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Abstract: In this paper we study “nonstationary consistency” of subspace meth-
ods for eigenstructure identification, i.e., the ability of subspace algorithms to con-
verge to the true eigenstructure despite nonstationarities in the excitation and mea-
surement noises. Note that such nonstationarities may result in having time-varying
zeros for the underlying system, so the problem is nontrivial. In particular, likeli-
hood and prediction error related methods do not ensure consistency under such
situation, because estimation of poles and estimation of zeros are tightly coupled.
We show in turn that subspace methods ensure such consistency. Our study care-
fully separates statistical from non-statistical arguments, therefore enlightening the
role of statistical assumptions in this story.
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Consistence des méthodes sous espaces sous excitation
non stationnaire

Résumé : Dans ce rapport, nous étudions la convergence des méthodes sous es-
paces dans le cadre de l’identification des structures mécaniques en vibration sous
des conditions d’excitation non stationnaire, et plus particulièrement la capacité
des algorithmes de sous espaces à converger vers le vrai modèle de structure propre
malgré la présence de non stationnarités. De telles non stationnarités peuvent con-
duire à un système sous-jacent avec des zéros variant dans le temps, le problème est
donc non trivial. En particulier, les méthodes de vraisemblance ou basées sur l’erreur
de prédiction ne garantissent pas la consistence dans ce cas, parce que l’estimation
des zéros et des pôles est couplée. Nous montrons que les méthodes sous espaces
garantissent la consistence. Notre étude sépare les arguments statistiques de ceux
qui ne le sont pas, de manière à éclairer l’apport des hypothèses statistiques.

Mots clés : Méthodes sous espaces, non stationarité, martingales



Nonstationary consistency of subspace methods 3

1 Introduction

In this paper we study “nonstationary consistency” of subspace methods for eigen-
structure identification, i.e., the ability of subspace algorithms to converge to the
true eigenstructure despite nonstationarities in the excitation and measurement
noises. Note that such nonstationarities may result in having time-varying zeros
for the underlying system, so the problem is nontrivial. In particular, likelihood and
prediction error related methods do not ensure consistency under such situation,
because estimation of poles and estimation of zeros are tightly coupled.

In 1985, Benveniste and Fuchs [6] proved that the Instrumental Variable method
and what was called the Balanced Realization method for linear system eigenstruc-
ture identification are consistent for the class of nonstationary systems we dis-
cuss here. Since this paper, the family of subspace algorithms has been invented
[16, 22, 25, 26, 27] and has expanded rapidly. Therefore, we felt it was timely revis-
iting the results of [6] and generalizing them to subspace methods. To this end, [6]
had first to be restructured to show up an important intermediate result, which had
not been noticed explicitly in the original paper but was clearly there. Still, the gen-
eralization we present here is far less trivial than expected and required introducing
new techniques for the proof.

There are a number of convergence studies on subspace methods in a stationary
context in the literature, see [13, 2, 3, 4, 10, 11] to mention just a few of them.
These papers provide deep and technically difficult results including convergence
rates. They typically address the problem of identifying the system matrices or the
transfer matrix, i.e., both the pole and zero parts of the system. In contrast, the
nonstationary consistency property that we study here holds for the estimation of
the eigenstructure (the pole part) only and does not apply to the zero part, at least
as far as the transfer from unobserved inputs to output measurements is concerned.
It is definitely different from the problem considered in [24].

The paper is organized as follows. The problem of nonstationary consistency is
stated in Section 2, where a generic form of subspace algorithm is also stated. Section
3 collects the key steps of our analysis; section 3.1 collects the non-probabilistic
arguments of the consistency proof; probabilistic arguments of the proof are collected
in Sub-section 3.2; and our assumptions are discussed in section 3.3. Finally, in
Section 4, by using the so developed toolbox of theorems and lemmas, we prove
nonstationary consistency of some representative subspace algorithms.
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4 Benveniste & Mevel

2 Problem setting, a generic subspace algorithm

Problem setting. Consider the following linear system

{
xk = Axk−1 + Buk + vk

yk = Cxk−1 + Duk + wk
(1)

where k ∈ Z, x is the R
n-valued state, u is the R

m-valued observed input, v and w
are unobserved input disturbances, and y is the R

q-valued observed output.
The key point of this work is that the unobserved input disturbances can be

nonstationary. For instance, they can be white noises having unknown time-varying
covariance matrices. For this case, we should rather reformulate system (1) in the
following form, which enlightens that yk itself is nonstationary in a nontrivial way:

{
xk = Axk−1 + Buk + K(k)νk

yk = Cxk−1 + Duk + L(k)νk
(2)

where [
K(k)
L(k)

] [
KT (k) LT (k)

]

is the time-varying covariance matrix of the excitation noise in (1), and νk is a
stationary standard white noise. Note that the zero part of the transfer νk 7→ yk is
time-varying in this case, so that consistency makes sense only w.r.t. the pole part.

The problem we consider is the identification of the pair (C, A) up to a change of
basis in the state space of system (2). Equivalently, we identify the pairs (λ, Cϕλ),
where λ ranges over the set of eigenvalues of A (the poles of system (2)) and ϕλ

are a corresponding set of eigenvectors. Said in words, we consider the problem of
eigenstructure identification.1

Our objective is to show that subspace methods provide consistent estimators
of the eigenstructure, also for nonstationary cases as above. Of course, none of the
matrices A, B, C, D, K(k), and L(k), are known. Matrices B, D, K(k), and L(k),
are regarded as nuisance and are not for identification in this paper.

We now introduce the generic subspace algorithm we shall analyze throughout
this paper. This generic algorithm will be subsequently specialized to cover the
various algorithms used in practice.

1This problem and the situation described in (2) naturally occur for example in the modal
analysis of mechanical structures subject to vibration under both controlled and/or natural and
turbulent excitation [1].

Irisa



Nonstationary consistency of subspace methods 5

A generic subspace algorithm. Consider an observable pair (C, A) of matrices,
where C is q × n and A is n× n. Throughout this paper, p denotes an integer large
enough such that

rank(Op) = n, where Op
∆
=




C
CA
...

