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Abstract

The paper deals with multi-objective Topological Optimum Design
(TOD) problems. Considered optimization criteria are the minimization
of both the mass of the structure and its maximal displacement under a
prescribed loading. Multi-objective evolutionary algorithm using Voronoi
representation are applied on the cantilever plate, the popular benchmark
problems of TOD. The results are discussed in the light of the single
objective approaches used in previous works: whereas the quality of the
result is very similar, the number of Finite Element Analyzes needed to
obtain a full set of trade-off structures by the multi-objective method
is more or less the same that needed to obtain only one solution using a
single-objective algorithm with a limit on the maximal displacement: This
makes multi-objective approach extremely interesting for solving real life
TOD problems where the evaluation cost is usually quite high while the
possibility of making of a well justified choice of definitive design is very
important.

Introduction

The general framework of this paper is the problem of finding the optimal shape
of a Mechanical structure i.e. a repartition of material in a given design do-
main. In this context, most studies are devoted to minimizing both the mass
of structure and its stiffness (or, almost equivalently, on the maximal displace-
ment under a prescribed loading). It is well-known that those objectives are
contradictory (i.e. decreasing the weight generally goes through decreasing the
stiffness). However, most previous work addressing this problem used single
objective optimization method, and either aggregated the objectives, trying to
minimize some linear combination fo mass and stiffness, or transformed one of
the objectives into a constraint (e.g. minimize the mass with a limit on the
maximum displacement).

Nevertheless, the recent raise of evolutionary multi-objective optimization
methods allows one to consider both goals simultaneously, and to try to identify



the set of optimal trade-offs, also called the Pareto optimal) solutions. The fore-
seen advantages are twofold: First, whereas each single Pareto-optimal solution
is the solution of a constrained single-objective problem, not all Pareto-optimal
solutions can be obtained using the aggregation method favored by classical
deterministic approaches — and a good sampling of all possible trade-offs is
mandatory for good decision making. Second, the computational cost of one
single multi-objective evolutionary optimization run is of the same order of
magnitude than that of one run of a single-objective evolutionary run using the
constrained approach: The actual cost of one single trade-off on the Pareto front
should thus be much cheaper using the multi-objective approach.

In the present work, a multi-objective evolutionary algorithm is used to
solve the two-objective Topological Optimum Design (TOD) problem introduced
above. Very few previous studies have tackled that problem [9], but were us-
ing the so-called bitarray representation whose drawbacks are well-known. A
compact unstructured representation based on Voronoi diagrams [11, 10] is used
here, allowing one to search more efficiently the space of discretized structures.

In section 1, some previous studies of the TOD problem are recalled, and a
simple TOD benchmark problem is introduced as a two-objective optimization
problem. Section 2 presents general issues about multi-objective evolutionary
algorithms based on the notion of Pareto dominance and, in particular, the
NSGA-II approach that is used in this work to solve the two-objective cantilever
design problem. Section 3 recalls how the notion of Voronoi diagram can be
used to represent a structure in an evolutionary perspective. In section 4, the
results of multi-objective optimizations are presented, and compared to those of
the single-objective algorithm taken from [11]. Finally, the significance of those
results is discussed in the conclusion, and directions for mandatory further work
are given.

1 Topological Optimum Design

1.1 Previous Works

The most up-to-date deterministic approach to TOD is that of homogenization,
introduced in [5]. It deals with a continuous density of material in [0, 1]. This
relaxed problem is known to have a unique solution in the case of linear elasticity
and for one single case [4] — and the corresponding numerical method does
converge to that non-physical solution [3], which is further forced to a feasible
solution (with boolean density). This approach is insofar limited to the linear-
elasticity case, and cannot address loadings that apply on the (unknown) actual
boundary of the shape (e.g. uniform pressure).

But another limitation is that this method can only handle on single (regular)
objective — and the benchmark problems try for instance to minimize a weighted
sum of the weight and the stiffness (or compliance).

Some limitations of deterministic methods have been successfully overcome
by early works using evolutionary computation: in [15, 14] for instance, results
of TOD in nonlinear elasticity, as well as the design of an underwater dome
(where the loading is applied on the unknown boundary) are presented: all
are out of reach for the deterministic methods. But all also deal with a single
objective, e.g. minimizing the weight with a constraint on the stiffness.



