
HAL Id: inria-00000919
https://inria.hal.science/inria-00000919

Submitted on 9 Dec 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling multi-clocked data-flow programs in the
Generic Modeling Environment

Loïc Besnard, Christian Brunette, Thierry Gautier, Jean-Pierre Talpin

To cite this version:
Loïc Besnard, Christian Brunette, Thierry Gautier, Jean-Pierre Talpin. Modeling multi-clocked data-
flow programs in the Generic Modeling Environment. [Research Report] PI 1771, 2005, pp.40. �inria-
00000919�

https://inria.hal.science/inria-00000919
https://hal.archives-ouvertes.fr

I
 R

 I
 S

 A
IN

S
T
IT

U
T
 D

E
 R

E
C

H
E
R

C
H

E
 E

N
 IN

FO
R
M

ATIQ
UE E

T S
YSTÈMES ALÉATOIRES

P U B L I C A T I O N
I N T E R N E
No

I R I S A
CAMPUS UNIVERSITAIRE DE BEAULIEU - 35042 RENNES CEDEX - FRANCEIS

S
N

 1
16

6-
86

87

1771

MODELING MULTI-CLOCKED DATA-FLOW PROGRAMS
IN THE GENERIC MODELING ENVIRONMENT

LOÏC BESNARD , CHRISTIAN BRUNETTE , THIERRY
GAUTIER , JEAN-PIERRE TALPIN

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTÈMES ALÉATOIRES

Campus de Beaulieu – 35042 Rennes Cedex – France
Tél. : (33) 02 99 84 71 00 – Fax : (33) 02 99 84 71 71

http://www.irisa.fr

Modeling multi-clocked data-flow programs in the
Generic Modeling Environment

Löıc Besnard* , Christian Brunette** , Thierry Gautier*** , Jean-Pierre

Talpin****

Systèmes communicants
Projet Espresso

Publication interne n˚1771 — December 2005 — 40 pages

Abstract: This paper presents Signal-Meta, the metamodel designed for the synchronous
data-flow language Signal. It relies on the Generic Modeling Environment (Gme), a con-
figurable object-oriented toolkit that supports the creation of domain-specific modeling and
program synthesis environments. The graphical description constitutes the base to build
environments to design multi-clocked systems, and a good front-end for the Polychro-

ny platform. To complete this front-end, we develop a tool that transforms the graphical
Signal-Meta specifications to the corresponding Signal program.

Key-words: Metamodeling, Gme, synchronous languages, Signal

(Résumé : tsvp)

* loic.besnard@irisa.fr
** christian.brunette@irisa.fr

*** thierry.gautier@irisa.fr
**** jean-pierre.talpin@irisa.fr

Centre National de la Recherche Scientifique Institut National de Recherche en Informatique
(UMR 6074) Université de Rennes 1 – Insa de Rennes et en Automatique – unité de recherche de Rennes

Modélisation de programmes orientés flot de données

multi-horloges dans GME

Résumé : Cet article présente Signal-Meta, le métamodèle conu pour le langage synchrone
orienté flot de données Signal. Signal-Meta est basé sur l’environnement générique de
modélisation orienté objet Gme. Gme fournit un ensemble configurable d’outils permettant
la création d’environnements aussi bien de modélisation pour des domaines spécifiques que
de synthèse de programmes. Signal-Meta constitue une brique de base pour construire des
environnements pour modéliser des systèmes multi-horloges et un bon éditeur graphique de
modélisation pour Polychrony. Pour réaliser la liaison entre Signal-Meta et Polychro-

ny, nous avons développé un outil transformant les spécifications graphiques de Signal-Meta
en code Signal.