CAp−1


 (3)

Our generic algorithm assumes a finite family Ri(N) of q× r-matrices, where r ≥ n,
i = 1, . . . , p and N > 0. It returns a pair (C(N), A(N)). We describe it next.
Consider the matrix Hp(N) defined by

Hp(N)
∆
=




R1(N)
R2(N)
...

Rp(N)


 (4)

and SVD-decompose it as:

Hp(N) =

min(pq,r)∑

i=1

σiuiv
T
i

=
n∑

i=1

σiuiv
T
i +

min(pq,r)∑

i=n+1

σiuiv
T
i

= U diag(σ1, . . . , σn) VT +

min(pq,r)∑

i=n+1

σiuiv
T
i

= U S VT +

min(pq,r)∑

i=n+1

σiuiv
T
i . (5)

Partition the pq × n matrix U defined in (5) into its p successive q-block rows
U1, . . . ,Up and set

U↑ ∆
=




U2
...
Up


 and U↓ ∆

=




U1
...
Up−1




PI n˚1752



6 Benveniste & Mevel

Using these notations, set

C(N)
∆
= U1 (6)

A(N)
∆
= least-squares solution of U↑ = U↓A (7)

Formulas (4–7) constitute our generic subspace algorithm. The remainder of the
paper consists in analyzing this algorithm and specializations thereof. The sentence

“Ri(N) provides consistent estimators for (C, A)”

that we use throughout this paper means that, when provided with the sequence
Ri(N), this generic algorithm yields consistent estimators (C(N), A(N)) for the pair
(C, A) in the sense made precise in Theorem 1 below.

3 Basic theorems for nonstationary consistency

Throughout this paper, for tN a nondecreasing sequence of positive real numbers,
o(tN ) generically denotes a matrix-valued sequence MN , of fixed dimensions, such
that MN/tN → 0 when N tends to infinity.

Also, throughout this paper, we distinguish Conditions from Assumptions. As-
sumptions will refer to hypothesized properties of the system or its inputs; Assump-
tions may or may not hold. In contrast, Conditions can be satisfied by proper design
of the algorithm; enforcing these Conditions will be typically part of the process of
designing the subspace algorithms.

Our analysis proceeds in two steps. The first step collects the arguments that
do not involve probability, whereas only the second step makes use of statistical
arguments.

3.1 Non probabilistic analysis

In this subsection, we collect all arguments of the analysis that make no use of prob-
ability at all. Therefore, “convergence” is meant here in the usual, non probabilistic,
sense.

3.1.1 From Hankel matrices to eigenstructure

For i = 1, . . . , p and N > 0, consider a family Ri(N) of q × r-matrices, satisfying
the following condition:

Irisa



Nonstationary consistency of subspace methods 7

Condition 1 The matrices Ri(N), N > 0, decompose as

Ri(N) = CAi−1G(N) + o(1). (8)

Furthermore, the sequence of n × r-matrices G(N), N > 0, satisfies the following
condition:

lim inf
N→∞

σn (G(N)) > 0 , (9)

where σn(M) denotes the n-th largest singular value of matrix M .

Theorem 1 (consistent estimator [6]) Under Condition 1, (C(N), A(N)) de-
fined by (4–7) is a consistent estimator of (C, A) in the following sense:

there exists a sequence of matrices T (N), with T (N) and T−1(N) uni-
formly bounded w.r.t. N , such that

lim
N→∞

T−1(N)A(N)T (N) → A , and lim
N→∞

C(N)T (N) → C .

Proof: It is found in [6], second part of Section III-C, dealing with the Balanced
Realization algorithm. Besides the fact that reference [6] speaks (H, F, G) and not
(A, B, C), the only slight change is that matrix G(N) in (8) replaces the controlla-
bility matrix C(F, GS) of [6], where S is the sample length. ⋄

In the following we shall relate our matrices Ri(N) to empirical covariances of
data. For this we need some more notations.

3.1.2 Notations

For X and Y two matrices of compatible dimensions, define:

〈X, Y 〉
∆
= XY T

‖X‖2 ∆
= Tr 〈X, X〉

E(X | Y )
∆
= 〈X, Y 〉〈Y, Y 〉†Y

E(X | Y ⊥)
∆
= X − E(X | Y ) ,

(10)

where Tr denotes the trace and superscript † denotes the pseudo inverse. For (yk)k∈Z

a R
q-valued data sequence and N > 0 a window length, define

Yi(N)
∆
=

[
yi+N−1 . . . yi+1 yi

]

PI n˚1752



8 Benveniste & Mevel

and write simply Yi if no confusion can result. For (xk)k∈Z and (zk)k∈Z two data
sequences of compatible dimensions, we write:

〈Xi, Zj〉N
∆
= 〈Xi(N), Zj(N)〉 , and EN (Xi | Zj)

∆
= E(Xi(N) | Zj(N)) .

Finally, we shall make use of the following data Hankel matrices:

Y+
i,M (N)

∆
=




Yi+M
...

Yi+2

Yi+1


 , Y−

i,M (N)
∆
=




Yi

Yi−1
...

Yi−M


 , and Yi,M (N)

∆
=




Y+

i,M

Y−
i,M





The above notations are introduced because, depending on the considered algo-
rithms, the data set is indexed as yN , . . . , y1 (when only “future” data are needed),
or yN , . . . , y1, y0, . . . , y−N (when data are split into future and past). Many authors
use rather y1, . . . , yN , yN+1, . . . , y2N , or variants thereof. Clearly, the difference is
only notational. Also, we have taken identical index M in Y+

i,M and Y−
i,M when build-

ing Yi,M . Of course, we could take different indices M+ and M− without impairing
the validity of what follows.

