N

N

A Leader Election Protocol for Eventually Synchronous
Shared Memory Systems
Rachid Guerraoui, Michel Raynal

» To cite this version:

Rachid Guerraoui, Michel Raynal. A Leader Election Protocol for Eventually Synchronous Shared
Memory Systems. [Research Report] PI 1765, 2005, pp.10. inria-00000861

HAL Id: inria-00000861
https://inria.hal.science/inria-00000861
Submitted on 28 Nov 2005

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00000861
https://hal.archives-ouvertes.fr

ISSN 1166-8687

PUBLICATION
INTERNE
N° 1765

Osz{(/
&
&
&
%
3

S
S
2

<

A LEADER ELECTION PROTOCOL FOR EVENTUALLY
SYNCHRONOUS SHARED MEMORY SYSTEMS

RACHID GUERRAOUI MICHEL RAYNAL

m |RISA

CAMPUS UNIVERSITAIRE DE BEAULIEU - 35042 RENNES CEDEX - FRANCE

A Leader Election Protocol for Eventually Synchronous Shared
Memory Systems

Rachid Guerraoui’ Michel Raynal**

Systemes communicants

Publication interne n ° 1765 — Novembre 2005 — 10 pages

Abstract: =~ While protocols that elect an eventual common leader in asynchonous message-passing sys-
tems have been proposed, to our knowledge, no such protocol has been proposed for the shared memory
communication model. This paper presents a leader election protocol suited to the shared memory model.
In addition to its design simplicity, the proposed protocol has two noteworthy properties, namely, it does
not use timers, and is optimal with respect to the number of processes that have to write forever the shared
memory: a single process has to do it (namely, the leader that is eventually elected).

Among the many possible uses of such a leader protocol, one is Lamport’s Paxos protocol. Paxos is
an asynchronous consensus algorithm that relies on an underlying eventual leader abstraction. As recently,
several versions of Paxos have been designed for asynchronous shared memory systems (the shared memory
being an abstraction of a physically shared memory or a set of commodity disks that can be read and written
by the processes), the proposed leader protocol makes Paxos effective in these systems.

Key-words: Asynchronous system, Commodity disk, Consensus, Efficiency, Eventual synchrony, Fault-
tolerance, Leader service, Paxos, Shared memory system, Storage area network.

(Résumé : tsup)

* Distributed Programming Lab, EPFL, Lausanne, Switzerland, rachid.guerraouiQepfl.ch
> IRISA, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France, raynal@irisa.fr

ks

Centre National de la Recherche Scientifique Institut National de Recherche en Informatique
(umr 6074) Université de Rennes 1 — Insa de Rennes et en Automatique — unité de recherche de Rennes

Election d’un leader dans un systeme a mémoire partagé

Résumé : Ce rapport présente un protocole d’élection d’un leader dans un systéme & mémoire partagée
inéluctablement synchrone.

Mots clés : Systemes asynchrones, Tolérance aux fautes, Crash de processus, Leader inéluctable, Mémoire
partagée.

1 Introduction

1.1 Motivation

Among the many different motivations that can direct system designers to provide processes with a leader
service, we consider here only one of them, namely, Lamport’s Paxos protocol [18]. This protocol (whose
first version was developed for asynchronous message-passing systems) aims at constructing a replicated
state machine on top of which one can be build highly available distributed services [20]. Since its first
version, several papers have explained the basics Paxos relies on (e.g., [5, 15, 19]), or have formally proved
its correctness (e.g., [9]). Paxos implementations can be found in [22, 33].

A component at the core of Paxos is its underlying “Synod algorithm” that is a consensus algorithm.
Usually, when the word “Paxos” is used in the literature, the authors refer to this consensus component. We
will do the same in this paper. Two noteworthy features characterizes Paxos.

e The first feature lies in its methodological decomposition. The Paxos consensus algorithm can be
seen as a simple “addition” of two sub-protocols, one sub-protocol addressing the safety property
of consensus (a single value is decided, and that value has been proposed by a process), the other
sub-protocol addressing its liveness (all the non-faulty processes decide).

e The second noteworthy feature lies in the design of the sub-protocol that addresses consensus safety.
That sub-protocol is based on news ideas and new techniques. Basically, it can be seen as building
a one-shot storage object that, if accessed concurrently might not store anything, and if accessed
sequentially stores the first deposited value and keeps it forever.

