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Abstract

In this article, we examine how the index calculus approach for computing discrete loga-

rithms in small genus hyperelliptic curves can be improved by introducing a double large prime

variation. Two algorithms are presented. The first algorithm is a rather natural adaptation

of the double large prime variation to the intended context. On heuristic and experimental

grounds, it seems to perform quite well but lacks a complete and precise analysis. Our second

algorithm is a considerably simplified variant, which can be analyzed easily. The resulting

complexity improves on the fastest known algorithms. Computer experiments show that for

hyperelliptic curves of genus three, our first algorithm surpasses Pollard’s Rho method even

for rather small field sizes.

1 Introduction

The discrete logarithm problem in the jacobian group of a curve is known to be solvable in
subexponential time if the genus is large compared to the base field size [1, 20, 8, 9, 14, 6]. The
corresponding index calculus algorithm also works for small fixed genus, and although the running
time becomes exponential it can still be better than Pollard’s Rho algorithm [11]. Introducing a
large prime variation [23], it is possible to obtain an index calculus algorithm that is asymptotically
faster than Pollard’s Rho algorithm already for genus 3 curves.

In the present work, we go one step further in this direction and introduce a double large prime
variation for the small genus index calculus. Our algorithm is a simple extension to the single large
prime algorithm of [23]. However, making a rigorous analysis is not that easy: Double large prime
variations are commonly used in factorization algorithms and analyzed empirically. In order to
obtain a proven complexity result, we introduce a simplified algorithm for the double large prime
variation which lends itself much better to a rigorous complexity analysis. The analysis is made
for fixed genus and growing field size. Our proof is valid for the restricted context of hyperelliptic
curves in imaginary Weierstrass form with cyclic jacobian group, and the complexity result is
stated as follows.

Theorem 1. Let g ≥ 3 be fixed. Let C be a hyperelliptic curve of genus g over Fq given by an

imaginary Weierstrass equation, such that the jacobian group JacC(Fq) is cyclic. Then the discrete

logarithm problem in JacC(Fq) can be solved in expected time

Õ
(
q2− 2

g

)

as q tends to infinity.

The Õ-notation captures logarithmic factors. This complexity improves on the previous best

bound Õ(q
2− 2

g+1/2 ). The presented algorithm also applies to general curves of genus g ≥ 3, not
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necessarily hyperelliptic and not necessarily with cyclic jacobian group (but provided that the
Jacobian arithmetic can be performed in polynomial time). Heuristically, the complexity result
still holds.

The improvement is negligible for curves of large genus and therefore the case of genus 3
curves is given special consideration. For genus 3 curves, Pollard’s Rho method has a running
time in Õ(q1.5), whereas the single large prime algorithm is in Õ(q1.428...) and our new method

is in Õ(q1.333...). We did practical experiments that demonstrate that even when the jacobian
group has relatively small size, our algorithm is much faster than Pollard’s Rho algorithm. In
these comparisons, we consider only curves whose jacobian group is of almost prime order, so
that splitting the discrete problem in smaller problems in subgroups [22] is not possible. This
is the case for instances that occur in the context of cryptography. Therefore, when designing a
cryptosystem based on a genus 3 curve [16], it is necessary to take into account our attack, and not
only Pollard’s Rho attack. The sizes of the parameters should then be enlarged by about 12.5%
to maintain the same security level.

The article is organized as follows: In Section 2, we fix the general setting and recall previous
work. Our double large prime variation is introduced in Section 3, together with our simplified
variant. This simplified variant is analyzed in Section 4. In Section 5, we describe our computer
experiments that validate our approach and show that it outperforms Pollard’s Rho method rather
early. Section 6 explores the relationship between our “full” and “simplified” algorithms, as well
as the relevance of our algorithm beyond the restricted context of hyperelliptic curves with cyclic
jacobian group.

The order of the authors is chronological. The first two authors found the algorithm and gave
a heuristic analysis. A complete proof was obtained by the first three authors. The fourth author
then gave a much simpler proof, and the proof of Theorem 1 presented in this work follows the
ideas of the fourth author.

Acknowledgements

The first three authors thank Antoine Lejay who helped with the probabilistic statements that
occurred in the first proof of Theorem 1.

2 Setting and previous work

2.1 Setting

Let C be a hyperelliptic curve of genus g ≥ 3 over a finite field Fq with q elements, given by an
imaginary Weierstrass equation. The elements of the jacobian group JacC(Fq) of C over Fq are
handled via their Mumford representation [19]: a divisor class contains a unique reduced divisor
that is represented by a pair of polynomials 〈u(x), v(x)〉. The degree of u(x) is called the weight

of the reduced divisor and a reduced divisor is called prime if u(x) is irreducible.
A discrete logarithm problem in JacC(Fq) is to be solved. Namely, we work in a cyclic subgroup

G of JacC(Fq). A generating reduced divisor D1 of G and another reduced divisor D2 ∈ G are
given. The goal is to compute the integer λ in [0, #G − 1] such that D2 = λD1 in JacC(Fq). The
group order is also supposed to be part of the input; in our case, since the genus is fixed, it can
be computed in polynomial time [21].