Finally in order to refer to the different algorithms in a systematic way in the
sequel, we shall superscript the referred Ri(N) with the index of the corresponding
equation. For example,

R
(16)
i (N) denotes Ri(N) as specified by (16). (11)

3.1.3 Instruments

In this section, we revisit the old concept of “instrument” and use it in our context.
Unlike in Section 2 where our problem was stated, we do not distinguish here between
observed and unobserved inputs. In the following system, vector ξ collects all inputs
of the system considered throughout this section:

{
xk = Axk−1 + B′ξk

yk = Cxk−1 + D′ξk
(12)

In (12), k ∈ Z, x is the R
n-valued state, ξ is the R

m-valued input, and y is the
R

q-valued observed output. Fix a window length N . With the notations of Section
3.1.2, system (12) rewrites as follows, for i = 1, . . . , p:

{
Xi = AXi−1 + B′Ξi

Yi = CXi−1 + D′Ξi
(13)

Irisa



Nonstationary consistency of subspace methods 9

In the following lemma we introduce instruments as the key tool in our analysis:

Lemma 1 (instruments) Let (zk)k∈Z be an R
M -valued data sequence and (sN )N>0

an R+-valued sequence such that

for j ∈ {1, . . . , i} : 〈Ξj , Z0〉N = o(sN ) (14)

lim inf
N→∞

σn

(
1

sN
〈X0, Z0〉N

)
> 0 (15)

Then,

Ri(N)
∆
=

1

sN
〈Yi, Z0〉N (16)

satisfies Condition 1. In the sequel, we call instrument a signal (zk) satisfying (14)
and (15) for some sequence sN .

Proof: The following decompositions hold, for i > 0:

yk+i = CAi−1xk +

i−1∑

j=1

CAi−1−jB′ξk+j + D′ξk+i,

with the convention that
∑0

1 = 0, and:

N−1∑

k=0

yk+iz
T
k (17)

= CAi−1
N−1∑

k=0

xkz
T
k +

i−1∑

j=1

CAi−1−j
N−1∑

k=0

B′ξk+jz
T
k +

N−1∑

k=0

D′ξk+iz
T
k

Equation (17) rewrites as follows:

〈Yi, Z0〉N (18)

= CAi−1〈X0, Z0〉N +
i−1∑

j=1

CAi−1−jB′〈Ξj , Z0〉N + D′〈Ξi, Z0〉N ,

which proves that R(16)(N) satisfies Condition 1, thanks to (14) and (15). ⋄
Lemma 1 and Theorem 1 together ensure that R(16)(N) provides consistent es-

timators for the pair (C, A)—see (11) for the notational convention used here.

PI n˚1752



10 Benveniste & Mevel

Applying Lemma 1 to system (1) with its combined observed and unobserved
inputs can be (tentatively) performed via the following substitutions:

[
B′

D′

]
ξk =

[
B
D

]
uk +

[
vk

wk

]
(19)

Of course, if input ξk is observed, i.e., vk = wk = 0 in (19), then one can chose instru-
ment zk in such a way that 〈Ξj , Z0〉N = 0 exactly. This is no longer feasible if unob-
served inputs exist, since Ξj is no longer observed in this case. Therefore, additional
work is needed for analyzing system (1) with its combined observed/unobserved
inputs. Section 3.2 on probabilistic analysis will address this missing point.

3.1.4 Weighting and Squaring

(This section may be ignored for a first reading.)
As perfectly analyzed in the book [23], there are many different subspace algo-

rithms, and, in addition, each of these possesses a number of variants. Such variants
depend on whether the algorithm uses raw data or frequency domain spectra, or time
domain covariance matrices as inputs; they also depend on which type of “weight-
ing” is being used. In this section we shall develop a toolbox of lemmas to show
that, once one of these variants is shown to be consistent, then so are all related
variants. Our toolbox involves the following two tools: weighting and squaring.

Weighting. Weighting is generally used as part of subspace algorithms and plays
an important role in algorithm conditioning and convergence rates. In our case,
weighting will be in addition a key tool for the analysis of algorithms, should they
be weighted or not.

We distinguish pre-weighting, indicated by the symbol λ in sub- or superscript,
and post-weighting, indicated by the symbol ρ in sub- or superscript. Symbols λ
and ρ are reminiscent of “left” and “right”, respectively. Pre-weighting consists
in pre-multiplying the matrix Hp defined in (4) by a square and invertible matrix
Wλ. Post-weighting consists in post-multiplying Hp by a rectangular matrix W T

ρ ,
of dimensions possibly varying with the length N of the record. In this discussion
we omit index N when no ambiguity can result. In what follows, superscript w

attached to Ri or Hp generally announces that weighting will be used in analyzing
the corresponding algorithm.

Let rN be a sequence of positive integers. We are given:

– a family Rw
i (N) of q × rN -matrices, where i = 1, . . . , p;

Irisa



Nonstationary consistency of subspace methods 11

– a sequence Wλ(N) of pre-weighting matrices of dimensions pq × pq;

– a sequence W T
ρ (N) of post-weighting matrices of dimensions rN × r.

Let Hw
p (N) be the matrix obtained by stacking the matrices Rw

i (N) as in (4). Then,

set Hp(N) = Wλ(N)Hw
p (N)W T

ρ (N). Partitioning Hp(N) as in (4) defines a family
Ri(N) of matrices. Now, SVD-decomposing Hp(N) yields:

Hp(N) = U diag(σ1, . . . , σn) VT +
∑min(pq,r)

i=n+1 σiuivi
T (20)

For given N , let (C(N), A(N)) be the pair obtained by applying formulas (6) and
(7) to the matrix U. On the other hand, SVD-decompose Hw

p (N) as

Hw
p (N) = Uw diag(σw

1 , . . . , σw
n ) VT

w +
∑min(pq,r)

i=n+1 σw
i uw

i vw
i

T (21)

and set U′ = WλUw. Then, let (Cw(N), Aw(N)) be the pair obtained by applying
formulas (6) and (7) to the matrix U′.

Note that the family Ri(N) possess constant dimensions and is therefore amenable
to a direct application of Theorem 1. In contrast, the family Rw

i (N) cannot satisfy
Condition 1 since its dimensions are q×rN and thus may vary with N . Therefore the
consistency of (Cw(N), Aw(N)) cannot follow from a direct application of Theorem
1.

Lemma 2 below overcomes this difficulty by making it possible to transfer con-
sistency, from (C(N), A(N)) to (Cw(N), Aw(N)).

To this end, note that pre- and post-multiplying (21) by Wλ(N) and W T
ρ (N)

yields

Hp(N) = Wλ(N) Uw diag(σw
1 , . . . , σw

n ) VT
w W T

ρ (N)

+ Wλ(N)
(∑min(pq,r)

i=n+1 σw
i uw

i vw
i

T
)

W T
ρ (N)

(22)

Lemma 2 (weighting) Assume that the sequence Hp(N) is bounded w.r.t. N and
that the following condition holds:

lim supN→∞ Wλ(N)
(∑min(pq,r)

i=n+1 σw
i uw

i vw
i

T
)

W T
ρ (N) = 0 (23)

Then, the pair (Cw(N), Aw(N)) is consistent iff the pair (C(N), A(N)) is consistent.