The second sub-protocol used by Paxos is to ensure that a value is eventually deposited in the one-shot
storage object. This is realized by assuming that processes can be elected as leaders, and allowing only the
leaders to compete to deposit a value in the one-shot storage object. To ensure termination, Paxos assumes
that the underlying leader service eventually elects a single correct process to become the leader, thereby
allowing a value to be eventually deposited in the one-shot object (if no process succeeds in depositing a
value before). Then, as soon as a value has been deposited, the Paxos protocol can easily direct the processes
to terminate (they all decide the deposited value).

So, Paxos assumes the existence of an underlying eventual leader service, but does not provide the
corresponding sub-protocol. That is why it is said that Paxos is a leader-based consensus protocol. Other
leader-based consensus protocols can be found in [14, 15, 27]. This means that these protocols work in an
asynchronous system augmented with a leader service (also called leader oracle or leader failure detector in
the literature [6, 32]). Following [7], this service is usually denoted Q. It has been shown that 2 captures the
minimal assumptions on failures that the processes have to be provided with in order asynchronous consensus
can be solved [7]. “Minimal” means that the properties defining 2 are both necessary and sufficient.

While the design of a leader-based protocol assumes only a “black box” providing a leader service, the
design of such a service requires that the underlying asynchronous system on top of which it is implemented
satisfies additional assumptions.(The fact that no additional assumptions would be required would contradict
the impossibility to solve consensus in a pure asynchronous system [11].)

1.2 Leader protocols in message-passing systems

The design of protocols building 2 in asynchronous message-passing systems has received a lot of attention.
Basically, two approaches have been investigated. We briefly present them.

The timer-based approach The first approach, that we call timer-based, relies on the addition of timing
assumptions [10]. Basically, this approach assumes that there are bounds on process speeds and message
transfer delays, but these bounds are not known and hold only after some finite but unknown time. The
protocols implementing an eventual leader facility in such “augmented” asynchronous systems are based on
timeouts (e.g., [2, 3, 21]). They use successive approximations to eventually provide each process with an

PIn®1765

upper bound on transfer delays and processing speed. They differ mainly in the “quantity” of additional
synchrony they consider, and in the message cost they require after a leader has been elected.

Among the protocols based on this approach, a protocol presented in [2] is particularly attractive, as it
considers a relatively weak additional synchrony requirement. Let f be an upper bound on the number of
processes that may crash (1 < f < n, where n is the total number of processes). This assumption is the
following: the underlying asynchronous system, which can have fair lossy channels, is required to have a
correct process p that is a © f-source. This means that p has f output channels that are eventually timely:
there is a time after which the transfer delays of all the messages sent on such a channel are bounded (let
us notice that this is trivially satisfied as soon as the receiver has crashed). Let us notice that such a < f-
source is not known in advance and can never be explicitly known. It is also shown in [2] that there is no
leader protocol if the system has only &(f —1)-sources. A versatile adaptive timer-based approach has been
developed in [24] for asynchronous systems in which a majority of processes never crash.

The message pattern-based approach The second approach (introduced in [25], and that we call mes-
sage pattern-based approach) does not assume eventual bounds on process and communication delays. It
considers that there is a correct process p and a set) of f processes (with p ¢ @, moreover () can contain
crashed processes) such that, each time a process ¢ €) broadcasts a query, it receives a response from p
among the first (n — f) corresponding responses (such a response is called a winning response). It is easy
to see that this assumption does not prevent message delays to always increase without bound. Hence, it
is incomparable with the synchrony-related < f-source assumption. This approach has been applied to the
construction of a leader protocol in [28], and extended to dynamic systems in [30] (a dynamic system being
a system that the processes can dynamically enter and leave).

