C. Bene-]-bene, L. Doyen, and D. Et-gabay, A viability analysis for a bio-economic model, Ecological Economics, vol.36, issue.3, pp.385-396, 2001.
DOI : 10.1016/S0921-8009(00)00261-5

N. Bonneuil, Making ecosystem models viable, Bulletin of Mathematical Biology, vol.65, issue.6, pp.1081-1094, 2003.
DOI : 10.1016/S0092-8240(03)00060-0

C. J. Burges, A tutorial on support vector machines for pattern recognition, Data Mining and Knowledge Discovery, vol.2, issue.2, pp.121-167, 1998.
DOI : 10.1023/A:1009715923555

C. Chang and C. Et-lin, LIBSVM, ACM Transactions on Intelligent Systems and Technology, vol.2, issue.3, 2005.
DOI : 10.1145/1961189.1961199

N. Cristianini and J. Et-shawe-taylor, Support Vector Machines and other kernel-based learning methods, 2000.
DOI : 10.1017/CBO9780511801389

G. Deffuant, S. Martin, and L. Et-chapel, Approximation de noyau de viabilité à l'aide de svms, 2005.

K. Muller, S. Mika, G. Ratsch, K. Tsuda, and B. Et-schlkopf, An introduction to kernel-based learning algorithms, IEEE Transactions on Neural Networks, vol.12, issue.2, pp.181-201, 2001.
DOI : 10.1109/72.914517

C. Mullon, P. Curry, and L. Et-shannon, VIABILITY MODEL OF TROPHIC INTERACTIONS IN MARINE ECOSYSTEMS, Natural Resource Modeling, vol.1, issue.1, pp.27-58, 2004.
DOI : 10.1111/j.1939-7445.2004.tb00129.x

J. Platt, Fast training of support vector machines using sequential minimal optimization. Rapport technique Approximation of viability kernel, Applied Mathematics & Optimisation, vol.29, pp.98-14187, 1994.

V. Vapnik, The nature of statistical learning theory, 1995.