Proof: See Appendix A. ⋄

PI n˚1752



12 Benveniste & Mevel

Squaring. Squaring is a particular case of post-weighting, where the weighting
matrix is just the transpose of the original one. Squaring is an instrumental tool in
analyzing projection based algorithms.

Corollary 1 (squaring) With the same notations as before, assume that Hp(N)

and Hw
p (N) are related by Hp(N) = Hw

p (N)Hw
p (N)T .

1. If Hp(N) satisfies Condition 1, then the pair (Cw(N), Aw(N)) is consistent.

2. Vice-versa, if Hw
p (N) satisfies Condition 1, then the pair (C(N), A(N)) is

consistent.

Proof: See Appendix A. ⋄

3.2 Probabilistic analysis

So far probabilities were never invoked. In this subsection we collect the arguments
involving probability and assumptions of probabilistic nature.

Let us discuss the key conditions allowing us to apply Lemma 1 and Theorem 1
to system (1), taking the unobserved inputs v and w into account.

Suppose first that there is no unobserved input disturbance, i.e., v = w = 0 in
(1). Then, the ξk’s introduced in (12) are observed and thus can be explicitly used
to satisfy a stronger condition than (14) in Lemma 1, namely 〈Ξj , Z0〉N = 0. Note
that no assumption of stochastic nature is required for this reasoning.

Next, consider the opposite case in which there is no observed input, i.e., B =
D = 0 in (1). Since input disturbances are not observed, the actual values of Ξj are
unknown when applying Lemma 1 and therefore cannot be used while constructing
the instrument zk.

This problem, however, can be solved by using stochastic knowledge about un-
observed input disturbances. To this end, we now introduce the needed probabilistic
setting, and, prior to this, the martingale argument we shall use.

3.2.1 A martingale argument

Lemma 3 Let (vk)k≥0 and (zk)k≥0 be two sequences of square integrable vector val-
ued random variables defined over some probability space (Ω,G, P) and let (Gk)k≥0

be an increasing family of sub-σ-algebras of G such that:

supk≥0 E‖vk‖
2 ≤ K < ∞ , and limN→∞

∑N
k=0 ‖zk‖

2 = +∞ w.p.1 ;

vk and zk are Gk-measurable, and E(vk | Gk−1) = 0 .
(24)

Irisa



Nonstationary consistency of subspace methods 13

Then, for any j > 0, the following holds:

lim
N→∞

MN (j)
∑N

k=0 ‖zk‖2
= 0 w.p. 1, where MN (j)

∆
=

N∑

k=j

vkz
T
k−j . (25)

Nota In formula (24), the conditional expectation E(. | Gk−1) should not be con-
fused with our matrix projection operator E(. | .) in (10).

Proof: It is a mild variation of the argument of [6], Section III-A. We repeat it
here for the sake of completeness. Since we can reason on each entry of matrix
MN separately, we can, without loss of generality, assume that vk and zk are both
scalar signals. By the second condition of (24), we know that (Mk)k≥0 is a square
integrable scalar martingale w.r.t. (Gk)k≥0. By (24), we have E((Mk − Mk−1)

2 |
Gk−1) = E(v2

k | Gk−1)z
2
k−j = E(v2

k)z
2
k−j ≤ Kz2

k−j . The proof is then completed by
using Theorem 2 below, which can be found in [15, 20]. ⋄

The real-valued stochastic process (Mk)k≥0 is called a locally square integrable
martingale w.r.t. (Gk)k≥0 if 1/ E(Ml | Gl−1) = 0, and 2/ ∀L < ∞, supl≤L EM2

l < ∞.

Theorem 2 ([15, 20]) Let (Mk)k≥0 be a locally square integrable martingale w.r.t.
(Gk)k≥0, such that M0 = 0. Set

[M, M ]k =

k∑

l=1

E((Ml − Ml−1)
2 | Gl−1) .

Then, the following two properties hold w.p.1:

Mk

[M, M ]k
→ 0 on the set { lim

k→∞
[M, M ]k = +∞} ,

limk→∞ Mk exists and is finite on the set {limk→∞ [M, M ]k < +∞}.

3.2.2 Analyzing the generic subspace algorithm

In this section we combine the results from Sections 3.1.3 and 3.2.1 to handle system
(1) with its combined observed/unobserved inputs. We repeat again system (1) for
convenience:

{
xk = Axk−1 + Buk + vk

yk = Cxk−1 + Duk + wk
(26)
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14 Benveniste & Mevel

where k ∈ Z, y is the R
q-valued observed output, x is the R

n-valued state, u is the
R

m-valued observed input, (v, w) is an unobserved input disturbance.
To be able to use stochastic information on the unobserved inputs v, w we assume

that all variables arising in system (26) are defined over some probability space
(Ω,F , P).

Available information is captured by the following σ-algebras:

Fk
∆
= σ (uj : j ∈ Z)︸ ︷︷ ︸

Fu

∨ σ (yl, vl, wl : l ≤ k)︸ ︷︷ ︸
F

y,v,w

k

Fo
k

∆
= σ (uj : j ∈ Z)︸ ︷︷ ︸

Fu

∨ σ (yl : l ≤ k)︸ ︷︷ ︸
F

y

k

σ-algebra Fu is the information provided by the entire observed input sample; σ-
algebra Fy,v,w

k is the information provided by the unobserved inputs v and w and the
output y up to time k; finally, σ-algebra Fy

k is the information provided by the only
output y up to time k. Regarding the unobserved inputs, we assume the following:

Assumption 1 (unobserved inputs) Stochastic inputs v and w satisfy the fol-
lowing conditions:

sup
k≥0

E
(
‖vk‖

2 + ‖wk‖
2
)

< ∞,

∀j > 0,∀k ≥ 0 : E (vk+j | Fk) = 0 and E (wk+j | Fk) = 0 .