A hybrid protocol has been proposed in [26]. Hybrid means here that the protocol assumes that the
channels are eventually timely or the message pattern is eventually satisfied, but it is not known in advance
which assumption will be satisfied during a particular run of the protocol. The aim of this approach is to
increase the assumption coverage, thereby improving fault-tolerance [31]. More generally, a very general
protocol that combines the advantages of both of the previous approaches has been developed in [29].

1.3 Content of the paper and roadmap

This paper addresses the implementation of a leader service in an asynchronous shared-memory system.
To our knowledge, to date, no such protocol has been proposed. The shared memory can be a physically
shared memory or a network of attached disks (NAD) that constitutes a storage area network (SAN). As
commodity disks are cheaper than computers, they become attractive for achieving fault-tolerance. This
makes the leader protocol presented in the paper very relevant for such systems [1, 4, 13]. It could also be
useful for real-time systems in which some components are based on asynchronous protocols.

The proposed protocol is based on the assumption that the underlying shared memory system is even-
tually synchronous. It enjoys two noteworthy properties. First, it is timer-free. Second, it is write-optimal
in the sense that, after some time, a single process has to keep on writing the shared memory (optimality
comes from the fact that at least the leader has to keep on writing forever the shared memory to inform the
other processes that it has not crashed).

The paper consists in 5 sections. Section 2 defines the shared memory asynchronous system model and
the leader election service 2. Then Section 3 defines additional synchrony assumptions, presents a leader
protocol based on these assumptions, and proves the protocol correctness (interestingly, in addition to the
proof itself, this section helps also understanding the way the protocol works). Section 4 discusses the
properties of the protocol and shows it is optimal in the sense that, after some finite time, a single process
is required to keep on writing the shared memory. Finally, Section 5 concludes the paper.

Irisa

2 System Model and Eventual Leader

2.1 Processes

The system consists in a finite set of n > 1 processes p1, pa, ..., pn. Each process has an identity (id); the id
of p; is i. A process can fail by crashing, i.e., prematurely halting. Until it possibly crashes, a process behaves
according to its specification, namely, it executes a sequence of operations as described by its protocol. After
it has crashed, a process executes no more operation. By definition, a process is faulty during a run if it
crashes during that run. Otherwise, it is correct during that run.

There is no assumption on the relative speed of a process with respect to another. We only assume that,
until it possibly crashes, the speed of a process is positive (it cannot stop during an infinite period between
two consecutive operations of its algorithm).

2.2 Shared Memory

The process communicate by writing and reading a memory made up of shared registers. Each register is
reliable, IW*R and regular [17].

Reliability means here that a register never crashes: it can always execute a read or a write operation
issued by a process and never corrupts its value. If a process crashes while executing an operation, that
operation is either fully executed, or not at all executed. 1W*R means that each register has a single writer
(statically defined), but can be read by all the processes.

Finally, regularity defines the value returned by a read operation. Let R be a shared register.

e A read of R that is concurrent with no write of R returns the current value of R.

e A read of R that is concurrent with one or more write of R operations returns the value of R before
these write operations or the value written by one of these operations.

It is important to see that regularity is weaker than atomicity. An atomic register R is such that each
read or write operation appears to an external observer as if it has been executed instantaneously at some
point of the time line, between its start event and its end event. The crucial difference between regularity
and atomicity is the following. If two consecutive read operations r1 and r2 on the same register R (with
rl preceding r2) are concurrent with the same write operation w on R, it is possible that the first read
operation r1 returns the value of R written by w (new value), while the second read operation r2 returns
the value of R before the write operation w (old value). This is called a new/old inversion. Atomicity is
regularity plus the prevention of new/old inversions [17].

