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NEURAL NETWORK MODELS

Jean-Charles Lamirel and Shadi Al Shehabi
LORIA, Campus Scientifique, BP 239
54506 Vandoeuvre-les-Nancy Cedex, France
{Jean-Charles.Lamirel, Shadi.Al-Shehabi}@loria.fr

Abstract — This paper presents a new approach whose aim is to extent the scope of numerical
models by providing them with knowledge extraction capabilities. The basic model which is
considered in this paper is a multi-topographic neural network model. The powerful features of this
model are its generalization mechanism and its mechanism of communication between
topographies. These two mechanisms allow rule extraction to be performed whenever a single
viewpoint or multiple viewpoints on the same data are considered. The association rule extraction
is itself based om original quality measures which evaluate to what extent a numerical
classification model behaves as a natural symbolic classifier such as a Galois lattice.

Keywords — knowledge extraction, unsupervised learning, neural gas (NG), MultiGAS model,
MultiSOM model, symbolic model, association rules, multi-viewpoint analysis

1 Introduction

Data mining or knowledge discovery in database (KDD) refers to the non-trivial process of
discovering interesting, implicit, and previously unknown knowledge from large databases. Such a
task implies to be able to perform analyses on high-dimensional input data. The most popular
models used in KDD are the symbolic models. Unfortunately, these models suffer of very serious
limitations. Rule generation is a highly time-consuming process that generates a huge number of
rules, including a large ratio of redundant rules. Hence, this prohibits any kind of rule computation
and selection as soon as data are numerous and they are represented by very high-dimensional
description space. This latter situation is very often encountered with documentary data. To cope
with these problems, preliminary KDD trials using numerical models have been made. An
algorithm for knowledge extraction from self-organizing network is proposed in [3]. This approach
is based on a supervised generalized relevance learning vector quantization (GRLVQ) which is
used for extracting decision trees. The different paths of the generated trees are then used for
denoting rules. Nevertheless, the main defect of this method is to necessitate training data. On our
own side, we have proposed a hybrid classification method for mapping an explicative structure
issued from a symbolic classification into an unsupervised numerical self-organizing map (SOM)
[6]. SOM map and Galois lattice are generated on the same data. The cosine projection is then used
for associating lattice concepts to the SOM classes. Concepts properties act as explanation for the
SOM classes. Furthermore, lattice pruning combined with migration of the associated SOM classes
towards the top of the pruned lattice is used to generate explanation of increasing scope on the
SOM map. Association rules can also be produced in such a way. Although it establishes
interesting links between numerical and symbolic worlds this approach necessitates the time-
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consuming computation of a whole Galois lattice. In a parallel way, in order to enhance both the
quality and the granularity of the data analysis and to reduce the noise which is inevitably
generated in an overall classification approach, we have introduced the multi-viewpoint analysis
based on a significant extension of the SOM model, named MultiSOM [5]. The viewpoint building
principle consists in separating the description of the data into several sub-descriptions
corresponding different property subsets. In MultiSOM each viewpoint is represented by a single
SOM map. The conservation of an overall view of the analysis is achieved through the use of a
communication mechanism between the maps, which is itself based on Bayesian inference [9]. The
advantage of the multi-viewpoint analysis provided by MultiSOM as compared to the global
analysis provided by SOM [4] has been clearly demonstrated for precise mining tasks like patent
analysis [7]. Another important mechanism provided by the MultiSOM model is its on-line
generalization mechanism that can be used to tune the level of precision of the analysis.
Furthermore, we have proposed in [2] to use the neural gas (NG) model as a basis for extending the
MultiSOM model to a MultiGAS model. NG model [10] is known as more efficient than SOM
model for classification tasks where explicit visualization of the data analysis results is not
required. Hence, thanks to the loss of topographic constraints as compared to SOM, NG tends to
better represent the structure of the data, yielding better classification results [2].