The algorithms we are dealing with have a complexity which is exponential in log q. Since
any task that takes a time which is polynomial in log q is considered easy, we shall often use the
Õ()-notation for complexity estimates: A function in Õ(f(q)) is a function that is bounded by
f(q) times a polynomial in log f(q) for large enough q.
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2.2 Basic index calculus

The general index calculus algorithm proceeds as follows: A factor base B that consists of prime
divisors of low weight is formed. Then random linear combinations of D1 and D2 are computed
using, for instance, Cantor’s algorithm [3]. For each combination, one checks whether it can be
written as a sum of elements of the factor base by factoring the u-polynomial of its Mumford
representation. If this is the case, then we have a useful relation and the corresponding data is put
in a row of a matrix. After enough relations have been found, there exists a non trivial combination
of the rows that sums to zero; this is a simple linear algebra problem. Since each row represents
a linear combination of D1 and D2, any combination of rows also represents a linear combination
of D1 and D2 that can be computed. We can then find α and β such that αD1 + βD2 = 0. This
gives the solution to the discrete logarithm problem as long as β is invertible modulo #G, which
will be the case with large probability.

For (small) fixed genus, the prime divisors considered for the factor base are divisors of weight 1.

This “basic index calculus”algorithm has therefore complexity Õ(q2), split in Õ(q) for the relation

search and Õ(q2) for the linear algebra.
An optimized variant of the basic index calculus algorithm, due to Harley, consists in balancing

the relation search and linear algebra steps by restricting the factor base size to qr elements, with

0 < r < 1. With the best value of r = 1 − 1/(g + 1), the complexity becomes Õ(q2− 2
g+1 ).

We shall not give more details on the basic technique of index calculus and refer the reader
to [23] for a complete description.

2.3 Single large prime variation

Extending the idea of the “balanced” index calculus approach, a single large prime variation has
been presented in [23]. The factor base is again chosen with size qr, with 0 < r < 1. The Θ(q)
reduced divisors of weight one which are outside the factor base are called “large primes”.

The algorithm proceeds like any index calculus algorithm with a large prime variation. Random
linear combinations of D1 and D2 are computed. Only combinations which involve at most one
large prime in the sum of their prime reduced divisors are considered.

At the heart of the analysis is the birthday paradox which says that after having collected k

relations involving large primes, they can be combined to form an expected number of k2

2q relations
involving only elements of the factor base. Then, estimating the probability of getting a relation
with one large prime and balancing everything with the linear algebra step, the optimal value for

r is 1 − 1
g+1/2

, and the overall complexity is Õ(q
2− 2

g+1/2 ).

From this, the following result is obtained in [23].

Theorem (Thériault). Let g ≥ 3 be fixed. Let C be a hyperelliptic curve of genus g over Fq given

by an imaginary Weierstrass equation, such that the jacobian group JacC(Fq) is cyclic. Then the

discrete logarithm problem in JacC(Fq) can be solved in expected time

Õ
(
q
2− 2

g+1/2

)

as q tends to infinity.

3 A double large prime variation

We now present the context of our double large prime variant, which comes as the natural extension
of the previous single large prime algorithm. As before, we define a factor base and a set of large
primes, which are sets of reduced divisors of weight 1. In other words, they can be interpreted as
rational points of the curve. Since computing the hyperelliptic involution can be done almost for
free with our representation, we use it to reduce the cardinalities of these sets.
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Definition 2. Let r be a constant real number such that 0 < r < 1.
The factor base B is a set of representatives of b 1

2qrc arbitrary orbits of C(Fq) under the

hyperelliptic involution ι.
The set of large primes L is a set of representatives of the remaining orbits under ι.

Due to Weil’s theorem, #C(Fq) = q + O(
√

q). Therefore it is possible to construct a suitable
factor base B, and we have #L = q

2 + O(
√

q).
As before, we form random linear combinations of D1 and D2, and to each such combination

R we apply the following procedure for the smoothness test.

• Compute the Mumford representation 〈u(x), v(x)〉 of R.

• Discard R if u(x) has a non-linear irreducible factor. Otherwise, write R =
∑r

i=1 niPi, where
Pi is a reduced divisor of weight 1 and ni ≥ 1.

• For all i such that Pi /∈ B ∪ L, replace Pi with ι(Pi) and negate ni.

At the end of this procedure, we have obtained an expression of the following form which we
call a “relation”.

αD1 + βD2 =

r∑

i=1

niPi, (1)

where the equality holds in the jacobian group and the Pi are elements of the factor base or of the
set of large primes (we say that the relation involves these factor base elements and large primes).

Definition 3. A relation is said to be Full if it involves only elements of the factor base B. A

relation is said to be FP if it involves elements of B and exactly one large prime. A relation is

said to be PP if it involves elements of B and exactly two large primes.

Clearly, PP relations can be found much more quickly than FP relations, but the problem is
to combine all these relations in order to obtain more Full relations. This can be done by looking
for cycles in a graph where vertices are large primes and edges are relations involving them. For
this purpose, an adaptation of the union-find algorithm is used, making it possible to solve this
question in time almost linear in the number of PP relations found.

This relation collection terminates when as many as #B+ 1 Full or recombined relations have
been obtained. Afterwards, the algorithm proceeds with the linear algebra step as in the classical
index calculus situation described in Section 2.2.

3.1 Description of the LP-graph and its evolution

Double large prime variations of all kinds use a graph of large prime relations. Within the context
of an index calculus algorithm, the relations involve multiplicities, so squares cannot be canceled
out as is done in the classical case of integer factorization. For this reason, the description of the
graph of large prime relations is more technical.

