P. S. Bilodeau, J. K. Domsic, A. Mayeda, A. R. Krainer, and C. M. Stoltzfus, RNA Splicing at Human Immunodeficiency Virus Type 1 3' Splice Site A2 Is Regulated by Binding of hnRNP A/B Proteins to an Exonic Splicing Silencer Element, Journal of Virology, vol.75, issue.18, pp.75-8487, 2001.
DOI : 10.1128/JVI.75.18.8487-8497.2001

C. Z. Cai, W. L. Wang, L. Z. Sun, and Y. Z. Chen, Protein function classification via support vector machine approach, Mathematical Biosciences, vol.185, issue.2, pp.111-122, 2003.
DOI : 10.1016/S0025-5564(03)00096-8

L. Cartegni, J. Wang, Z. Zhu, M. Q. Zhang, and A. R. Krainer, ESEfinder: a web resource to identify exonic splicing enhancers, Nucleic Acids Research, vol.31, issue.13, pp.31-3568, 2003.
DOI : 10.1093/nar/gkg616

Y. Cavaloc, C. F. Bourgeois, L. Kister, and J. Stevenin, The splicing factors 9G8 and SRp20 transactivate splicing through different and specific enhancers, RNA, vol.5, issue.3, pp.468-483, 1999.
DOI : 10.1017/S1355838299981967

N. Cristianini and J. Shawe-taylor, An Introduction to Support Vector Machines and other kernel-based learning methods, 2000.
DOI : 10.1017/CBO9780511801389

D. Eveillard, D. Ropers, H. De-jong, C. Branlant, and A. Bockmayr, Multiscale Modeling of Alternative Splicing Regulation, Computational Methods in Systems Biology (CMSB'03), Springer LNCS 2602, pp.75-87, 2003.
DOI : 10.1007/3-540-36481-1_7

URL : https://hal.archives-ouvertes.fr/inria-00099792

B. R. Graveley, Sorting out the complexity of SR protein functions, RNA, vol.6, issue.9, pp.1197-1211, 2000.
DOI : 10.1017/S1355838200000960

Y. Guermeur, A. Elisseeff, and H. Paugam-moisy, A new multi-class SVM based on a uniform convergence result, Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium, pp.183-188, 2000.
DOI : 10.1109/IJCNN.2000.860770

URL : https://hal.archives-ouvertes.fr/inria-00099215

I. Guyon, B. E. Boser, and V. Vapnik, Automatic Capacity Tuning of Very Large VC-Dimension Classifiers, NIPS Theoretical Computer Science, vol.178, pp.147-155, 1992.

T. J. Hope, The Ins and Outs of HIV Rev, Archives of Biochemistry and Biophysics, vol.365, issue.2, pp.186-191, 1999.
DOI : 10.1006/abbi.1999.1207

S. Jacquenet, D. Ropers, P. Bilodeau, S. Damier, L. Mougin et al., Conserved stem-loop structures in the HIV-1 RNA region containing the A3 3' splice site and its cis-regulatory element: possible involvement in RNA splicing, Nucleic Acids Research, vol.29, issue.2, pp.464-478, 2001.
DOI : 10.1093/nar/29.2.464

G. Kucherov and M. Rusinowitch, Matching a set of strings with variable length don't cares, Theoretical Computer Science, vol.178, issue.1-2, pp.129-154, 1997.
DOI : 10.1016/S0304-3975(97)88195-9

H. X. Liu, R. S. Zhang, F. Luan, X. J. Yao, M. C. Liu et al., Diagnosing Breast Cancer Based on Support Vector Machines, Journal of Chemical Information and Computer Sciences, vol.43, issue.3, pp.900-907, 2003.
DOI : 10.1021/ci0256438

H. X. Liu, S. L. Chew, L. Cartegni, M. Q. Zhang, and A. R. Krainer, Exonic Splicing Enhancer Motif Recognized by Human SC35 under Splicing Conditions, Molecular and Cellular Biology, vol.20, issue.3, pp.1063-1071, 2000.
DOI : 10.1128/MCB.20.3.1063-1071.2000

V. Marchand, A. Mereau, S. Jacquenet, D. Thomas, A. Mougin et al., A Janus Splicing Regulatory Element Modulates HIV-1 tat and rev mRNA Production by Coordination of hnRNP A1 Cooperative Binding, Journal of Molecular Biology, vol.323, issue.4, pp.629-652, 2002.
DOI : 10.1016/S0022-2836(02)00967-1

A. Mayeda, J. Badolato, R. Kobayashi, M. Q. Zhang, E. M. Gardiner et al., Purification and characterization of human RNPS1: a general activator of pre-mRNA splicing, The EMBO Journal, vol.18, issue.16, pp.18-4560, 1999.
DOI : 10.1093/emboj/18.16.4560

J. Qian, J. Lin, N. M. Luscombe, H. Yu, and M. Gerstein, Prediction of regulatory networks: genome-wide identification of transcription factor targets from gene expression data, Bioinformatics, vol.19, issue.15, pp.19-1917, 2003.
DOI : 10.1093/bioinformatics/btg347

E. Roulet, S. Busso, A. A. Camargo, A. J. Simpson, N. Mermod et al., High-throughput SELEX???SAGE method for quantitative modeling of transcription-factor binding sites, Nature Biotechnology, vol.12, issue.8, pp.831-835, 2002.
DOI : 10.1038/nbt718

Y. F. Sun, X. D. Fan, and Y. D. Li, Identifying splicing sites in eukaryotic RNA: support vector machine approach, Computers in Biology and Medicine, vol.33, issue.1, pp.17-29, 2003.
DOI : 10.1016/S0010-4825(02)00057-4

C. Tuerk and L. Gold, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase, Science, vol.249, issue.4968, pp.505-510, 1990.
DOI : 10.1126/science.2200121

V. Vapnik, Principles of risk minimization for learning theory, Advances in Neural Information Processing Systems, pp.831-838, 1992.