In this paper we propose a new approach for knowledge extraction that consists in using our
MultiGAS model as a front-end for unsupervised extraction of association rules. In our approach
we exploit both the generalization and the intercommunication mechanisms of the model. We also
make use of our original recall and precision measures that derive from the Galois lattice theory
and from Information Retrieval (IR) domains [8]. The first section presents the MultiGAS model.
The second section presents the rule extraction principles based on the MultiGAS model. The
experiment that is presented on the last section shows how our method can be used both to control
the rules inflation that is inherent to symbolic methods and for extracting the most significant rules.

2 MultiGAS Model

The principle of the MultiGAS model is to be constituted by several gases that have been generated
from the same data. Each gas is itself issued from a specific data description subspace. The relation
between gases is established through the use of two main mechanisms: the inter-gas
communication mechanism and the generalization mechanism.

The inter-gas communication mechanism enables to highlight semantic relationships between
different topics belonging to different viewpoints related to the same data. In MultiGAS, this
communication is based on the use of the data that have been projected onto ecach gas as
intermediary neurons or activity transmitters between gases. The inter-gas communication is
established by standard Bayesian inference network propagation algorithm which is used to
compute the posterior probabilities of target gas's neuron 7% which inherited of the activity
(evidence Q) transmitted by its associated data neurons. This computation can be carried out
efficiently because of the specific Bayesian inference network topology that can be associated to
the MultiGAS model. Hence, it is possible to compute the probability P(ac,t|1;,Q) for an activity
of modality act,, on the gas neuron 7} which is inherited from activities generated on the source
gas. This computation is achieved as follows [9]:

Zdeaam T Slm (d’ Sd )
> Sim(d.S,)

P(act,

Tk>Q): (1)

Such that S, is the source neuron to which the data d has been associated, Sim(d, S,) is the cosine
correlation measure between the codebook vector of the data d and the one of its source neuron S,

and deact,, T} if it has been activated with the modality act,, from the source gas.



Efficient Knowledge FExtraction Using Unsupervised Neural Network Models

The neurons of the target gas getting the highest probabilities can be considered as the ones who
include the topics sharing the strongest relationships with the topics belonging to the activated
neurons of the source gas.

The main roles of the generalization mechanism are both to evaluate the coherency of the topics
that have been computed on an original gas and to summarize the contents of this later into more
generic topics. Our NG generalization mechanism [2] creates its specific link structure in which
each neuron of a given level is linked to its 2-nearest neighbours (Fig. 1). For each new level
neuron # the following codebook vector computation applies:

W, =1[W,f” D J 2
R neVM

where V" represents the 2-nearest neighbour neurons of the neuron 7 on the level M associated to
the neuron » of the new generated level M+1. After codebook vector computation the repeated
neurons of the new level (i.e. the neurons of the new level that share the same codebook vector) are
summarized into a single neuron. Our generalization mechanism can be considered as an implicit
and distributed form of a hierarchical classification method based on neighbourhood reciprocity. Its
main advantage is to produce homogeneous generalization levels. It ensures the conservation of the
topographic properties of the gas codebook vectors on each generalization level. Moreover, we
have shown in [2] that this method produces more homogeneous results than the classical training
approach while significantly reducing time consumption. Lastly, the inter-gas communication
mechanism presented in the former section can be used on a given viewpoint between a gas and its
generalizations as soon as they share the same projected data.

Generated Teuroh ot synthesis
syhithetical ot |evel hi+1

levels

D

2-nearest heighbor
e feutons of level b

Criginal generared Neural Gas

Fig 1. Gas generalization mechanism (2D representation of gas is used for the sake of clarity of the figure).