The graph of large prime relations (LP-graph, for short) is an undirected acyclic graph
with 1 + #L vertices, corresponding to the elements of L and the special vertex 1. All edges of
the LP-graph are labeled with a relation.

At the beginning of the algorithm there are no edges in the LP-graph, and a counter C is set
to zero. The algorithm stops when C reaches the prescribed value Cmax = #B + 1. Recall that
#B � #L. The counter C must first be regarded as the number of independent cycles that would
appear in the LP-graph in the course of its evolution even though no cycle is actually created.

We start our relation search. Each time we find a relation R, the LP-graph is modified according
to the following procedure.

• If R is Full, the LP-graph is unchanged and the counter C is incremented.
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• If R involves two large primes or less, we consider a new edge E, labeled by R, for potential
inclusion into the LP-graph. If R is FP, the vertices of E are 1 and p1 (the large prime
appearing in R), while if R is PP, the vertices of E are the two large primes p1 and p2

appearing in R.

We consider the following exclusive cases:

– If adding E would not create any cycle, E is added to the LP-graph.

– If adding E would create a cycle Γ, we are led to a technical distinction. Let k = #Γ be
the number of edges that form Γ, V (Γ) their vertices, and R(Γ) their attached relations.
V (Γ) has cardinality k, and depending on whether 1 ∈ V (Γ) or not, the relations in
R(Γ) involve k − 1 or k large primes, respectively. By linear algebra, we can obtain a
linear combination of the relations in R(Γ) which has the contribution of at least k − 1
large primes canceled. Hence:

∗ If 1 ∈ V (Γ), a Full relation can be obtained. C is increased, and the LP-graph
is unchanged (note that a Full relation may also be obtained in lucky cases even
when 1 /∈ V (Γ) ; this “luck” is automatic in the classical case of the factorization of
integers by the quadratic or number field sieve, because the linear algebra involved
takes place over F2).

∗ Otherwise, an FP relation can be obtained. The counter C is unchanged and the
procedure described is now applied to this FP relation.

It is now apparent that the counter C in fact represents the number of independent Full relations
that are obtained from the input relations (this is the reason for having chosen Cmax = #B + 1).
While this is clearly linked to the number of cycles, the last sub-case states the distinction between
the two.

Implementing the LP-graph as described here together with its evolution process is efficiently
done with the so-called union-find algorithm, presented and analyzed for example in [2]. The
processing time obtained is then essentially constant, and tiny (bounded by the inverse Ackermann
function), for each relation. As a result, the complexity of the relation collection step is the average
time to build a relation times the number of relations to build before the counter C reaches #B+1.

3.2 A simplified algorithm

We propose a simplified algorithm which will be easier to analyze. The setting is slightly restricted,
and the processing of the LP-graph is changed.

3.2.1 Restricted setting

First, we restrict our setting and redefine the large primes and factor base as follows.

• We restrict ourselves to the situation where the jacobian group of the curve is cyclic. Without
loss of generality we can them assume that D1 generates the whole jacobian group.

• B and L are restricted to the orbits of size 2 (we avoid ramification points).

• When testing for smoothness, relations involving ramification points and relations that in-
volve less than g distinct weight 1 reduced divisors are discarded.

Recall that at most 2g + 1 orbits under ι have size 1 (these correspond to the ramification points)
and that reduced divisors having multiplicities are an order of magnitude less numerous than
general reduced divisors, therefore these restrictions have little impact. Note that B ∪ L and
ι(B ∪ L) now form a partition of the non-ramification points of #C(Fq).

This restricted setting is mostly for convenience of the exposition. The hypothesis of the first
statement can be replaced by the assumption that the group structure is known (see Section 6.4),
and the two other statements are there to simplify the probability estimates.
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3.2.2 Simplified LP-graph

The relation search of the simplified algorithm resembles the original one, with the following
radical changes. First, no edge is added to the LP-graph that is not connected to 1. Therefore the
LP-graph can be seen as a tree with root 1. The technical discussion with cycles yielding or not
a Full relation can therefore be skipped: If including some edge would create a cycle, this cycle
would be linked to 1 by construction, so it can always be extended to include 1. Second, we do
not consider all relations: Full relations are never taken into account, and only one FP relation is
ever considered during the construction of the graph. Third, we split the growth of the LP-graph
and the production of recombined relation into different phases.

The relation search now operates with the following three phases. In each of them relations
are drawn uniformly at random, that is to say, α and β in expression (1) on page 4 are drawn
uniformly at random.

Phase 0 – Relations are discarded until one FP relation involving some large prime p
is encountered. The edge 1—p is included in the LP-graph.

We will see that the duration of Phase 0 is negligible, and the switch point between Phase 1
and Phase 2 will be discussed later. During Phase 1, we associate with each incoming PP relation
an edge E (candidate for inclusion in the LP-graph) whose vertices are the large primes p1 and p2

appearing in the relation.

Phase 1 – All relations except PP relations are discarded.

• If E would not be connected to the special vertex 1, do nothing.

• If E is already present or would create a cycle, do nothing.

• Otherwise the edge E is added to the LP-graph (thus enlarging the connected
component of 1).

Phase 2 – Relations with arbitrarily many large primes are considered.