Note that these conditions do not request any kind of stationarity. Assumption 1
involves the joint distribution of vk, wk, and uk. It is in particular satisfied when
observed and unobserved inputs are independent. Besides Assumption 1, no condi-
tion is required on the statistics of the observed input uk. Consider the following
conditions regarding instruments:

Condition 2 (instruments) Instrument (zk) satisfies the following conditions:

zk is Fo
k -measurable (27)

lim
N→∞

sN = ∞, where sN
∆
=

N−1∑

k=−M

‖zk‖
2 (28)

〈[
B
D

]
Uj , Z0

〉

N

= o(sN ) for j > 0 (29)

lim inf
N→∞

σn

(
1

sN
〈X0, Z0〉N

)
> 0 (30)
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Nonstationary consistency of subspace methods 15

Property (27) guarantees that instrument zk depends only on observed quantities.
Integer M ≥ 0 in (28) is a constant selected according to each particular instance of
the family Ri(N). Property (28) expresses that instrument (zk) possesses sustained
energy.

Covariance based subspace. The following theorem is our first main result. It
provides the analysis of algorithms of the form (16), i.e., covariance based ones.

Theorem 3 (covariance based subspace) Assume that Assumption 1 regarding
unobserved inputs, and Condition 2 regarding instruments, are in force. Then,

R
(16)
i (N) satisfies Condition 1, with probability 1.

In other words, the set of trajectories of the system for which Condition 1 is satisfied
has probability 1. Pick any trajectory in this set, we can apply Theorem 1, which
shows that, for this trajectory, our generic algorithm provides consistent estimators
in the sense of Theorem 1. This shows that our generic algorithm provides consis-
tent estimators in the statistical sense (convergence w.p.1 to the true value for the
parameters to be estimated).

Proof: Using the notations of Section 3.1.2, system (26) writes as follows, for i =
1, . . . , p:

{
Xi = AXi−1 + BUi + Vi

Yi = CXi−1 + DUi + Wi
(31)

On the other hand, system (26) yields the following decomposition for yk+i, i > 0
(we use the convention that

∑0
1 = 0):

yk+i = CAi−1xk +
i−1∑

j=1

CAi−1−j v̂k+j + ŵk+i

where v̂k
∆
= Buk + vk and ŵk

∆
= Duk +wk. Using the notations of Section 3.1.3, this

decomposition rewrites as follows, for i > 0:

Yi = CAi−1X0 +
i−1∑

j=1

CAi−1−j V̂j + Ŵi (32)
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16 Benveniste & Mevel

where V̂i
∆
= BUi + Vi and Ŵi

∆
= DUi + Wi. Note that

〈Vj , Z0〉N =
N−1∑

k=0

vk+jz
T
k , (33)

and a similar formula holds with Wj instead of Vj . By (27) and (28) of Condition
2, instrument (zk) satisfies (24) in Lemma 3. By Assumption 1, noises vk and wk

satisfy (24) in Lemma 3, with Fk substituted for Gk. Therefore Lemma 3 can be
applied with Fk substituted for Gk, which yields, with probability 1:

∀j ∈ {1, . . . , p} :

〈[
Vj

Wj

]
, Z0

〉

N

= o(sN ) (34)

Set

ξk
∆
=

[
B
D

]
uk +

[
vk

wk

]

B′ ∆
= [ In 0q ]

D′ ∆
= [ 0n Iq ]

where the subscripts n and q indicate the dimensions of the corresponding matrices.
Using this change of notation allows us to rewrite system (26) in the form (12) used
in Lemma 1.

Consider now Condition 2. Combining (34) with (29) shows that system (12)
satisfies (14) in Lemma 1. On the other hand (15) in Lemma 1 is ensured by
Property (30) of Condition 2. Therefore, by Lemma 1 we conclude that Condition
1 is satisfied, with probability 1. ⋄

Remark. In fact our method could accomodate as well additional “small” pertur-
bations in system (26), i.e., additional inputs µk and νk in state and observation
equations respectively, such that

1

sN

N−1∑

k=−M

‖µk‖
2 + ‖νk‖

2 = o(1) .

Transient terms or leakage effects such as considered in [8, 9] are covered by these
additional terms, and therefore do not impair nonstationary consistency.
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Nonstationary consistency of subspace methods 17

Projection based subspace. Projection based subspace methods, i.e., methods
of the form

Ri(N)
∆
=

1

sN
EN (Yi | Z0) (35)

are in fact more popular than covariance based ones, see [23]. They are often referred
to as “data based” subspace methods. Unfortunately, these methods cannot be
handled directly by Theorem 3. In fact, Theorem 1 itself does not apply. The reason

for this is simple: R
(35)
i (N) has dimensions q × dim(Z0(N)). So its dimensions vary

with N and therefore Theorem 1 cannot apply. Fortunately, the weighting technique
of Section 3.1.4 can be used to overcome this difficulty as we shall see now.

Corollary 1 of Section 3.1.4 can be used to relate covariance based methods, i.e.,
of the form:

R′
i(N) =

1

sN
〈Yi, Z0〉N

to projections based ones:

Ri(N) =
1

sN
EN (Yi | Z0). (36)

The former are handled by Theorem 3 but the latter are not. To establish this
relation, stack the matrices Ri(N) as usual now and consider

Hp(N) = EN (Y+
0,n | Z0). (37)

Note that this Hankel matrix has its second dimension that varies with the length
N of the data sample and thus cannot be handled by Theorem 3. To study this al-
gorithm, we shall therefore use a “squaring” method based on Corollary 1. Consider

Kp(N) = Hp(N) Hp(N)T

= 〈Y+
0,p, Z0〉N 〈Z0, Z0〉

†
N 〈Z0,Y

+
0,p〉N

By point 1 of Corollary 1 it is enough to guarantee that Kp(N) satisfies Condition
1. To this end, renormalize instrument Z0:

Ẑ0 = 〈Z0, Z0〉
− 1

2
N Z0(N), (38)

where superscript −1/2 denotes the square root of the pseudo-inverse. Note that (38)
amounts to whitening instrument zk. Then, Kp(N) rewrites:

Kp(N) = 〈Y+
0,p, Ẑ0〉N 〈Ẑ0,Y

+
0,p〉N (39)
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18 Benveniste & Mevel

By point 2 of Corollary 1 it is enough to guarantee that the square root matrix
〈Y+

0,p, Ẑ0〉N satisfies Condition 1. Note that instrument Ẑ0 satisfies the measurability
property (27) of Condition 2. Our second main result therefore states as follows:

Theorem 4 (projection based subspace) Assume that Assumption 1 is in force,

as well as properties (28–30) of Condition 2, for instrument (38). Then, R
(36)
i (N)

satisfies Condition 1, with probability 1.