Mots clés : Métamodélisation, Gme, langages synchrones, Signal

Modeling multi-clocked data-flow programs in GME 3

Contents

1 Introduction 4

2 POLYCHRONY and SIGNAL 4
2.1 Syntax . 5
2.2 SIGNAL’s data-flow graph . 6
2.3 Micro-step synchronous automata . 7
2.4 Micro-step semantics of SIGNAL’s data-flow graphs 8

3 GME 9

4 SIGNAL metamodel 12
4.1 Signal-Meta concepts . 13
4.2 Aspects . 15
4.3 OCL constraints and extension . 15

5 Example 16

6 Model Interpretation 17

7 Discussion 20

8 Conclusions 21

A Signal-Meta paradigm sheets 24
A.1 Containers . 24
A.2 Signals and constants . 25
A.3 Operators . 27
A.4 Relations . 30
A.5 Clock relation and constraint operators . 31
A.6 Dependences . 32
A.7 Assertions and pragmas . 33

B Signal-Meta OCL constraints 34

PI n˚1771

4 Besnard & Brunette & Gautier & Talpin

1 Introduction

The synchronous hypothesis has been proposed in the late ’80s and extensively used ever
since to facilitate design of control-dominated systems. Nowadays synchronous languages
are commonly used in the European industry, especially in avionics, to rapidly prototype,
simulate, verify and synthesize embedded software for mission critical applications. However,
synchronous programming languages, such as Lustre, Lucid, Esterel, Signal are most
commonly regarded as ”domain-specific” languages, as their usage is mostly restricted to
aid highly-trained engineers to design mission-critical systems.

In the aim of bringing synchronous technologies to a vaster community aware of model-
driven engineering, we have developed a simple and highly extensible interface to the Poly-

chrony workbench, that implements the multi-clocked synchronous data-flow language Sig-

nal, with the Generic Modeling Environment (or Gme) [13]. This interface is the medium
to experiments with relating the polychronous model of computation of the workbench with
more ergonomic and diagrammatic notations such as data-flow diagrams, Uml state dia-
grams and the combination of both as mode automata. The aim of this experiment is to
find the simplest and most ergonomic representation of a formal model of time such as that
of the Polychrony workbench in the forthcoming real-time profiles for more vastly known
notations such as the Uml state diagrams.

The remainder is organized as follows. Sections 2 and 3 first introduce respectively
the Signal language and the Generic Modeling Environment. Section 4 describes Signal-
Meta, the metamodel of Signal specified in Gme. Section 5 illustrates how to use this
metamodel through the description of an example. Section 6 presents the component added
to Gme to transform the graphical specifications into a Signal code. The adopted approach
is discussed in Section 7 and finally, conclusions and future works are given in Section 8.

2 POLYCHRONY and SIGNAL

Among other synchronous frameworks, the Polychrony workbench, available from [9],
implements an original model of time as partially ordered synchronization and scheduling
relations, to provide the ability to model high-level abstractions of systems paced by mul-
tiple clocks: locally synchronous and globally asynchronous systems. It provides a flexible
way to model heterogeneous and complex distributed embedded systems at a high level of
abstraction, while reasoning within a simple and formally defined mathematical model.

In Polychrony, design proceeds in a compositional and refinement-based manner
by first considering a weakly timed data-flow model of the system under consideration
and then provides expressive timing relations to gradually refine its synchronization and
scheduling structure to finally check correctness of the assembled components using as-
sumption/guarantee reasoning. The synchronous language Signal, which is associated with
Polychrony, favors the progressive design of correct by construction systems by means of
well-defined model transformations, that preserve the intended semantics of early require-

Irisa

Modeling multi-clocked data-flow programs in GME 5

ment specifications to eventually provide a functionally correct deployment on the target
architecture.

The Polychrony IDE offers several tools including the Signal batch compiler that
provides a set of functionalities, such as program transformations, optimizations, formal
verification, and code generation. Polychrony includes the Sigali model checker [14],
which enables both verification and controller synthesis, and it also includes a graphical
user interface for Signal.

The following presents first the syntax of the Signal language in Section 2.1, and in
Section 2.2, the multi-clocked data-flow graphs, which are the internal representation used
for analysis and transformation of programs. The semantics of multi-clocked data-flow
graphs is described by considering the theory of synchronous micro-step automata proposed
by Potop et al. in [16] (see also the micro automata defined for the DC+ format in [7] and
for Signal in [3]). The general framework of micro-step synchronous automata is presented
in Section 2.3, and an operational semantics of Signal’s data-flow graphs is described in
Section 2.4.