• If the large primes involved all belong to the LP-graph, C is incremented.

• Otherwise do nothing (thus the LP-graph does not change).

During Phase 1, the simplified algorithm disregards many relations that would have been
considered by the full algorithm. Furthermore, the LP-graph no longer changes during Phase 2,
while it can always keep growing in the original algorithm. Phase 2 runs until the counter C
reaches the prescribed value Cmax = #B + 1.

In Phase 2 we consider relations with possibly more than 2 large primes. Restricting to 2 large
primes as in the full algorithm would yield the same time complexity but a slightly worse space
complexity.

4 Complexity analysis of the simplified algorithm

In this section, we intend to give an upper bound for the running time of the simplified algorithm.
Let us recall that we analyze the situation where the genus is fixed and q grows to infinity.
Throughout the analysis, the quantities we mention depend on q and on the particular curve C
under consideration. We shall write α ∼ β when α and β are functions such that α/β tends to 1
when q tends to infinity (for any family of curves over Fq). Extending this notation, we also write

α
κ∼ β when α/β tends to some non-zero constant. The o(), O() and Õ() notations also refer to

asymptotic behaviors when q tends to infinity.
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4.1 Probabilities and uniformity of pairs of large primes

The relation collection forms many random linear combinations. By construction, these linear
combinations span the whole subgroup generated by D1. Since we have assumed in 3.2.1 that
JacC(Fq) is cyclic and that D1 is a generator, this equals the whole jacobian group. The subset
of elements of the jacobian group which meet the restrictions stated in paragraph 3.2.1 has car-
dinality exactly 2g

(
#(B∪L)

g

)
. The random linear combinations which are considered are uniformly

distributed within this set.

The uniformity of the large primes is obtained by counting arguments: choose arbitrarily a
set of k large primes. The number of relations which involve these large primes and no others is
exactly 2g

(
#B

g−k

)
. This implies in particular that all possible pairs of two distinct large primes are

met with equal probability. The probabilities to get a Full, FP or PP relation follow:

Proposition 4. Let k be an integer in [1, g−1] and let P1, P2, . . . , Pk be k distinct elements of L.

The number of reduced divisors in the restricted setting that have exactly P1, P2, . . . , Pk as large

primes is 2g
(

#B

g−k

)
. The probabilities a, b, c for a uniformly random reduced divisor to yield a Full,

FP or PP relation are

a ∼ qg(r−1)/g! , b ∼ q(g−1)(r−1)/(g − 1)! , c ∼ q(g−2)(r−1)/(2(g − 2)!) .

Hence, for large enough q, we have a � b � c and #B � #L. To be more precise, we have

#B
#L

κ∼ b

c

κ∼ a

b

κ∼ qr−1 = o(1).

4.2 Expected running time of relation collection

We arbitrarily set our unit of time for the analysis of the relation collection to be the time required
to compute a random relation and factor it. The actual complexity of this unit of time is polynomial
in log q (corresponding to operations in the jacobian group and smoothness tests). Relatively to
this time scale, only integer time values are relevant to a given run of the algorithm.

For our analysis, it is important to study the expected time until the graph has reached a certain
size. Let t(N) be the random variable describing the time needed until the number of edges of the
LP-graph equals N . We are interested in the expected value of t(N), denoted t(N) = E [t(N)].
In general a bold font is used for a random variable and the corresponding italic symbol for its
expected value.

Initially, there are no edges in the LP-graph and t(0) = 0. Each random trial yields an FP
relation with probability b. Hence the expected duration of Phase 0 is given by:

t(1) =
1

b
.

For any integer N ≥ 1, we have:

E [t(N + 1)] = E [t(N)] + E [t(N + 1) − t(N)] ,

and we now have to analyze the quantity t(N + 1)− t(N), which is the time before we encounter
a PP relation involving exactly one large prime that meets the LP-graph.

By Proposition 4, the conditional probability for having such a PP relation depends only on the
size of the LP-graph at this time, and not on its actual composition. Denoting by u the ratio N

#L
,

a PP relation has 0, 1, or 2 of its large primes meeting the LP-graph with respective probabilities
(1 − u)2, 2u(1− u), or u2. Therefore we have:

E [t(N + 1) − t(N)] = δ(N), where δ(x)
def
==

1

2c x
#L

(
1 − x

#L

) .
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Note that δ is a decreasing function on the interval
[
0, #L

2

]
. We let the integer Nmax ∈ [1, #L

2 ]

be the target number of connected large primes in the LP-graph before we switch from Phase 1
to Phase 2. We have:

t(Nmax) =
1

b
+

Nmax−1∑

N=1

δ(N),

=
1

b
+

∫ Nmax

1

δ(x)dx + e, where e is an error term studied below,

=
1

b
+

#L
2c

(
log

(
Nmax

#L

1 − Nmax

#L

)
− log

(
1

#L

1 − 1
#L

))
+ e,

=
1

b
+

#L
2c

(
log Nmax − log

(
1 − Nmax − 1

#L − 1

))
+ e,

=
#L
2c

(log Nmax + O(1)) + e, because Nmax ≤ #L

2 .

The term 1
b is absorbed by the larger quantity #L

2c . The error term is:

e =

Nmax−1∑

N=1

(
δ(N) −

∫ N+1

N

δ(x)dx

)
,

0 ≤ e ≤
Nmax−1∑

N=1

(δ(N) − δ(N + 1)) since δ is decreasing,

0 ≤ e ≤ δ(1) =
#L
2c

(1 + o(1)).