Consequently, R
(36)
i (N) yields a consistent subspace algorithm, in the statistical

sense.

3.3 Discussing Assumptions and Conditions

Here we collect remarks concerning our Assumptions and Conditions.

What if matrix A is unstable? Strictly speaking, it is nowhere required that matrix
A shall be stable. However, if A is has some unstable eigenvalues and some
stable ones, then property (30) of Condition 2 can hardly be satisfied.

What can the observed inputs u be? Property (29) of Condition 2 relates instrument
zk to input uk; but the latter condition should rather be seen as a condition
on the instrument, not as a condition on the input. The only important
requirement on u is Assumption 1, since it requires that future unobserved
inputs vk+j , wk+j , j > 0 shall be independent from past inputs uk−l, l ≥ 0.
For example, if (v, w) is white noise, then this prevents uk from depending
on future outputs yk+j , j > 0. On the other hand, there is no requirement
per se that u should be stationary. In some sense, the probability distribution
of u does not matter and we regard u as stochastic in Section 3.2.2 only for
mathematical convenience.

What is really allowed regarding unobserved input noise (v, w)? Can it be colored?
First, the time-varying matrices K(k) and L(k) in (2) may be random. This
must, however, occur in a way that Assumption 1 shall not be invalidated. For
example, referring to (2), it is possible that K(k) and L(k) are stochastic pro-
cesses that are independent from both underlying white noise νk and observed
input uk.

Can (v, w) be colored in (1)? Yes in part. In fact, moving average measurement
noise is allowed:

wk =
J∑

j=0

Ljνk−j ,
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Nonstationary consistency of subspace methods 19

where ν is a possibly nonstationary white noise. To see this, rewrite (1) as

follows, with ξT
k

∆
= [νT

k , . . . , νT
k−J+1]:






xk = Axk−1 + Buk + vk

ξk = Sξk−1 + + Tνk

yk =
[

C L
] [

xk−1

ξk−1

]
+ Duk + L0νk

(40)

where S is the nilpotent matrix having 1’s on the lower diagonal entries and
0’s elsewhere, T = [I 0 . . . 0]T , and L = [L1 . . . LJ ]. Applying the generic
algorithm with (16) to system (40) yields the desired eigenstructure of pair
(C, A), provided that we know that A does not have 0 as an eigenvalue.

4 Analysis of some subspace algorithms

In this section we apply our toolbox of theorems and lemmas to sample subspace
methods. To avoid boring notational adjustments, we keep our notational conven-
tions and will therefore sometimes deviate from the original presentations in this
respect.

Key conditions ensuring nonstationary consistency are Assumption 1 and Condi-
tion 2. Assumption 1 involves the unobserved inputs, we assume it to hold through-
out this section and will not discuss it any further. In contrast, Condition 2 is a
design constraint on the selection of the instruments: this is the key condition to be
verified or enforced when analyzing specific algorithms.

Regarding the details of Condition 2, we shall pay great attention to verifying
that (27) and (29) are satisfied, as these conditions drive the choice of the instru-
ments. Condition (30) amounts to requiring that the instrument is well correlated
to the state. In contrast, we shall not discuss the satisfaction of condition (28); this
condition just translates, for each particular algorithm, into corresponding condi-
tions for the original system (26).

Finally, checking for consistency requires that proper normalization is applied.
This is the very role of the scaling factor sN . In practice the algorithms are applied
with given sample length N , and then, scaling is just an irrelevant issue. Therefore,
we shall ignore scaling in this section.
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20 Benveniste & Mevel

4.1 Output-only (OO) subspace algorithms

By definition, these algorithms assume B = D = 0 in (26). Therefore (29) in
Condition 2 is trivially satisfied, thus we essentially need to check the measurability
property (27).

Basic OO subspace algorithm This is the simplest algorithm to analyze. In-
troduce the instrument

zk
∆
=




yk
...

yk−M


 (41)

and take

Ri(N) = 〈Yi, Z0〉N . (42)

Instrument (41) satisfies (27) in Condition 2. Hence Theorem 3 applies and proves

consistency of R
(42)
i (N). Note that

〈X0, Z0〉N =
[

F (N) AF (N) . . . AMF (N)
]
,

where F (N) = 〈X0, Y0〉N . Hence, (30) can be interpreted as yk being “uniformly of
order n”.

Covariance driven OO subspace algorithm [6, 21, 1, 14] This algorithm is
a variation of the previous algorithm, it was however proposed earlier. It consists in
computing, for i = 1, . . . , p:

Ri(N) =
[

r̂i(N) r̂i+1(N) · · · r̂i+M (N)
]

where r̂j(N) = 〈Yj , Y0〉N
(43)

With instrument zk as in (41), we have

R
(43)
i (N) − 〈Yi, Z0〉N =

[
δ〈Yi, Y0〉 . . . δ〈Yi, Y−M 〉

]

where δ〈Yi, Y−k〉
∆
= 〈Yi, Y−k〉N − 〈Yi+k, Y0〉N is such that

‖δ〈Yi, Y−k〉‖ ≤ 2 s∗M,N ,
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Nonstationary consistency of subspace methods 21

where

s∗M,N
∆
= sup

−M≤j≤N−M

j+M∑

l=j

‖yl‖
2 .

This implies

‖R
(43)
i (N) − 〈Yi, Z0〉N‖ = o(sN ) , (44)

provided that the following assumption holds:

Assumption 2 For M fixed, s∗M,N = o(sN ).

Under the above additional assumption, (44) holds and therefore, instrument zk

defined in (41) satisfies Condition 2. Therefore, by Theorem 3, we derive that

R
(43)
i (N) yields a consistent subspace algorithm.

