphic with respect to the original
one

No such property

Adapts the renamed module to a dif-
ferent context

Adapts the renamed imported mod-
ules to the context of the importing
one

Applied to the local presentation
(items introduced in the body of the
specification)

Applied to imported specifications

Generalization

The generalization operation takes a component specifically developed for
some context and makes it available to multiple uses in different contexts.
In order to represent a larger class of models by a given specification, the
generalization operation replaces imported specifications (usually with initial
semantics) by a formal parameter from which the substituted specification is
a specialization. In the case of ELAN, this formal parameter will be a formal

parameter annotated import, as described in section 4. This operation is not
standard. It was first proposed in [15] in the context of LPG and is one of the
main particularities of FERUS. A more detailed description of this operation
and of the issues concerning the definition of its arguments may be found e.g.
in [17].

Example 5.2 Let’s take again the list example, supposing now that we have
the following module defining lists of natural numbers:

module LISTNAT

imports NATURAL

exports

sorts List

context-free syntax

nil -> List

cons (Nat, List) -> List

sum (List) -> Nat



variables

"x" -> Nat

"y" -> Nat

"L" -> List

rules

[] sum(nil) => zero

[] sum(cons(x, L)) => add(x, sum(L))

It could be generalized over the sort Nat, substituting the import of NATURAL
by the formal parameter PARAM of example 4.1, generating the generalized
specification:

module LIST

imports PARAM %% formal parameter

exports

sorts List

context-free syntax

nil -> List

cons (Elem, List) -> List

sum (List) -> Elem

variables

"x" -> Elem

"y" -> Elem

"L" -> List

rules

[] sum(nil) => k

[] sum(cons(x, L)) => bin(x, sum(L))

i.e., the last list specification of example 4.1 with the extra formal parameter

annotation.

Instantiation

The reverse process, instantiation, is the substitution of the generic pa-
rameter by some more specialized specification, as described in section 2.

Example 5.3 The specification LIST of example 5.2 may be instantiated with
the morphism from PARAM to NATURAL mapping Elem, k and bin into Nat,
zero and add, respectively. The instantiation well-definedness conditions will
be checked by FERUS, generating the specification LISTNAT of example 5.2. If
we suppose that NATURAL also defines a multiplication operator mult and the
constant one, for instance, we may also instantiate LIST into LISTNAT2 (not
shown, but very similar to LISTNAT with the substitution of all occurrences
of add by mult), and now the operator sum would specify the product of all
elements of the list 6 .

6 It would still be named sum. To make its name correspond to its new semantics, a further
renaming operation is recommended.



Fig. 3. FERUS user interface main window

6 Conclusions

We propose in this paper the use of meta transformation operations for alge-
braic specification components in order to improve modularization and sim-
ulate genericity in languages with initial semantics and restricted modular-
ization constructs, as it is the case for ELAN and ASF+SDF. This approach
has the merit of providing these extra-features in a behavioral way, without
any changes to the language itself. Because these meta operations generate
transformed specifications in the language, instead of being considered as new
constructs of the language, there is no need to adapt any of the existing tools.
In particular, all existing tools for these languages will simply ignore the extra
comment included to indicate that a particular import should be regarded as
a formal parameter.

This approach is being applied to the ELAN language through the use
of the FERUS tool. This tool is being adapted from a previous version in
development for the CASL algebraic specification language and provides a
set of common algebraic specification transformation operations (renaming,
instantiation, extension and reduction) together with a more original operation
of generalization by parameterization. Genericity behavior is implemented via
the pair of operations instantiate/generalize. The other operations provide
some extra facilities in the evolutionary ELAN specification development.

Similar ideas may be found in the definition of Full Maude [11], and in the
definition of the structuring constructs of CASL [8], with the main difference
that in these works the language themselves are extended with modularity
features. We claim that our approach is more easily applicable to any language
due to the fact that we do not interfere with any existing tools for the language.
Only the FERUS tool has to be adapted, and our current experience with the
CASL and ELAN versions indicates that this can be done with reasonable effort.



Acknowledgements

The authors thank the members of the FERUS project, both on the brazilian
side (DIMAp/UFRN) and on the french side (PROTHEO Team). They also
thank Mark van den Brand and Jurgen Vinju, from CWI, Amsterdam, for
their help with many implementation issues.

References

[1] Autexier, S. and T. Mossakowski, Integrating HOL-CASL into the Development
Graph Manager MAYA, in: A. Armando, editor, Proc. FroCoS’2002, Lecture
Notes in Artificial Intelligence 2309 (2002), pp. 2–17.

[2] Bergstra, J. A., J. Heering and P. Klint, “Algebraic specification,” ACM Press,
1989.

[3] Bert, D., R. Echahed and J. Reynaud, Reference manual of the LPG
specification language and environment (release with disequations), Technical
report, LGI-IMAG (1994), ftp available — site ftp.imag.fr.