This bound and the formula above yield the expected duration of Phases 0 and 1:

tphases 0, 1 = t(Nmax) ∼
#L
2c

log Nmax. (2)

During Phase 2, all trials are independent, and each entails an increase of the counter C with

probability equivalent to 1
g!

(
#B+Nmax

#B+#L

)g

(this is verified easily). Therefore the expected duration

of Phase 2 is:

tphase 2 ∼ #Bg!

(
#B + #L

#B + Nmax

)g

. (3)

Calculus yields that the total expected running time of Phases 1 and 2 is minimized by setting:

Nmax ∼
(
2cg#Bg!#Lg−1

) 1
g κ∼

(
c#B#Lg−1

) 1
g κ∼ q

1+r(g−1)
g .

We will see in the next two sections that the running time of the linear algebra grows like
log(Nmax), so that we are not too far from the optimal by tuning Nmax only with respect to the
relation collection.

Substituting inside formulae (2) and (3) this value for Nmax as well as the values for c, #B,
#L, we obtain the following asymptotic equivalent for the expected running time of the relation
collection:

trel. collec.
κ∼ q1−(g−2)(r−1) log q,

∈ O
(
q1−(g−2)(r−1) log q

)
. (4)

This represents the expected number of random linear combinations to explore before finding
enough relations with the simplified algorithm. Note that this hides the complexity for arithmetic
operations in the jacobian group and smoothness tests, since these operations represent a unit of
time.
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4.3 Linear algebra

The next step of the discrete logarithm computation is a linear algebra problem: Finding a non-
trivial vector in the kernel of a sparse matrix of size #B using Lanczos or Wiedemann algorithm.
This step has to be done modulo the group size. However, if this is not a prime (and especially if
this is not a square-free number), some complications arise for which we refer to [9]. This linear

algebra step has a complexity proportional to (#B)
2

times the row weight of the matrix. The
rows of the matrix correspond either to Full relations or to recombined relations created by the
large prime matching process.

The recombined relations are computed during Phase 2 of the algorithm, when all large primes
involved belong to the LP-graph. Let us denote by ` the expected average depth of the LP-graph
during Phase 2 (in this phase the LP-graph does not evolve). The expected weight of a recombined
relation involving k large primes is at most g− k + k`g factor base elements , therefore O(`). This
implies that the linear algebra step requires

O
(
`q2r

)

operations modulo the group order.

4.4 Analysis of the LP-graph depth

For any integer N representing the size of the LP-graph at a given time during Phase 1, and for any
integer i ≥ 0, let the random variable di(N) denote the number of vertices (excluding 1) belonging
to the graph and linked to the special vertex 1 by a path of length i. We have d0(N) = 0, and
di(N) = 0 for all i > N . Furthermore we have

∑∞

i=0 di(N) = N .

Let w(N)
def
==
∑∞

i=0 idi(N), so that w(N)
N is the average depth of the LP-graph. We have:

E [w(N + 1) (di(N))i] = w(N) +

∞∑

i=0

(i + 1)
di(N)

N
,

= w(N) + 1 +
w(N)

N
.

We infer an easy recurrence formula for w(N)
def
== E [w(N)]:

w(N + 1) − w(N) = 1 +
w(N)

N
.

The expected average graph depth during Phase 2 is w(Nmax)
Nmax

. In order to bound this value,
we introduce the auxiliary function f defined by f(x) = x + x log x. This function is a solution
of the differential equation analogous to the recurrence formula above. Since f ′ is an increasing
function, we have for any integer N :

f(N + 1) − f(N) ≥ f ′(N) = 1 +
f(N)

N
.

Since we also have f(1) = w(1) = 1, this implies by induction that w(N) ≤ f(N), and:

` =
w(Nmax)

Nmax
≤ f(Nmax)

Nmax
= 1 + log Nmax.

Given that Nmax ≤ #L

2 and #L

2 < q for q � 1, we finally reach a bound for the complexity of the
linear algebra step:

tlin. alg. ∈ O
(
q2r log q

)
. (5)

The“unit of time”corresponding to this equation is the time of operations modulo the group order.
As for the relation collection case, this hides a complexity involving logarithmic factors in q.
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4.5 Computing the discrete logarithm

The dependency obtained from the linear algebra step has the form AD1 + BD2 = 0, where the
coefficients A and B are obtained as the sums of the corresponding terms in the different relations
involved in the dependency. We must show that from the dependency, the logarithm of D2 to base
D1 can be obtained with high probability, i.e. that B is invertible modulo #G.

After the first phase, each connected large prime in the LP-graph corresponds to a weight 1 re-
duced divisor that can be rewritten as a sum of elements in the factor base plus a linear combination
of D1 and D2. Let us consider now what happens in the second phase when a linear combination
D = αD1 +βD2 produces a row in the matrix. The reduced divisor D can be obtained in as many
as #G different ways from combinations of D1 and D2, and all these combinations have equal
probability (any value for β is possible, and for each β only one value of α gives a sum equal to
D). If D contains some large primes, they have to be rewritten using the LP-graph. Hence the
row will correspond to the reduced divisor D′ = D + α′D1 + β′D2 = (α + α′)D1 + (β + β′)D2,
where α′ and β′ depend only on the large primes and the data in the LP-graph. The perturbation
due to the use of large primes is therefore independent of the choice of α and β that give D. We
have thus obtained that each row corresponds to as many as #G different combinations of D1 and
D2, and all these combinations have equal probability.