A register can be seen as an abstraction that encapsulates a shared variable when we consider a physically
shared memory, or a commodity disk when we consider network attached disks. The notion of storage area
network has recently been used in several systems. The disks are directly attached to high speed networks
accessible to the processes. A process can access raw disk data (mediated by disk controllers with limited
CPU and memory capabilities). Versions of Paxos developed for network attached disks are described in
[8, 12].

2.3 Eventual Leader Service

A leader oracle is a entity that provides each process with a function leader() that returns a process name
each time it is invoked. A unique correct leader is eventually elected but there is no knowledge of when
the leader is elected. Several leaders can coexist during an arbitrarily long period of time, and there is no
way for the processes to learn when this “anarchy” period is over. The leader oracle (usually denoted Q [7])
satisfies the following property:

e Validity: Any invocation of the primitive leader() that terminates returns a process id.

e Eventual Leadership!: There is a time t and a correct process p; such that, after ¢, every invocation of
leader() by any correct process returns ¢ (the id of p;).

I This property refers to a notion of global time. This notion is not accessible to the processes.

PIn°®1765

e Termination: Any invocation of the primitive leader() issued by a correct process terminates.

The Q leader abstraction has been introduced and formally developed in [7] where it is shown to be the
weakest, in terms of information about failures, to solve consensus in asynchronous systems prone to process
crashes (assuming a majority of correct processes). Several 2-based consensus protocols have been proposed
(e.g., [14, 18, 27] for message-passing systems, and [12] for shared memory systems)?.

3 Implementing a Leader Oracle

As already indicated, an eventual leader service cannot be implemented in a pure asynchronous (message-
passing or shared memory) system [11]. As we have observed in the introduction, implementing such a
service requires to “enrich” the underlying asynchronous system with additional “synchrony” properties.
This section first states such properties suited to an asynchronous shared memory system. Then, it presents
a protocol building a leader service in such an augmented asynchronous shared memory system, and proves
it is correct.

3.1 Eventually Synchronous Shared Memory Systems

The shared memory system is assumed to satisfy the following additional property:

[Eventually synchronous shared memory system] There is a time after which there are a positive
lower bound and an upper bound for a process to execute a local step, a read or a write of a
shared register.

It is important to notice that the values of the lower and upper bounds, and the time after which these
values become the actual lower and upper bounds are not known. This additional assumption is the same
as the partial synchrony assumption used in [6] to implement an eventually perfect failure detector in a
message-passing system. As in [6, 10], the (finite but unknown) time after which the previous property is
satisfied is called global stabilization time (GST).

3.2 An Eventual Leader Algorithm

Underlying principle The algorithm that, based on the previous assumption on the system behavior,
build an eventual leader oracle is described in Figure 1. As in other leader protocols, the idea that underlies
its design is for each process p; to elect as the leader the process with the smallest id that it considers as
being alive. As a process p; never considers itself as crashed, at any time, the process it elects as its current
leader has necessarily an id j such that j <. The id of the process that p; considers leader is locally stored
in a local variable leader;.

Shared memory The shared memory is composed of an array of n reliable 1IW*R regular registers con-
taining integer values. This array, denoted PROGRESS|[1..n], is initialized to [0,... ,0]. Only p; can write
PROGRESS]|i]. Any process can read any register PROGRESS[j]. The register PROGRESS][i] is used
by p; to inform the other processes about its status.

Process behavior First, when a process p; considers it is leader, it repeatedly increments its register
PROGRESS]i] in order to let the other processes know that it has not crashed (while loop and line 2).

Whether it is or not a leader, a process p; increments a local variable I_clock; (initialized to 0) at each
step of the infinite while loop (line 3). This variable can be seen as a local clock that p; uses to measure its
local progress.

It is possible that p; be very rapid and increments very often l_clock;, while its current leader p; is slow
and two of its consecutive increments of PROGRESS[j] are separated by a long period of time. This can
direct p; to suspect p; to have crashed, and consequently to select another leader with a possibly greater

21t is important to notice that, albeit it can be rewritten using (first introduced in 1992), the original version of Paxos,
that dates back to 1989, was not explicitly defined with this formalism.