1.2 Two-Objective Cantilever Plate Design

The mechanical model used throughout this paper is the standard two-dimensional
plane stress linear model, and only linear elastic materials will be considered
(see e.g. [6]). All mechanical figures are dimensionless (e.g. the Young modulus
is set to 1) and the effects of gravity are neglected.

The most popular benchmark problem of Optimum Design is the optimiza-
tion of a cantilever plate: the design domain is rectangular, the plate is fixed on
the left vertical part of its boundary (displacement is forced to 0), and the load-
ing is made of a single force applied on the middle of its right vertical boundary.
Figure 1 shows the design domain for the 2 x 1 cantilever plate problem.

The two objectives are to minimize simultaneously the weight of the struc-
ture and the maximal displacement when the given force is applied.

A few recent works address the above two objectives-problem [7, 9]. How-
ever, these works, as well as the other works cited here-above, use a binary
representation for the structures: section 3.1 will briefly recall its disadvantages.

2 Multi-Objective Evolutionary Algorithms

The attention paid to Multi-Objective Evolutionary Algorithms (MOEAs) re-
markably increased during the last decade, due to their ability to find multiple
trade-off solutions in one single run. The best performing of these approaches
are based on the notion of Pareto dominance. In addition, they use specific tech-
niques to preserve the diversity, thus giving access to rich and uniform sampling
of the Pareto front of the multi-objective problem at hand.

2.1 Multi-Objective Optimization

Even when dealing with contradictory criteria, a decision about only one final
structure must be taken when solving an optimum design problem. It is of-
ten the case, however, that some higher-level problem information is available,
giving additional decision arguments. There are basically two different ways of
handling such arguments: the preference-based approach and the Pareto-based
approach.

The preference-based method needs a quantitative expression of the relative
preferences. This allows one to aggregate all criteria into a single function
which is then optimized. However, the original problem information is usually
qualitative and experience-driven and it may be quite difficult to represent it
mathematically.

Moreover, in some particular cases, such representation may lead to com-
pletely unexpected results in terms of original preferences. As an illustration,
consider a two objective problem min f; and min f with concave Pareto front
(see figure 1 for a plot in the fi(z), f2(z) space) Suppose further that we have
equal preferences for both criteria. It thus seems quite natural to aggregate f1
and f» into a weighted sum with equal coefficients. The minimization of the
resulting function f; + fa corresponds to moving the lines f; + fo = const from
the origin (it is assumed that the f;s take positive values) toward the positive
quarter space until they hit some point of the search space image. Unfortu-
nately, in cases like the one presented in figure 1, such method will always end
to either point A or point B. Furthermore, it is easy to see that in this case,
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Figure 1: Aggregation approach

any combination of preference weights will always return either point A or point
B. More generally, as the actual shape of the Pareto front is unknown, there is
no way to know whether the Pareto front has a concave region, even by looking
at the results a posteriori — except by sampling the Pareto front with sufficient
accuracy.

The Pareto-based approaches aim at sampling the Pareto set. The problem-
specific information is then used to choose among that sample. In another
words, these methods allow one to make a choice from a set of best compromise
— and that choice can of course be based on original qualitative considerations
arising from the problem. This makes Pareto-based approaches less subject
to “forgetting” whole regions of possible solutions, like the ones illustrated by
figure 1. Pareto-based approaches are hence much more efficient than direct
preference-based approaches, especially for design problems for which it is par-
ticularly important to make a well justified final decision before moving toward
the implementation phase. But of course, practical Pareto-based approaches
should have a tractable computing cost, even though their outputs is made of
many solutions. This is precisely one of the main advantages of Evolutionary
MOAs, that explains why they have become so popular. But before surveying
different EMOASs, let us define precisely the key notion of Pareto dominance.

2.2 Pareto dominance

Let  and y be two points of the search space; x is said to be Pareto-dominated
by y if y is not worse than z with respect to all criteria and y is strictly better
than z with respect to at least one criterion. All points of the search space that
are not dominated by any point of this space compose Pareto set of the multi-
objective problem at hand. (the image of the Pareto set in the objective space is
called Pareto front or Pareto surface). In another words, Pareto optimality is, by
definition, a property of all best compromises with respect to the contradictory
objectives.