Data driven OO subspace algorithms [23]. This algorithm is found in [23]–
Theorem 8, Chapter 3. It consists in computing

Hp(N) = EN (Y+
0,p | Y−

0,M ). (45)

To study this algorithm, we shall use Theorem 4 about projection based methods.
To this end, set

Ẑ0 =
(
〈Y−

0,M ,Y−
0,M 〉N

)− 1
2
Y−

0,M (N), (46)

which amounts to whitening the instrument (41). Instrument (46) satisfies the mea-
surability condition (27) of Condition 2. Assuming that (28) and (30) are satisfied,
this yields consistency, by Theorem 4.

4.2 Input-output (IO) subspace algorithms

Many variants have been considered. We review some representative ones.

Covariance driven IO subspace algorithms with projection on the orthog-
onal of the input [14] This algorithm consists in computing (cf. notations (10)):

r̂i(N) = 〈Zi, Z0〉N , where Zi
∆
= EN

(
Yi

∣∣∣U⊥
0,M

)
(47)

Ri(N) =
[

r̂i(N) r̂i+1(N) . . . r̂i+M (N)
]

(48)
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First, note that 〈Zi, Z0〉N = 〈Yi, Z0〉N . The associated instrument zk is therefore
the sequence of the successive columns of matrix Z0. Note that zk is Fo

k -measurable.

The rest of the analysis of this algorithm proceeds as for R
(43)
i (N). Property (30)

can be seen as that zk itself being “uniformly of order n”.

Data driven IO subspace algorithm with projection on the orthogonal
of the input [23]. This algorithm is known as the Projection algorithm in [23]
– Chapter 2.3.2. It consists in computing Hp = EN (Y+

0,p | Z−
0,M ), where Zi is as in

(47). We conclude as for R
(45)
i (N).

Data driven subspace algorithm using projected inputs as instruments
[25, 26, 10]. This algorithm was first proposed in [25, 26] under the name of PI-
MOESP. It was studied recently in [10, 11]; a detailed presentation is found in [11].
It consists in computing a (left) weighted version of

Hp = EN (Y+
0,p | L−

0,M ), (49)

where L−
0,M is obtained, with the notations of Section 3.1.2, by stacking

Li
∆
= EN

(
Ui

∣∣∣∣
(
U+

0,M

)⊥
)

, for i = −M, . . . , 0. (50)

Introduce the following instrument:

Z0 =
(
〈L−

0,M ,L−
0,M 〉N

)− 1
2
L−

0,M (N). (51)

The squaring argument already used in analyzing (45) can be used here too. Once
more, instrument (51) satisfies the measurability property (27) in Condition 2, and
we conclude as for (45). Note that, to get this measurability condition, it was
essential that the observation σ-algebra Fo

k contains both past and future of the
observed input u.

Note also that we could have equally well used Yi, or

[
Ui

Yi

]
, instead of Ui in

(50), thus obtaining two variants of the above method.

Data driven subspace identification using oblique projections [22, 23].
This category includes popular subspace algorithms such as N4SID and MOESP [22,
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23] as well as any variation of them by using weights, including the CVA method [23].
We focus on N4SID and MOESP.

The popular N4SID algorithm of [22] and [23] – Section 4.3.1, consists in com-

puting the so-called oblique projection of Y+
0,p on

[
U−

0,M

Y−

0,M

]
along U+

0,M ,

Hp(N) = Y+
0,p

/

U+

0,M

[
U−

0,M

Y−
0,M

]
, (52)

which is shown to rewrite as follows (see formula (1.7) of [23]):

Hp(N) = Hw
p (N)

[
EN

([
U−

0,M

Y−
0,M

] ∣∣∣∣
(
U+

0,M

)⊥
)]† [

U−
0,M

Y−
0,M

]
, (53)

where

Hw
p (N) = EN

(
Y+

0,p

∣∣∣∣
(
U+

0,M

)⊥
)

.

Define

H′
p(N)

∆
= Hw

p (N)W T
ρ (N), (54)

where

W T
ρ (N) =

[
EN

([
U−

0,M

Y−
0,M

] ∣∣∣∣
(
U+

0,M

)⊥
)]† ([

U−
0,M

Y−
0,M

] [
U−

0,M

Y−
0,M

]T
)1/2

(Note that the expression for H′
p(N) corresponds to the formulation of N4SID given

in [28].) Set K(N) = Hp(N)Hp(N)T and K′(N) = H′
p(N)H′

p(N)T . Note that
K(N) = K′(N). By using repeatedly the same squaring argument as in the proof of
Theorem 4, we deduce that, if H′

p(N) satisfies Condition 1, then so does Hp(N).
Now, assume for a while that we are able to prove that Hw

p (N) satisfies Condition
1. Then, according Lemma 2, the pair of matrices (C(N), A(N)) corresponding to
H′

p(N) will be consistent provided that (23) holds, with Wλ(N) = I.
To prove that Hw

p (N) satisfies Condition 1, note that Hw
p (N) rewrites

Hw
p (N) = EN (Y+

0,p | Z0)
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where Z0 is a basis for the orthogonal complement of U+
0,M in the space generated

by 


U+

0,M

U−
0,M

Y−
0,M





Hw
p (N) can therefore be analyses in the very same way as (49).

The following remark can be stated about (30) and (23). These conditions are
fragile if W T

ρ (N) in (54) is close to having rank less than p, which happens when

the future U+
0,M of input u is almost parallel to

[
U−

0,M

Y−
0,M

]

The latter fact is indeed known from the practice about N4SID and is also analyses
in [12].

The same analysis also applies to the MOESP algorithm described in [23] –
Section 4.3.2, [25, 26], and [3]. This algorithm consists in computing

Ri(N) = R
(52)
i (N) Π

(U+
0,M)

⊥ ,

where Π
(U+

0,M)
⊥ denotes the (orthogonal) projection on

(
U+

0,M

)⊥

. Thus, MOESP

amounts to computing

Hp(N) = Hw
p (N)W T

ρ (N)†W T
ρ (N), (55)

where

W T
ρ (N)

∆
= EN

([
U−

0,M

Y−
0,M

] ∣∣∣∣
(
U+

0,M

)⊥
)

. (56)

Following the same lines as for N4SID, MOESP yields consistent estimates. The
same remark as for N4SID applies, regarding the conditioning of W T

ρ (N) in (56)
and its impact on the behavior of the algorithm. The class of subspace methods
described in [23], including CVA, is analyses along the same lines.
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Covariance driven subspace algorithm using projected past inputs and
outputs as instruments [28] Those methods encompass the methods also known
as IVM, CVA, PO-MOESP and N4SID in their covariance form [28]. In this paper,
we will focus on the unweighted IV related to Hp defined as

Hp = 〈Y+
0,p,L

−
0,M 〉N , (57)

where L−
0,M is defined by stacking for i = −M, . . . , 0

Li
∆
= EN

([
Ui

Yi

] ∣∣∣∣
(
U+

0,M

)⊥
)

. (58)

The rest of the analysis of this algorithm proceeds as for (48).