Irisa

when leader() is invoked by p;: return (leader;)

Background task 7"
(1) while (true) do

(2) if (leader; = i) then PROGRESS]i] - PROGRESSIi] + 1 end_if;
(38) l_clock; + l_clock; + 1;

(4) if (I_clock; = next_check;) then

(5) then has_ld; < false;

(6) for j from 1 to (¢ — 1) do

) if (PROGRESS[j] > last;[4]) then

8) last;[j] «+ PROGRESS[j];

9) if (leader; # j) then delay; + 2 X delay; end_if;
(10) next_check; «+ next_check; + delay;;

(11) leader; < j;

(12) has_ld; < true;

(13) exit_for_loop

(14) end_if

(15) end _for;

(16) if (—has_ld;) then leader; < i end_if

(17) end_if

(18) end_while

Figure 1: Q in an Eventually Synchronous Shared Memory System (code for p;)

id. To prevent such a bad scenario from occurring, each process p; handles another local variable denoted
next_check; (initialized to an arbitrary positive value, e.g., 1). This variable is used by p; to compensate
the possible drift between [_clock; and PROGRESS[j]. More precisely, p; tests if its leader has changed
only when [_clock; = next_check;. Moreover, p; increases the duration (denoted delay; and initialized to any
positive value) between two consecutive checks (lines 9) when it discovers that its leader has changed. In all
cases, it schedules the the logical date next_check; at which it will check again for leadeship (line 10).

So, the core of its algorithm (lines 6-14), that consists for p; in checking if its leader has changed and
a new leader has to be defined, is executed only when [_clock; = next_check;. For doing this check, each
p; maintains a local array last;[1..(1 — 1)] such that last;[j] stores the last value of PROGRESS]j] it has
previously read (line 8). Moreover, when it tries to define its leader, p; checks the processes always starting
from p; until p;_; (line 6). It stops at the first process p; that did some progress since the last time p; read
PROGRESS]j] (line 7). If there is such a process p;, p; considers it as its (possibly) new leader (line 11).
If p; was not its previous leader, p; considers that it previously did a mistake and consequently increases
the delay separating two checks for leadeship (line 9). In all cases, it then updates the logical date at which
it will test again for leadership (increase of next_check; at line 10). If, p; sees no progress from any p; such
that j < 4, it considers itself as the leader (line 16).

As indicated in the introduction, it is important to notice that the protocol is timer-free: no process
is required to use a physical clock. The correctness of the protocol rests on a behavioral property of the
underlying shared memory system (eventual synchrony), but does not need a special equipement (such as
local physical clocks) to benefit from that eventual synchrony property.

3.3 Proof of the Protocol

The validity and termination properties defining the eventual leader service are easy and left to the reader.
We focus here only on the proof of the eventual leadership property.

Theorem 1 Let us assume that there is a time after which there are a lower bound and an upper bound for
any process to execute a local step, a read or a write of a shared register. The algorithm described in Figure
1 eventually elects a single leader that is a correct process.

Proof Let t1 be the time after with there are a lower bound and an upper bound on the time it take for a
process to execute a local step, a read or a write of a shared register (global stabilization time). Moreover,

PIn°®1765

let ¢2 be the time after which no more process crashes. Finally let ¢+ = max(t1,%2), and p; be the correct
process with the smallest id. We show that, from some time after ¢, py is elected by any process p;.

Let us first observe that there is a time ¢ > ¢ after which no process py, such that k& < ¢, competes with
the other processes to be elected as a leader. This follows from the following observations:
- After ¢, pr has crashed and consequently PROGRESS[k] is no longer increased.
- After t, for each process p;, there is a time after which the predicate last;[k] = PROGRESS[k] remains
permanently satisfied, and consequently, p; never executes the lines 8-13 with j = k, from which we conclude
that pr can no longer be elected as a leader by any process p;.