Looking at the final result, we use the same kind of argument: The result of the linear algebra
computation does not depend on the particular way the reduced divisor corresponding to each row
is represented as a sum of D1 and D2. Therefore the resulting linear combination between D1 and
D2 that annihilates is uniformly random among all the possible choices. The probability that B

is not invertible modulo #G is no more than 1 − φ(#G)
#G . In that unlucky case, we can add a row

to the matrix, thus yielding another dependency to try. Since lim inf φ(n)
n = e−γ

log log n , this means

that in worst cases (namely if #G is a smooth integer), we have to add an expected number of
O(log log #G) rows to the matrix, which does not change the complexity. In these special cases,
however, since #G is smooth, one should also consider the Pohlig-Hellman algorithm [22].

4.6 Proof of theorem 1

The times trel. collec. and tlin. alg. are relative to different units, both hiding arithmetic complexities
which are polynomial in log q. Ignoring such logarithmic factors which are of negligible importance
to the overall complexity, we can balance the relation search (see Formula (4)) with the linear
algebra (see Formula (5)) by taking r = 1 − 1

g . Finally, we obtain Theorem 1 stated in the
introduction.

For small genera, we get the following complexities for groups of almost prime orders:

g 3 4 5 6

Pollard’s algorithm q3/2 q2 q5/2 q3

Basic index calculus q2 q2 q2 q2

Balanced index calculus q3/2 q8/5 q5/3 q12/7

Single large prime q10/7 q14/9 q18/11 q22/13

Double large prime q4/3 q3/2 q8/5 q5/3

Obviously, when the genus gets large, the improvement is marginal, not to say invisible. On the
other hand, for genus 3 curves, the Õ(q2) complexity of the basic index calculus becomes Õ(q1.5)

in its balanced variant and drops to Õ(q1.428...) with the single large prime algorithm of [23] and

to Õ(q1.333...) with our double large prime variant. The constants involved are small enough so
that even for small sizes our algorithm is expected to be faster than Pollard’s Rho algorithm. The
crossover is examined in Section 5.2.
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5 Computer experiments

We have implemented the full algorithm with two goals in mind. First we want to assert that
the upper bound obtained for the running time of the simplified algorithm is not too far from the
running time of the full algorithm. In particular, we need to check that the cycle length is not too
bad, since there is no easy argument to relate it to the cycle length we analyzed in the simplified
algorithm. The second objective is to compare our algorithm with Pollard’s Rho algorithm.

Our implementation is in C/C++ and covers only hyperelliptic curves of genus 3, since this is the
most important case. We programmed the arithmetic in the jacobian group using explicit formulae,
based on the work of [27]. On a Pentium-M processor clocked at 1.7 GHz, our implementation
performs 200000 additions or doublings in the jacobian group per second (i.e. 5 microseconds
each), for a prime base field of size up to 227. A step of the algorithm, corresponding to the unit
of time chosen in the analysis above, is performed in 20 microseconds. This includes the time for
the smoothness test.

5.1 Relation search in the full algorithm

The series of experiments shown in Table 1 gives an idea of how the full algorithm performs. The
final values of t for several experiment sizes are listed. We recall that t represents the number of
trial relations to test for smoothness before sufficiently many recombined relations are obtained.
The running time of the relation search is t times a polynomial expression in log q accounting for
arithmetic in the jacobian group and smoothness tests.

q final t t/q4/3 #B cyc. len.
log q

≈ 215 815473 0.78 512 1.29

≈ 216 1811672 0.69 812 1.19

≈ 217 4705192 0.71 1290 1.41

≈ 218 11253002 0.67 2047 1.42

≈ 219 27776102 0.66 3250 1.44

≈ 220 66834647 0.63 5160 1.47

≈ 221 170327927 0.63 8191 1.59

≈ 222 417044579 0.62 13003 1.70

≈ 223 1036566361 0.61 20642 1.80

≈ 224 2576921045 0.60 32767 1.92

≈ 225 6430349490 0.59 52015 2.02

≈ 226 15899195912 0.58 82570 2.18

≈ 227 39993810485 0.58 131071 2.32

Table 1: Final value of t for the full algorithm.

The comparison of t with q4/3 is given in the third column. Since the LP-graph has #L ≈ q/2
vertices and that on average every ≈ 2q1/3 steps one produces either an edge or an increment of C,
then the running time of the first phase of the full algorithm is bounded by a constant times q4/3.
Hence a log q factor is saved in this phase compared to the analysis of the simplified algorithm.

For the average cycle length, given in the fifth column, it seems to be slightly worse than log q,
but it is not possible to make a guess for the real asymptotic behavior from these experimental
values.

11



5.2 Comparison with Pollard Rho

The Pollard Rho algorithm is known to have Õ(
√

#G ) complexity. More precisely, in the case
of a prime order jacobian group of a hyperelliptic curve of genus three, the number of jacobian
operations required is equivalent to

√
π#J/2 (we take advantage of the hyperelliptic involution).