2.3 Evolutionary Pareto-Based Algorithms

Multi-objective evolutionary algorithms usually only differ from single-objective
algorithms with respect to the Darwinian-like steps of selection and replacement,
as the usual relationship one individual has better fitness than another does not
make sense in a multi-objective context.



Taking into account that the goal is to find a good sampling if the Pareto
set of the problem, procedures of selection and replacement are based on the
notion of Pareto dominance defined in previous section. However, the Pareto
dominance induces only a partial order on the search space, and different ways
to turn it into a total order have been designed. For example, for each individual
of current population, the number of individuals dominating it gives a scalar
value measuring the multi-objective importance of that individual (this value is
clearly to be minimized). Another way to measure individuals performance will
be given in forthcoming section 2.4.

However, a specific selection mechanism is not enough to obtain a good sam-
pling of the Pareto set: similarly to the single-objective case, finite sampling of
all stochastic processes involved in the algorithm creates some genetic drift, tha
in turn will result in a converged population. Preserving diversity of solutions
is hence particularly important in evolutionary multi-objective optimization. A
number of special mechanisms have been designed for this purpose. Most of
them require a user-defined parameter like squeeze factor or sharing radius [7].
The NSGA-II approach, detailed below, has been chosen here mainly because
it is free of such a parameter.

2.4 NSGA-II

Selection and replacement in NSGA-II [8] are based on two hierarchically or-
dered criteria: in order to compare two individuals (e.g. in a tournament selec-
tion process), their domination ranks are first compared — the smaller the better.
If their domination ranks are equal, a measure of local sparseness of the search
space around each individual, the crowding distance, is computed, the larger
the better. Standard selection and replacement procedures can then be used,
based on that total order. The original NSGA-II uses tournament selection and
deterministic replacement among both parents and offspring.

2.4.1 Domination rank

The domination rank is based on the Pareto dominance map of the population:
individuals that are not dominated by any other individuals in the current
population are given rank 1. They are removed from the population and the
non-dominated among remaining individuals are given rank 2. This process
continues until all individuals are ranked.

2.4.2 Crowding distance

The crowding distance is a measure of the density of solutions in the objec-
tive space. Its computation only involves individuals of the same rank, also
called partial Pareto front. Each partial Pareto front is sorted according to
one objective only. The partial crowding distance for this objective is, for a
given individual, the distance between the two neighboring points in this sorted
list. The total crowding distance is the sum of these partial crowding distances
over all objectives. It can also be viewed as the largest centroid enclosing the
individual at hand without including any other point of the same rank.

This measure is not based on any user-defined parameter. However, since
it requires sorting the population according to each of the objectives, it be-



comes computationally heavy for problems with many objectives — and/or large
populations.

3 Multi-objective Evolutionary TOD

This section discusses the application of an Evolutionary Multi-Objective Al-
gorithm to the TOD problem presented in section 1.2. As always for EAs in
general (and hence for EMOAs in particular), the first step is to choose a rep-
resentation.
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(a) The design domain (b) The bitarray representation

Figure 2: The 2 x 1 cantilever plate test problem, and a bitarray representation
of a structure derived from a regular 13 x 6 mesh.

3.1 Representations of Structures

One of the most critical decisions made in applying Evolutionary techniques to
a particular class of problems is the choice of the representation of the solutions,
which determines the search space of the algorithm.

Most previous works that address TOD problems with EAs use the same
‘natural’ binary representation, termed bitarray[15]: it relies on a discretization
into small elements (a mesh) of the design domain - the same mesh that is
used to compute the mechanical behavior of the structure in order to evaluate
its fitness. Each element of the mesh is labeled 1 if it contains material, 0
otherwise (see Figure 1-b).

Though very successful to overcome the main limitations of deterministic
methods for TOD problem [15, 16], this representation suffers from strong lim-
itations due to the dependency of its complexity on the underlying mesh of the
design domain [11].

These considerations appeal for some more compact unstructured represen-
tations whose complexity does not depend on a fixed discretization. Different
such alternative representations, that exhibit a self-adaptive complexity, have
been proposed [10], and used to solve TOD problem. The rest of the paper will
use one of these, namely the Voronoi representation, that will now be presented.