3 Quality of classification model

The classical evaluation measures for the quality of classification are based on the intra-class
inertia and the inter-class inertia (see [8]). These measures are often strongly biased because they
depend both on the pre-processing and on the classification methods. Therefore, we have proposed
to derive from the Galois lattice and Information Retrieval (IR) domains two new quality measures,
Recall and Precision. As compared to classical inertia measures, averaged measures of Recall and
Precision present the main advantages to be independent of the classification method. The
Precision and Recall measures are based on the properties of class members [8]. The Precision
criterion measures in which proportion the content of the classes generated by a classification
method is homogeneous. The greater the Precision, the nearer the intensions of the data belonging
to the same classes will be one with respect to the other, and consequently, the more homogenous
will be the classes. In a complementary way, the Recall criterion measures the exhaustiveness of
the content of said classes, evaluating to what extent single properties are associated with single
classes. The Recall criterion should be considered as a specific application of the statistical concept
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of sensitivity (i.e. true positive rate) to class properties [1]. The Recall (Rec) and Precision (Prec)
measures for a given property p of the class ¢ are expressed as:

C

“r Prec () = 3)

*
14

\C

Rec (p) =

No#

such that, C is a set of classes issued from a classification method applied on a set of documents D,
c e C, and

&\dec, &0} @)

where &7 is the weight of the property p for the data d.

We have demonstrated in [8] that if both values of Recall and Precision reach the unity value, the
peculiar set of classes represents a Galois lattice. A class belongs to the peculiar set of classes of a
given classification if it possesses peculiar properties. Finally, a property is considered as peculiar
for a given class if it is maximized by the class members.

Averaged measures of Recall and Precision can be used for overall comparison of classification
methods and for optimisation of the results of a method relatively to a given dataset. In this paper
we will more specifically focus on peculiar properties of the classes and on local measures of
Precision and Recall associated to single classes. Hence, as soon as this information can be
fruitfully exploited for generating explanations on the contents of individual classes [6], it will also
represent a sound basis for extracting rules from said classes.

4 Rules Extraction from MultiGAS model

An claborated unsupervised neural model, like MultiGAS, represents a natural candidate to cope
with the related problems of rule inflation and rule selection that are inherent to symbolic methods.
Hence, its synthesis capabilities that can be used both for reducing the number of rules and for
extracting the most significant ones. In the knowledge extraction task, the generalization
mechanism can be specifically used for controlling the number of extracted association rules. The
intercommunication mechanism will be useful for highlighting association rules figuring out
relationships between topics belonging to different viewpoints.

4.1 Rules extraction by the generalization mechanism

We will rely on our own class quality criteria for extracting rules from the classes of the original
gas and its generalizations. For a given class ¢, the general form of the extraction algorithm (A1)
follows:

Vpi. p2eP.
1) If (Rec(p;) = Rec( p2) = Prec(p;) = Prec(p,) = 1) Then: p; <> p> (equivalence rule)
2) Elself (Rec(p;) = Rec(p,) = Prec(pz) = 1) Then: p; — p:
3) Elself (Rec(p;) = Rec(pz) = 1) Then
If (Extent(p;) c Extent(p,)) Then: p; — p>
If (Extent(p,) — Extent(p;)) Then: p, — p;
If (Extent(p;) = Extent(p.)) Then: p; <> p-
Vp,; eP,’, Vp,e P,— P,
4) If (Rec(p;) = 1) If (Extent(p;) < Extent(p,)) Then: p; — p> (¥)
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where Prec and Rec respectively represent the local Precision and Recall measures, Extent(p)
represents the extension of the property p (i.e. the list of data to which the property p is associated),
and P. represent the set of peculiar properties of the class c.

The optional step 4) (*) can be used for extracting extended rules. For extended rules, the constraint
of peculiarity is not applied to the most general property. Hence, the extension of this latter
property can include data being outside of the scope of the current class c.