It follows that after some time ¢’ > ¢, as no process p (k <) increases its clock PROGRESS[k],
pe always exits the for loop (lines 6-15) with has_ldy = false, and considers itself as the permanent and
definitive leader (line 16). Consequently, from t', p, increases PROGRESS[{] each time it executes the
while loop (lines 1-18).

We claim that there is a time after which, each time a process p; executes the for loop (lines 6-15), we
have PROGRESS[{] > last;[{] (i-e., p; does not miss increases of PROGRESS[{]). It directly follows from
this claim, line 11 (where leader; is now always set to £), and the fact that all processes py such that k < ¢
have crashed, that p; always considers p; as its leader, which proves the theorem.

Proof of the claim. To prove the claim, let us define two critical values. Both definitions consider durations
after t', i.e., after the global stabilization time (so, both values are bounded).

o Let Ay (¢) be the longest duration, after ¢/, separating two increases of PROGRESS[/].
e Let A, (4, £) be the shortest duration, after ¢', separating two consecutive reading by p; of PROGRESS[).

We have to show that, after some time and for any p;, A, (7,£) > A, (£) remains permanently true, i.e., we
have to show that after some time the predicate last;[{] < PROGRESSI[{] is true each time it is evaluated
by p;.

Let us first observe that, as pg continuously increases PROGRESS[{], last;[(] < PROGRESS[{] is true
infinitely often. If last;[¢{] < PROGRESS|{) is true while leader; # ¢, p; doubles the duration delay; (line
9) before which it will again check for a leader (line 4). This ensures that eventually we will have a time
after which A,.(i,£) > A, (¢) remains true forever. End of the proof of the claim. Orheorem 1

4 Discussion

Write optimality In addition to its design simplicity, the proposed protocol has a noteworthy property
related to efficiency, namely, it is communication-efficient. Communication efficiency has been defined in the
context of message-passing systems [2]. That definition can easily be adapted to shared memory systems.
In such a context, we say that a leader protocol is write-optimal if there is a finite time after which only one
process keeps on writing the shared memory. Let us observe that this is the best that can be done as at
least one process has to write forever the shared memory (if after some time the process that is the leader
does not write the shared memory, there is no way for the other processes to know that it has not crashed).

During the “anarchy” period before the global stabilization time, it is possible that different processes
have different leaders, and that each process has different leaders at different times. Theorem 1 has shown
that such an anarchy period always terminates when the underlying shared memory system satisfies the
“eventually synchronous” property.

To show that the algorithm is write-optimal, let us first observe that, each time a process p; considers it is
a leader, it increments its global clock PROGRESS[j]. It follows that when several processes consider they
are leaders, several shared registers PROGRESS[—] are increased. Interestingly, after the common correct
leader has been elected, a single IW*R register keeps on being increased. This means that a single shared
register keeps growing, while the (n — 1) other shared registers stop growing. Consequently, the algorithm
is communication-efficient. It follows that it is optimal with respect to this criterion (as at least one process
has to continuously inform the others that it is alive).

Irisa

Another synchrony assumption The reader can also check that the “eventual synchrony” assumption
can be replaced by the following assumption: there is a time after which there is an upper bound 7 on the
ratio of the relative speed of any two non-crashed processes. Such a bound-based assumption can be seen
as another way to place a limitation on the uncertainty created by the combined effect of asynchrony and
failures. This type of additional assumption has been proposed in [23] and investigated in [16] to implement
self-stabilizing failure detectors in message-passing systems.

5 Conclusion

This paper has presented a leader election protocol for asynchronous shared memory systems. To work, the
protocol requires that the system eventually satisfies a synchrony assumption, namely, there is a time after
which there are a lower bound and an upper bound for a process to execute a local step, a read or a write
of the shared memory. The proposed protocol relies on particularly simple design principles. Moreover, it is
timer-free and write-optimal (after some finite time, a single process keeps on writing the shared memory).