[4] Borovanský, P., C. Kirchner, H. Kirchner, P.-E. Moreau and C. Ringeissen,
An Overview of ELAN, in: C. Kirchner and H. Kirchner, editors, Proc. Second
Intl. Workshop on Rewriting Logic and its Applications, Electronic Notes in
Theoretical Computer Science (1998).

[5] Borovanský, P., C. Kirchner, H. Kirchner and C. Ringeissen, Rewriting
with strategies in ELAN: a functional semantics, International Journal of
Foundations of Computer Science 12 (2001), pp. 69–98, also available as
Technical Report A01-R-388, LORIA, Nancy (France).

[6] Cirstea, H. and C. Kirchner, The rewriting calculus — Part I and II, Logic
Journal of the Interest Group in Pure and Applied Logics 9 (2001), pp. 427–
498.

[7] Clavel, M., F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer and J. F.
Quesada, Maude: Specification and programming in rewriting logic, Theoretical
Computer Science (2001).

[8] CoFI, “The CoFI Algebraic Specification Language,” (2003), available at the
CoFI home page: http://www.brics.dk/Projects/CoFI.

[9] Dershowitz, N. and J.-P. Jouannaud, Rewrite systems, in: Handbook of
Theorectical Computer Science, Elsevier Science Publishers B.V., 1990 .

[10] Deursen, A. v., An overview of ASF+SDF, in: A. v. Deursen, J. Heering and
P. Klint, editors, Language Prototyping: An Algebraic Specification Approach,
World Scientific Publishing Co., 1996 pp. 1–30.

[11] Durán, F., “Reflective Module Algebra with Applications to the Maude
Language,” Ph.D. thesis, University of Málaga (1999).



[12] Ehrig, H. and B. Mahr, “Fundamentals of algebraic specification 1 and 2,”
EATCS Monographs on Theoretical Computer Science 6 and 21, Springer-
Verlag, 1985/1990.

[13] Lima, G., A. M. Moreira, D. Déharbe, D. Pereira, D. Sena and J. Vidal, FERUS:
um ambiente de desenvolvimento de especificações CASL, in: Proceedings
of SBES’2002 (Simpósio Brasileiro de Engenharia de Software): Sessão de
ferramentas, 2002, pp. 1–6.

[14] Mart́ı Oliet, N. and J. Meseguer, Rewriting logic: roadmap and bibliography,
Theoretical Computer Science 285 (2002), pp. 121–154.

[15] Moreira, A. M., “La Généralisation : un Outil pour la Réutilisation,” Ph.D.
thesis, INPG (1995).

[16] Moreira, A. M., C. Ringeissen, D. Déharbe and G. Lima, Manipulating algebraic
specifications with term-based and graph-based representations, Journal of
Algebraic and Logic Programming (2003), to appear.

[17] Moreira, A. M., C. Ringeissen and A. Santana, A Tool Support for Reusing
ELAN Rule-Based Components, in: J. Giavitto and P. Moreau, editors,
Proceedings of the 4th International Workshop on Rule-Based Programming,
RULE’03, Eletronic Notes in Theoretical Computer Science 86.2, 2003.

[18] Mossakowski, T., Relating CASL with other specification languages: the
institution level, Theoretical Computer Science 286 (2002), pp. 367–475, guest
editor: J.L. Fiadeiro.

[19] van den Brand, M. and J. Bergstra, Syntax and semantics of a high-level
intermediate representation for asf+sdf, Tech. report, University of Amsterdam,
Programming Research Group (1998).

[20] van den Brand, M., H. de Jong, P. Klint and P. Olivier, Efficient annotated
terms, Software-Practice and Experience 30 (2000), pp. 259–291.

[21] van den Brand, M. and P. Klint, “ASF+SDF Meta-Environment User Manual,”
(2002), available at: http://www.cwi.nl/projects/MetaEnv.

[22] van den Brand, M., P.-E. Moreau and C. Ringeissen, The ELAN environment:
a rewriting logic environment based on ASF+SDF technology, in: M. G. J.
van den Brand and R. Lämmel, editors, Proceedings of the 2st International
Workshop on Language Descriptions, Tools and Applications, Electronic Notes
in Theoretical Computer Science 65, Grenoble (France), 2002.

[23] van den Brand, M. and C. Ringeissen, ASF+SDF Parsing Tools applied to
ELAN, in: K. Futatsugi, editor, Proceedings of the third International Workshop
on Rewriting Logic and Applications, Electronic Notes in Theoretical Computer
Science 36 (2000).

[24] Visser, E., “Syntax Definition for Language Prototyping.” Ph.D. thesis,
University of Amsterdam (1997).

[25] Wirsing, M., Algebraic specification, in: Handbook of Theorectical Computer
Science, Elsevier Science Publishers B.V., 1990 .


	Introduction
	Algebraic Specifications and Genericity
	The ELAN language
	Structuring and Parameterization in ELAN4 and ASF+SDF

	Simulation of Genericity in ELAN
	Integration to the FERUS tool
	Conclusions
	References