4.2 Rules extraction by the inter-gas communication mechanism

A complementary extraction strategy consists in making use of the extraction algorithm in
combination with the principle of communication between viewpoints for extracting rules. The
general form of the extraction algorithm (A2) between two viewpoints v; and v, will be:

‘v’plePc*, ‘v’pgePc~* and cev;, c'ev,

1) If (Rec(p;) = Rece( p2) = Prec(p;) = Prec(p,) = 1) Then Test Rule Type;
2) Elself (Rec(p;) = Rec(pz) = Prec(pz) = 1) Then Test Rule Type;

3) Elself (Rec(p;) = Rec( p2) = Prec(p;) = 1) Then Test Rule Type;

4) Elself (Rec(p;) = Rec(pz) = 1) Then Test Rule Type;

where Test Rule Type procedure is expressed as:
If (Extent,;(p;) < Extent,(p,)) Then: p; — p:
If (Extent,»(p,) < Extent,;(p;)) Then: p> — p;
If (Extent,;(p;) = Extent,(p,)) Then: p; <> p-

Extended rules will be obtained as:

a) Vp,eP.”, Vp,eP.: Substituting respectively Rec(p,) and Prec(p,) by the viewpoint-based
measures Rec,;(p2) and Prec,;(p>), related to the source viewpoint, in the previous algorithm.

b) Vp,€P., Vp,eP.: Substituting respectively Rec(p;) and Prec(p;) by the viewpoint-based
measures Rec,»(p;) and Prec,,(p;), related to the destination viewpoint, in the previous algorithm.

5. Experimental results

Our test database is a database of 1000 patents that has been used in some of our preceding
experiments [7]. For the viewpoint-oriented approach the structure of the patents has been parsed in
order to extract four different subfields corresponding to four different viewpoints: Use,
Advantages, Titles and Patentees. As it is full text, the content of the textual fields of the patents
associated with the different viewpoints is parsed by a lexicographic analyzer in order to extract
viewpoint specific indexes. Two viewpoints, Use and Advantages, will be considered in our
experiment. The Use and Advantages viewpoints generate themselves description spaces of size
234 and 207 respectively. Each of our experiments is initiated with an optimal gas generated thanks
to an optimization algorithm based on our quality criteria [8]:

— Original gases of 121 (optimal) and 100 (optimal) neurons for Advantages and Use viewpoints,
respectively, are firstly generated.

— Generalized gases of 100, 83, 75, 64, 53, 44, 34, 28, 23, 18 and 13 neurons are generated by
applying the generalization mechanism to the 121 original gas for Advantages viewpoint.

— Generalized gases of 79, 62, 50, 40, 31, 26, 16 and 11 neurons are generated by applying the
generalization mechanism to the 100 neurons original gas for Use viewpoint.
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Our first experiment consists in extracting rules from the single Use viewpoint. Both the original
gas and its generalizations are used for extracting the rules. The algorithm is used once without its

optional step, and a second time including this step (for more details, see algorithm Al). The
results are presented at figure 2. Some examples of extracted rules are given hereafter.

Bearing of outdoor machines — Printing machines (supp = 2, conf = 100%)
Refrigerator oil — Gear 0il (supp = 3, conf = 100%)

where conf of rule A — B is calculated as follows: conf = supp(A U B)/supp(A), and supp(A4) is the
number of data to which the property A is associated.

For evaluating the complexity of our algorithm based on a numerical approach as compared to a
symbolic approach we use the following complexity factor (CF) computation:

CF = (RC * MLC) / (MRC * LC) )

where RC=rules count, MRC=maximum rules count (symbolic), LC=loops count, MLC=maximum
loop count (symbolic).
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Fig. 2. Rule extraction curves for Use viewpoint. a) extraction algorithm without optional step. b) the same with
optional step. ¢) complexity function for the algorithm including optional step. New rules: rules that are found in a given
level but not in the preceding ones. Specific rules: rules which are found only in a given level. Rules count: is the total
number of rules that are extracted from all levels. (x(G): represents a level of generalization of X neurons).