The proposed protocol is (to our knowledge) the first leader election protocol suited to a shared memory
system. By providing a sub-protocol Paxos relies on, it allows a shared memory version of Paxos to work.
In that sense, it allows 2 to meet Paxos in crash prone shared memory systems.

References

[1] Abraham I., Chockler G.V., Keidar I. and Malkhi D., Byzantine Disk Paxos, Optimal Resilience with Byzantine
Shared Memory. Proc. 28th ACM Symposium on Principles of Distributed Computing (PODC’04), ACM Press,
pp. 226-235, 2004.

[2] Aguilera M.K., Delporte-Gallet C., Fauconnier H. and Toueg S., On Implementing Omega with Weak Reliability
and Synchrony Assumptions. Proc. 22th ACM Symposium on Principles of Distributed Computing (PODC’03),
ACM Press, pp. 306-314, Boston (MA), 2003.

[3] Aguilera M.K., Delporte-Gallet C., Fauconnier H. and Toueg S., Communication-Efficient Leader Election and
Consensus with Limited Link Synchrony. Proc. 23th ACM Symposium on Principles of Distributed Computing
(PODC’04), ACM Press, pp. 328-337, St. John’s, Newfoundland (Canada), 2004.

[4] Aguilera M.K. and Gafni E., On Using Network Attached Disks as Shared Memory. Proc. 21th ACM Symposium
on Principles of Distributed Computing (PODC’03), ACM Press, pp. 315-324, 2003.

[5] Boichat R., Dutta P., Frglund S. and Guerraoui R., Deconstructing Paxos. ACM Sigact News, Distributed
Computing Column, 34(1):47-67, 2003.

[6] Chandra T. and Toueg S., unreliable Failure Detectors for Resilient Distributed Systems. Journal of the ACM,
43(2):225-267, 1996. (First version: PODC 1991.)

[7] Chandra T., Hadzilacos V. and Toueg S., The Weakest Failure Detector for Solving Consensus. Journal of the
ACM, 43(4):685-722, 1996. (First version: PODC 1992.)

[8] Chockler G.V. and Malkhi D.; Active Disk Paxos with Infinitely Many Processes. Proc. 21th ACM Symposium
on Principles of Distributed Computing (PODC’02), ACM Press, pp. 78-87, 2002.

[9] de Prisco R., Lampson B.W. and Lynch N.A., Revisiting the Paxos Algorithm. Theoretical Computer Science,
243(1-2):35-91, 2000.

[10] Dwork C., Lynch N. and Stockmeyer L., Consensus in the Presence of Partial Synchrony. Journal of the ACM,
35(2):288-323, 1988.

[11] Fischer M.J., Lynch N. and Paterson M.S., Impossibility of Distributed Consensus with One Faulty Process.
Journal of the ACM, 32(2):374-382, 1985.

[12] Gafni E. and Lamport L., Disk Paxos. Distributed Computing, 16(1):1-20, 2003.

PIn°1765

[13]

[14]

[15]

[16]

[17]
18]

[19]
[20]

[21]

[22]

23]

[24]

[25]

[26]

27]
28]

29]

(30]

[31]

(32]

[33]

Gibson G.A. et al,, A Cost-effective High-bandwidth Storage Architecture. Proc. 8th Int’l Conference on Ar-
chitectural Support for Programming Languages and Operating Systems (ASPL0OS’98), ACM Press, pp. 92-103,
1998.

Guerraoui R. and Raynal M., The Information Structure of Indulgent Consensus. IEEE Transactions on Com-
puters, 53(4):453-466, 2004.

Guerraoui R. and Raynal M., The Alpha of Asynchronous Consensus. Tech Report #1676, IRISA, Université
de Rennes 1 (France), 21 pages, 2005. http://www.irisa.fr/bibli/publi/pi/2005/1676 /1676.html

Hutle M. and Widder M., Time-Free Self-Stabilizing Local Failure Detection. Tech Report 33/2004, Department
of Automation, Technische Universitdt Wien (Austria), 2004.