Instantiated with the parameters for a genus three curve over Fq , where q ≈ 227, this yields
1.37 · 1012 operations in the jacobian group, or, at the pace quoted above, 79 days of computation
on a Pentium-M processor.

In comparison, the index calculus algorithm described here, with the double large prime vari-
ation, requires only 4 · 1010 jacobian group operations and smoothness tests on the same curve as
above. This corresponds to 9 days of computation. We performed the corresponding linear algebra
computation, using as a linear system solver the block Wiedemann implementation described in
[5, 24, 25]. This linear algebra computation required 5.8 days of computation on the same proces-
sor. Therefore, the algorithm presented here induces a speed-up of 5.3 compared to Pollard Rho
for this problem size. For a curve defined over a field of size 224, the corresponding speed-up is
already of 4.4. Using our implementation, a definition field of size 227 would correspond roughly
to the crossover point between Pollard Rho and the single large prime algorithm.

q Relation search Linear algebra Total Pollard Rho (estim.)

224 0.6 days 0.2 days 0.8 days 3.5 days

227 9 days 5.8 days 14.8 days 79 days

Table 2: Total time for our algorithm and Pollard’s Rho.

Note that because of the linear algebra step, the index calculus approach cannot enjoy the
same amount of parallelization as Pollard’s algorithm and its variants. Partial distribution of the
linear algebra is possible through the use of multi-processor machines, and taking advantage of the
distribution capabilities of the block Wiedemann algorithm. For the largest experiment, we have
been able to reduce the linear algebra wall-clock time to 1.9 days this way, with room for further
improvement since we have not yet ported the asymptotically fast algorithm presented in [24].

6 Qualitative comments

6.1 Growth of the LP-graph

We digress here to comment briefly on the growth of the LP-graph in the context of the simplified
algorithm. Previous works dealing with double large prime variants [17, 18] have coined terms such
as “explosive growth”or “phase transition” for describing the growth of this graph. Such behaviour

t

u(t)

0 T ∗

Figure 1: General form of u(t).

t

u(t)

0 T ∗

Figure 2: u(t) when #L � 1.

is indeed shown by the equations obtained. We can obtain a graphical view of the evolution of the
LP-graph as time goes by expressing the size N of the graph as a function of the expected time t.

Figures 1 and 2 represent the ratio u(t)
def
== N

#L
for arbitrary values of the relevant constants. On

a large scale, i.e. when #L � 1 as in Figure 2, the slope close to t = 0 looks horizontal.
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The curve has an inflexion point at time T ∗ = (T + O(1)) log #L with T = #L

2c . The time T ∗

can be viewed as a transition point, since it is around this time that u(t) varies the most and jumps
from 0 to 1. Indeed, for #L � 1, for t = T ∗ − 2T , we have u(t) ≈ 0.12, whereas for t = T ∗ + 2T ,
we have u(t) ≈ 0.88.

We note however that by the choice of Nmax, the construction of the LP-graph already termi-
nates at a time of ∼ (1 − 1

g + 1
g2 ) · T ∗, i.e. before the phase transition is reached.

6.2 Full algorithm and random graphs

We used experiments in order to get an idea of the behaviour of the cycle lengths in the full
algorithm, but, as we said before, it is hard to guess an asymptotic behaviour from these. Another
approach to make conjectures is to consider the LP-graph as a random graph perturbed by the
special vertex 1 and the numerous edges attached to it due to FP relations. At the end of the

computation we expect as many as O(b q2− 2
g ) = O(q1− 1

g ) such edges, so this perturbation is more
important for high genera.

We mention two theoretical results from the literature on random graphs. The first suggests
the cycle length might be exponential, but is probably too pessimistic. The second suggests
polynomial cycle length, but is probably too optimistic.

In [10], it is proven that the first cycle in a random graph appears once #L/2 edges are included
and the length of the first cycle is of order Θ((#L)1/6). It is also proven that for any constant k,
the k-th cycle has a length of order Θ((#L)1/6 log(#L)k−1). These lengths would be too large in
our context. This result does not capture our situation for two reasons: First, we need to estimate
the length of a large quantity of cycles, and the analysis of [10] is valid only for the first few cycles.
In particular, it assumes that the cycles are in disjoint components, which is not the case in the
end of the relation search. Second, the presence of the FP relations is enough to make the first
cycle appear earlier than would be expected otherwise.

The other theoretical result is taken from [4]: the diameter of a random graph is O(log(#L))
if the number of edges is a constant bigger than 1/2 · #L. This estimate for the diameter would
be perfect for our analysis. However in the full algorithm the relations are built on the fly as soon
as cycles appear, so that we cannot deduce a useful bound for the cycle lengths, except maybe at
the very end of the relation search. It is also not clear that the algorithm stops at a point where
the graph is dense enough to have the appropriate diameter.

6.3 Memory requirement

For the simplified algorithm, the memory requirement during the linear algebra step is in Õ(q1− 1
g ).

In the full algorithm this might be larger if the cycle length cannot be bounded by a polynomial
in log q.

For the relation collection, the estimate of the memory requirement is in Õ(q), if a näıve
implementation is used for the LP-graph. Indeed, there are #L = O(q) vertices in the graph and
since no edge that would create a cycle is ever stored in the LP-graph, there are at most O(q)
edges, so we need O(q) memory to store the LP-graph information.

In the case of the full algorithm we cannot hope for a better storage requirement, since the
experiments suggests that Θ(q) edges are indeed needed before having enough relations.