4.3 Time– vs. frequency–domain.

For (yk)k∈Z an R
q-valued data sequence and N > 0 a window length, the DFT of

Yi(N), denoted by Ŷi(N), is equal to

Ŷi(N) = Yi(N)∆q
N , (59)

where (in (60), ⊗ denotes the Kronecker product):

∆q
N

∆
=

1

N q/2




e−2jπ 0
N . . . e−2jπ 0N

N

e−2jπ 1
N . . . e−2jπ 1N

N

...
...

...

e−2jπ N−1
N . . . e−2jπ

(N−1)N
N



⊗ Iq (60)

Since matrix ∆q
N is orthogonal, then

〈X̂, Ŷ 〉N = 〈X, Y 〉N ,

and

EN (X̂ | Ŷ ) = EN (X | Y )∆q
N .

Hence, Condition 2 can be considered equivalently in the time domain or in the
frequency domain. Therefore, frequency domain subspace algorithms corresponding
to [17, 18] behave exactly the same way as their time domain counterparts regarding
nonstationary consistency.
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5 Conclusion

We have revisited eigenstructure identification via subspace methods. This problem
is clearly easier than full system matrix identification. On the other hand, consis-
tency of eigenstructure identification still holds for nonstationary inputs (in fact, for
“nonstationary zero part”).

For this study, we have adapted the original method of [6]. We believe that our
presentation enlightens the reasons for subspace methods to converge, and therefore
can serve as a guideline for further new designs. Our analysis shows that the old
fashioned “instruments” are still a useful concept in this respect.

Martingale techniques were used to deal with unobserved inputs—for unobserved
inputs, “deterministic” projections based on observed data cannot be used; they can
be replaced by “stochastic” projections via conditional expectations. This technique
requires a probabilistic setting for the unobserved inputs, and the white noise as-
sumption provides a situation in which finding instruments is easy. This suggests
that our martingale approach could possibly be replaced by any other method pro-
viding orthogonality conditions without the need for observing data.

Not surprisingly, transient and leakage effects are not an issue for nonstationary
consistency. And the results equivalently apply to both time- and frequency-domain
methods.

Finally, we have only studied nonstationary consistency, not nonstationary con-
vergence rates. The latter subject is definitely much harder. The only results we
are aware of in this direction are found in [19].

Acknowledgement. Michèle Basseville is gratefully acknowledged for correc-
tions and useful suggestions on an earlier version of the manuscript. Also, the
reviewers have significantly helped improving the revised version.

A Missing proofs of Section 3.1.4

Proof of Lemma 2. The proof relies on the Lemma 2 in Appendix C of [6], which
we repeat here for completeness:

Lemma 4 ([6]) Let K(N) and K′(N) be two sequences of matrices of fixed dimen-
sions, satisfying the following conditions:

(i) The sequence K(N) is bounded and K(N) −K′(N) → 0 when N → ∞.
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(ii) For every N , the SVD of matrix K(N) is K(N) = U diag(σ1, . . . , σn)VT , and
lim infN→∞ σn > 0 holds.

SVD-decompose K′(N) as K′(N) = U′ diag(σ′
1, . . . , σ

′
n)V′T + higher order terms.

Then, there exists a sequence of p×p-matrices T (N), bounded with bounded inverse,
such that U′(N) − U(N)T (N) → 0 when N → ∞.

Return to the proof of Lemma 2. Set K′(N) = Hp(N) and

K(N) = Wλ(N) Uw diag(σw
1 , . . . , σw

n ) VT
w W T

ρ (N).

By (22) and (23), we have K(N) − K′(N) → 0. On the other hand, it is assumed
for Lemma 2 that K′(N) = Hp(N) is bounded. Therefore, Lemma 4 applies. Since
K(N) has rank exactly p, the left most factor in the SVD of K(N) is obtained from
Wλ(N)Uw by a post-multiplication by an invertible matrix. On the other hand,
the left factor U′ associated to K′(N) = Hp(N) by Lemma 4 coincides with U in
formula (20). Hence, Wλ(N)Uw and U are related via the post-multiplication by
an invertible matrix. From this, the conclusion of Lemma 2 follows.

Proof of Corollary 1. For A a matrix and n an integer, denote by [A]≤n the
matrix obtained by zeroing all singular values of rank > n in the SVD of A, and set
[A]>n = A − [A]≤n. We successively prove points 1 and 2.

Consider first point 1. Since Hp(N) satisfies Condition 1, then
[
Hw

p (N)Hw
p (N)T

]

>n
= [Hp(N)]>n → 0 (61)

holds. By the orthogonality property of the SVD, we have
[
Hw

p (N)
]
>n

Hw
p (N)T =

[
Hw

p (N)Hw
p (N)T

]

>n
,

whence
[
Hw

p (N)
]
>n

Hw
p (N)T → 0. (62)

Matrices Hp(N) and Hw
p (N) are related as in Lemma 2 with Wλ(N) = I and

Wρ(N) = Hw
p (N). With this choice for the weights, (62) is exactly (23). On

the other hand, since Hp(N) satisfies Condition 1, then, by Theorem 3, the pair
(C(N), A(N)) is consistent. Thus, Lemma 2 applies and yields the consistency of
(Cw(N), Aw(N)).

Consider now point 2. Since Hw
p (N) satisfies Condition 1, it follows that

[
Hw

p (N)
]
>n

→
0, which implies (61), and thus also (62). Since Hw

p (N) satisfies Condition 1, then,
by Theorem 3, the pair (Cw(N), Aw(N)) is consistent. And we conclude again, by
a reverse use of Lemma 2.
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