Lamport L., On Interprocess Communication. Distributed Computing, 1(2):77-101, 1986.

Lamport L., The Part-Time Parliament. ACM Transactions on Computer Systems, 16(2):133-169, 1998. (The
first version of Paxos appeared a a DEC Tech Report in 1989.)

Lamport L., Paxos Made Simple. ACM Sigact News, Distributed Computing Column, 32(4):34-58, 2001.

Lampson B.W., How to Build a Highly Available System Using Consensus. Proc. 10th Int. Workshop on Dis-
tributed Algorithms (WDAG’96), Springer Verlag LNCS #1151, pp. 1-17, 1996.

Larrea M., Ferndndez A. and Arévalo S., Optimal Implementation of the Weakest Failure Detector for Solving
Consensus. Proc. 19th Symposium on Resilient Distributed Systems (SRDS’00), IEEE Computer Society Press,
pp- 52-60, Niremberg (Germany), 2000.

Lee E.K. and Thekkath C., Petal: Distributed Virtual Disks. Proc. 7th Int’l Conference on Architectural Support
for Programing langaues and Operating Systems (ASPL0OS’96), ACM Press, pp. 84-92, 1996.

Le Lann G. and Schmid., How to Implement a Timer-Free Perfect Failure Detector in Partially Synchronous
Systems. Tech Report 183/1-127, Department of Automation, Technische Universitit Wien (Austria), 2003.

Malkhi D., Oprea F. and Zhou L., Q2 Meets Paxos: Leader Election and Stability without Eventual Timley
Links. Proc. 19th Int’l Symposium on DIStributed Computing (DISC’05), Springer Verlag LNCS #3724, pp.
199-213, 2005.

Mostefaoui A., Mourgaya E., and Raynal M., Asynchronous Implementation of Failure Detectors. Proc. Int.
IEEE Conference on Dependable Systems and Networks (DSN’03), IEEE Computer Society Press, pp. 351-360,
San Francisco (CA), 2003.

Mostefaoui A., Powell D., and Raynal M., A Hybrid Approach for Building Eventually Accurate Failure Detec-
tors. Proc. 10th IEEE Int. Pacific Rim Dependable Computing Symposium (PRDC’04), IEEE Computer Society
Press, pp. 57-65, Papeete, (Tahiti, France), 2004.

Mostefaoui A. and Raynal M., Leader-Based Consensus. Parallel Processing Letters, 11(1):95-107, 2001.

Mostéfaoui A., Raynal M. and Travers C., Crash Resilient Time-Free Eventual Leadership. Proc. 23th Symposium
on Resilient Distributed Systems (SRDS’04), IEEE Computer Society Press, pp. 208-218, 2004.

Mostéfaoui A., Raynal M. and Travers C., Time-free and Timeliness Assumptions can be Combined to Get
Eventual Leadership. Submitted to publication. Tech Report #1624, IRISA, Université de Rennes 1 (France),
16 pages, 2005. http://www.irisa.fr/bibli/publi/pi/2004/1624/1624.htm]

Mostefaoui A., Raynal M., Travers C., Patterson S., Agrawal A. and El Abbadi A., From Static Distributed
Systems to Dynamic Systems. Proc. 24th Int’l IEEE Symposium on Reliable Distributed Systems (SRDS’05),
IEEE Computer Society Press, Orlando (Florida), 2005.

Powell D., Failure Mode Assumptions and Assumption Coverage. Proc. of the 22nd Int’l Symposium on Fault-
Tolerant Computing (FTCS-22), Boston, MA, pp.386-395, 1992.

Raynal M., A Short Introduction to Failure Detectors for Asynchronous Distributed Systems. ACM SIGACT
News, Distributed Computing Column, 36(1):53-70, 2005.

Thekkath C., Mann T. and Lee E.K., Frangipani: a Scalable Distributed File System. Proc. 16th ACM Sympo-
stum on Operating Systems Principles (SOSP’97), ACM Press, pp. 224-237, 1997.

Irisa