On the other hand, in the simplified algorithm, at the end of Phase 2, the LP-graph has

only Nmax = O(q
1− 1

g + 1
g2 ) edges. Therefore most of the vertices (i.e. large primes) are never

used. Choosing an appropriate data structure the memory requirement drops to Õ(Nmax) (with
a possible loss of a log q factor in the time complexity, in order to handle the data structure).

Hence the memory requirement of the simplified algorithm can be made smaller than for the
full algorithm by an exponential factor. This should be kept in mind for practical applications,
when the memory might be problematic. A reasonable approach might be to implement a mixture
between the full and the simplified algorithm, where we keep the memory low but still make use
of the FP relations.
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6.4 Relevance to more general context

We now provide heuristic arguments backing the validity of our approach to a broader context.
We have restricted our proof to the case of hyperelliptic curves of cyclic jacobian group given

by an imaginary Weierstrass equation. If the jacobian group is not cyclic, our analysis is not
valid. However, as soon as the group structure is known, we can follow the randomizing strategy
of Section 7 in [9] to produce uniformly random elements in the whole group.

Furthermore, the results are formulated only for the context of hyperelliptic curves, but on
heuristic basis our algorithm should perform equally well for general curves.

General setting

For any fixed genus g, we consider a family of curves over a finite field Fq with q elements, where
q grows to infinity. We assume that the curves are given in the following representation, which
is more suitable from the algorithmic point of view. Let C be a curve in the family. Even if
the practical models are affine or singular, we actually consider a complete non-singular curve
associated to it, and the notation C is reserved for this non-singular model. The algorithmic
assumptions are the following:

• There exists a rational point P∞ ∈ C(Fq). This is true for any curve as long as q is large
enough.

• The group structure of JacC(Fq) is known. Namely we have an explicit set of generators G1,
. . . , Gk, of known orders such that JacC(Fq) = 〈G1〉 ⊕ · · · ⊕ 〈Gk〉.

• We have a probabilistic algorithm running in time polynomial in log q to perform the group
operations in JacC(Fq). The elements are represented by divisors in the form E − wP∞,
where E is an effective divisor of degree w ≤ g and w is minimal. Such an E exists and is
unique in each class, and E − wP∞ is called a reduced divisor.

• We have a probabilistic algorithm running in time polynomial in log q to decompose an
effective divisor as the sum of its prime divisors.

Apart from the known group structure, these assumptions are verified in the classical case of
hyperelliptic curves given by an imaginary Weierstrass equation (using Mumford representation),
and for Cab curves. Also, if a curve is given by a plane equation of bounded degree, there are
algorithms available to perform the group operations in polynomial time [26, 15, 13].

In this setting, it is possible to define the factor base and the large primes by partitioning the
set of effective divisors of degree 1 into sets of appropriate cardinalities. The descriptions of the
full and simplified algorithms for hyperelliptic curves extend easily, with Cantor’s algorithm and
Mumford representation replaced with their generalized equivalent notions. However, the proof of
the simplified algorithm does not follow, since it heavily relies on the statistical properties of large
primes given in Proposition 4. In the case of hyperelliptic curves, it was simple to estimate these
statistics, based on the properties of the Mumford representation with respect to the hyperelliptic
involution. Heuristically, there seems to be no reason why the statistics would behave differently
for general curves, however a proof in the most general setting is out of the scope of this work,
and we keep to a heuristic result for non-hyperelliptic curves.

7 Conclusion

We have described two algorithms for solving discrete logarithms in curves of small genus at least 3.
The first one is a traditional double large prime variant of the algorithm of [23] and its complexity
is heuristic. The second algorithm is a simplified variant that can be rigorously analyzed in the
context of cyclic jacobian groups of hyperelliptic curves. The complexity is better than previously
known methods and experiments demonstrated that even for rather small sizes, our method is
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faster than Pollard Rho algorithm. On the other hand, the space requirement is much larger and
can become problematic.

The direct application to cryptography is that the security of a genus 3 cryptosystem is over-
estimated if only Pollard’s Rho algorithm is taken into account. Indeed, we have shown that the
running time for solving a discrete logarithm problem in a genus 3 jacobian group has a complex-
ity similar to a discrete logarithm computation in an elliptic curve for which the logarithm of the
group order is 1/9th smaller. We therefore recommend to enlarge the group-size by 12.5%.

The complexity of our attack, as for any index calculus method, depends only on the size of
the whole jacobian group. Hence we are in a situation somewhat similar to multiplicative groups
of finite fields: It is possible to work in a subgroup and with a private key whose sizes are large
enough to counter Pollard Rho and similar attacks, as long as the size of the whole group is large
enough to prevent an index calculus attack.

We note that our method also applies to the Weil descent algorithm of [12] that attacks elliptic
curves defined over small extension fields. Hence, this asymptotic 12.5% penalty also applies to
elliptic curve cryptosystems defined over extension finite fields whose degree is a multiple of 3.

Finally, we would like to point out that an alternative double large prime method that uses
smooth functions instead of divisors has recently been proposed [7] for the non-hyperelliptic setting.
A heuristic complexity analysis indicates that this algorithm can solve the discrete logarithm
problem in jacobian groups of non-hyperelliptic curves of genus 3 over Fq in time of Õ(q).
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