3.2 Voronoi Representation

Voronoi diagrams: Consider a finite number of points Vj, ..., Vy (the Voronoi
sites) of a given subset of R" (the design domain). To each site V; is associated



(a) The genotype: a list of labeled (b) The phenotype: the Voronoi cells
Voronoi sites. Black dots are sites with receive the label of the corresponding
label 0 and white dots are sites with la- site, and build a partition of the design
bel 1. domain.

Figure 3: Voronoi representation on a 2 x 1 design domain.

the set Cell(V;) of all points of the design domain for which the closest Voronoi
site is V;, termed Voronoi cell:

Cell(V;) = {M € D/d(M,V;) = min;_y..nd(M, V;)}

where d(.,.) denotes the Euclidean distance function.

The Voronoi diagram is the partition of the design domain defined by the
Voronoi cells. Each cell is a polyhedral subset of the design domain, and any
partition of a domain of R"™ into polyhedral subsets is the Voronoi diagram of at
least one set of Voronof sites (the concept of Voronoi diagrams is a full branch
of Algorithmic Geometry[17]).

The genotype: Consider now a (variable length) list of Voronoi sites, each site
being labeled 0 or 1. The corresponding Voronoi diagram represents a partition
of the design domain into two subsets, if each Voronoi cell is labeled as its
associated site (see Figure 2).

Decoding: However, as some FE analysis is required during the computation
of the fitness function, and as re-meshing is a source of numerical noise that
could ultimately take over the actual difference in mechanical behavior between
two very similar structures, it is mandatory to use the very same mesh for all
structures at the same generation. A partition described by Voronoi sites is
easily mapped on any mesh: the subset (void or material) an element belongs
to is determined from the label of the Voronoi cell in which the gravity center
of that element lies.

Initialization: a straightforward initialization procedure for the Voronoi repre-
sentation is a uniform choice of the number of Voronoi sites up to a user-supplied
maximum number, a uniform choice of the Voronoi sites in the structure, and
a uniform choice of the boolean void/material label.

Variation operators: The variation operators for the Voronoi representation
are problem-driven:

e The crossover operator exchanges Voronoi sites on a geometrical basis.
Figure 4 gives an example of application of this operator.

e The mutation operator is chosen among the following operators (see
Figure 5):



Offspring 1 Offspring 2

Figure 4: The crossover operator : the same random line is drawn across both
diagrams, and the sites on either side are exchanged.

— the displacement mutation performs a Gaussian mutation on the co-
ordinates of the sites. As in Evolution Strategies [19], adaptive muta-
tion is used: one standard deviations is attached to each coordinate of
each Voronoi site, undergoes log-normal mutation before being used
for the Gaussian mutation of the corresponding coordinate.

— the label mutation randomly flips the boolean attribute of one site.

— the add and delete mutations are specific variable-length operators
that respectively randomly add or remove one Voronoi site on the
list.

In most experiments, once an individual has been chosen for mutation, it
has a 50% probability to undergo displacement mutation, and a 16.66%
probability to be modified by one of the other three mutations.

3.3 Ewvaluation

The problem tackled in this paper has two objective functions, the weight and
the maximal displacement. The computation of the maximal displacement is
made using a Finite Element Analysis (FEA) solver [13].

From mechanical considerations, all structures that do not connect the load-
ing point and the fixed boundary are given an arbitrary high “displacement”
value without undergoing any FEA. Moreover, the material in the design do-
main that is not connected to the loading point — and thus has no effect on the
mechanical behavior of the structure — is discarded during the FEA and only
slightly penalizes the weight. (see [15] for more numerical details).

4 Experimental Results

This section presents experimental results on cantilever benchmark problems,
and discusses the comparatives results obtained for two-objective and single-
objective constraint problem.

4.1 Evolutionary Experimental Conditions

The experiments have been performed using the following settings: the maxi-
mum number of Voronoi sites allowed per structure is set to 40; the population
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Figure 5: 21 trade-off shapes for the 1 x 2 cantilever plate discretized using
10 x 20 regular mesh. Under each shape the maximal displacement and the
weight (in %) are given. The last structure is mechanically almost infeasible,
and has a very large displacement.

size is fixed to 300 and the maximum number of generations to 400. The fol-
lowing variation operators were used: intermediate crossover is applied with
probability 0.7, and the mutation rate (per individual) is 0.2; Relative weights
among the different mutations are 1/2 for the displacement mutation and 1/6
for the three other mutations. Replacement and selection are those of the origi-
nal NSGA-II method described in section 2.4, with tournament size 2. All CPU
times are given related to a Pentium III processor running at 800MHz under
Linux.