A global summary of the results is given in table 1. The table includes a comparison of our
extraction algorithm with a standard symbolic rule extraction method as regards to the amount of
extracted rules. In single viewpoint experiment, when our extraction algorithm is used with its
optional step, it is able to extract the same number of rules as a classical symbolic model that
basically uses a combinatory approach. Indeed, table 1 shows that all the rules of confidence 100%
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(i.e. 536 rules) are extracted by the combination of gas levels. Moreover, a significant amount of
rule can be extracted from any single level of the gas (see fig. 2b). Even if, in this case, no rule
selection is performed, the main advantage of this version of the algorithm, as compared to a
classical symbolic method, is the computation time. Indeed, as soon as our algorithm is class-based,
the computation time it significantly reduced. Moreover, the lower the generalization level, the
more specialized will be the classes, and hence, the lower will be the combinatory effect during
computation (see fig. 2c). Another interesting result is the behaviour of our extraction algorithm
when it is used without its optional step. The fig. 2a shows that, in this case, a rule selection
process that depends of the generalization level is performed: the higher will be the generalization
level, the more rules will be extracted. We have already done some extension of our algorithm in
order to search for partial rules. Complementary results showed us that, even if this extension is
used, no partial rules will be extracted in the low level of generalization when no optional step is
used. This tends to prove that the standard version of our algorithm is able to naturally perform rule
selection.

Our second experiment consists in extracting rules using the intercommunication mechanism
between the Use and the Advantage viewpoints. The communication is achieved between the
original gas of each viewpoint, and furthermore, between the same levels of generalization of each
viewpoint. For each single communication step the extraction algorithm is applied is a bidirectional
way. Some examples of extracted rules are given hereafter.

Natural oil (Advantages) — Catapult oil (Use) (supp = 2, conf = 100%)
Natural oil (Advantages) — Drilling fluid (Use) (supp = 2, conf = 100%)

The results of our multi-viewpoint experiment are similar to the ones of our single viewpoint
experiment (see table 1). A rule selection process is performed when the standard version of our
algorithm is used. The maximum extraction performance is obtained when viewpoint-based Recall
and viewpoint-based Precision viewpoint are used (see algorithm A2).

Use Use <> Advantages
Symbolic model Total rule count 536 649
Average confidence 100% 100%
Global rule count 2238 2822
Average confidence 59% 45%
MultiGAS model | Peculiar rule count 251 250
(9 levels) Average confidence 100% 100%
Extended rule count 536 642
Average confidence 100% 100%

Table 1. Summary of results. The table presents a basic comparison between the standard symbolic rule extraction
method and the MultiGAS-based rule extraction method. The global rule count defined for the symbolic model includes
the count of partial rules (confidence<100%) and the count of total rules (confidence=100%). In our experiments, the
rules generated by the MultiGAS model on the 9 levels are only total rules. The peculiar rule count is the count of rules
obtained with the standard versions of the extraction algorithms. The extended rule count is the count of rules obtained
with the extended versions of the extraction algorithms including their optional steps.

6 Conclusion

In this paper we have proposed a new approach for knowledge extraction based on a MultiGAS
model. Our approach makes use of original measures of recall and precision for extracting rules
from gases. Thanks to the MultiGAS model, our experiments have been conduced on single
viewpoint classifications as well as between multiple viewpoints classifications on the same data.
They take benefit of the generalization and the inter-gas communication mechanisms that are
embedded in the MultiGAS model. Even if complementary experiments must be done, our first
results are very promising. They tend to prove that a neural model, as soon as it is elaborated
enough, represents a natural candidate to cope with the related problems of rule inflation, rule
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selection and computation time that are inherent to symbolic models. One of our perspectives is to
more deeply develop our model in order to extract rules with larger context like the ones that can
be obtained by the use of closed set in symbolic approaches. Another interesting perspective would
be to adapt measures issued from information theory, like IDF or entropy, for ranking the rules.
Furthermore, we plan to test our model on a reference dataset on genome. Indeed, these dataset has
been already used for experiments of rule extraction and selection with symbolic methods. Lastly,
our extraction approach can be applied in a straightforward way to a MultiSOM model, or even to a
single SOM model, when overall visualization of the analysis results is required and less accuracy
is needed.
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