4.2 Discussion

The proposed approach was applied to the 1 x 2 and 2 x 1 cantilever plate
benchmark problems, repectively discretized into a 10 x 20 and 20 x 10 regular
meshes, to stay within reasonnable computing times.

Figures 5 and 7 display a set of shapes (solutions) selected from the results
a respectively 3 and 2 runs, and having a wide range of trade-off between the
weight and maximal displacement. The structures presented in these figures are
ordered according to their weights from left to right and from top to bottom,
starting with the full structure. Note that the extremely light structures do not
make sense from the mechanical point of view as the underlying discretization
is not fine enough in order to get significant results.

Figures 6 and 8 show the corresponding Pareto fronts for both problems.
Again, a few runs were necessary to obtain a good sample of those Pareto
fronts, as each one of them was better at sampling a given area of the front. It
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seems that some progress is still necessary, for instance in the niching method,
in order to get a good sample from one single run - or maybe a larger population
is needed.

Looking more closely at the Pareto front of figure 8, and zooming in the
neighborhood of maximal displacement 220 (figure 9) one can notice that the
MOEA found a structure very similar to that obtained for single-objective con-
strained problem in [10]. Comparing now the CPU times, one run of the single-
objective constrained approach took 27 minutes, while 55 minutes were needed
by one multi-objective run. But on the other hand, multi-objective approach
needed approximately 100000 fitness computations to obtain the set of trade-
off structures of the same quality that the single objective constrained solution
found after around 130000 evaluations. Hence the difference in CPU time is due
to the multi-objective specific treatments, like Pareto-ranking and crowding-
distance computation. It can thus be expected that this difference will vanish,
and might even turn the other way round, if the cost of the FEAs increases,
which will be the case for real-world problems with very fine meshes.

5 Conclusion and Future Work

The optimization results for a simple benchmark presented in this work, should
be considered as a proof of principle of the application of a multi-objecive evo-
lutionary algorithm combined with Voronoi representation to a TOD problem.
In that respect, these results are a success: for each test case, the few dozen
structures that are obtained as a sample of the Pareto front are very similar
to the ones obtained using a single-objective constrained approach — on run for
each structure. If the goal is to obtain such a sample, then we can claim at least
one order of magnitude improvement in the overall computing effort. However,
as already mentionned, some effort will be made to tune the niching strategy in
order to better sample the Pareto front.

Moreover, Pareto-based evolutionary algorithms do open up new perspec-
tives in TOD. First, MOEAs will be coupled with other high level structure
representations, like the other representations defined in [10], or more advanced
representations based on embryogenies that would widen the search to hierar-
chical and modular structures [12]: it is hoped that even more accurate results
will thus be gathered.

Second, there are many other problems in TOD than the simple weight
vs stiffness optimization: modal optimization will be the first domain where
MOEAs will certainly bring some improvement, as modal shape optimization is
by essence multi-objective (optimizing only the eigenfrequencies does not make
much sense). Moreover, evolutionary optimization will for instance also allow
to avoid certain ranges of eigenfrequencies (e.g. in car industry, to avoid sea-
sickness), and not only to maximize the first one [1]. Another important kind
of problem where multi-objective optimization can be very useful is that of
multi-loading optimization: at the moment, the only results dealing with multi-
loading optimization use an agreagation method, be they deterministic [2] or
evolutionary [15], whereas dealing with each loading case as separate objective
will allow much more flexibility in the final design.

Nevertheless, some studies will also necessary to try to focus the multi-
objective search. Indeed, while the theoretical Grail of multi-objective opti-

12



mization is to obtain the whole Pareto front of the problem at hand, it has
two practical drawbacks. First, some computational effort is wasted evaluat-
ing totally useless trivial solutions (e.g. the extreme solutions in figure 5, with
either 100% or almost 0% weight). But more important, when many objec-
tives are involved, trying to sample the whole Pareto front does not result in
any interpretable result due to the complexity of analysis in large high dimen-
sional spaces [18]. On-going work tries to address this issue that is critical for
real-world applications.
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