2.1 Syntax

The Signal language handles unbounded series of typed values (xt)t∈N, called signals,
denoted as x and implicitly indexed by discrete time. At a given instant, a signal may be
present, at which point it holds a value; or absent. The set of instants where a signal x is
present is called its clock. It is noted as ^x. Signals that have the same clock are said to be
synchronous. A Signal process is a system of equations over signals that specifies relations
between values and clocks of the involved signals. A program is a process. Signal relies on
a six primitive constructs, which are combined using a composition operator:

• An equation y:= f(x) describes a relation between a sequence of operands x and a
sequence of results y by a process f.

• A delay equation x := y$n init v initially defines the signal x by the value v and
then by the n-th previous value of the signal y. In a delay equation, the signals x and
y are assumed to be synchronous, i.e., either simultaneously present or simultaneously
absent at all times.

• A sampling x := y when z defines x by y when z is true and both y and z are present.
In a sampling equation, the output signal x is present iff both input signals y and z
are present and z holds the value true.

• A merge x := y default z defines x by y when y is present and by z otherwise. In
a merge equation, the output signal is present iff either of the input signals y or z is
present.

• The synchronous composition (| P | Q |) of the processes P and Q consists of simul-
taneously considering a solution of the equations in P and P at any time.

PI n˚1771

6 Besnard & Brunette & Gautier & Talpin

• The hiding equation P where x restricts the lexical scope of a signal x to a process P.

These primitives are of sufficient expressive power to derive other constructs for comfort
and structuring: the clock synchronization operator (^=) for example. The equation x ^= y
synchronizes the clocks of signals x and y. It corresponds using Signal’s primitives to
(| h := (^x = ^y) |) where h.

Signal provides a process model in which any Signal process may be “encapsulated”
(see an example in Fig. 5). Different categories of process models are syntactically distin-
guished: these are actions, functions, nodes, and processes. This process frame allows to
abstract a process to an interface, so that the process can be used afterwards as a black
box through its interface. This interface describes parameters, input-output signals and
clock and dependence relations between them. A process model also enables the definition
of sub-processes. Sub-processes that are specified by an interface without any internal be-
havior are considered as external (they may be separately compiled processes or physical
components). On the other hand, Signal allows to import external modules (e.g. C++
functions). Finally, put together, all these features of the language favor modularity and
re-usability.

2.2 SIGNAL’s data-flow graph

The data-flow synchronous formalism Signal supports an intermediate representation of
multi-clocked specification that exposes its control and data-flow properties for the purpose
of analysis and transformation. A process p is represented as a data-flow graph G. In this
graph, a vertex g is a data-flow relation that partially defines a clock or a signal. A signal
vertex c ⇒ x = f(y1..n) partially defines x by f(y1..n) at the clock c. A clock vertex x̂ = e
defines a relation between two particular signals or events called clocks.

G, H ::= g | (G ||H) |G where x (graph)
g, h ::= x̂ = e | c ⇒ x = f(y1..n) (vertices)

A clock c expresses control and defines a condition upon which a data-flow relation is
executed. The clock x̂ defines when the signal x is present (its value is available). The
clocks x and ¬x mean that x is respectively true and false, and hence present. A clock
expression e is a boolean expression that defines how a clock is computed. 0 means never,
and the operators +̂, ∗̂, and −̂ correspond respectively to the union, intersection, and
complementary of clocks.

c ::= x̂ |x | ¬x (clock) e ::= 0 | c | e1ˆ− e2, | e1ˆ+ e2 | e1 ∗̂ e2 (expression)

The decomposition of a process into the synchronous composition of clock and signal vertices
is defined by induction on the structure of p. Each equation is decomposed into data-flow
functions guarded by a condition, the clock x̂ of the output. This clock will need to be

Irisa

Modeling multi-clocked data-flow programs in GME 7

computed for the function to be executed.

G[x=y$1 init v]
def=(x̂ ⇒ x = y$1 init v) || (x̂ = ŷ)

G[x=y when z]
def=(x̂ ⇒ x = y) || (x̂ = ŷ ∗̂ z)

G[x=y default z]
def=(ŷ ⇒ x = y) || (ẑ ˆ− ŷ ⇒ x = z) || (x̂ = ŷ ˆ+ ẑ)

G[p || q]
def=G[p] ||G[q]

G[p where x]
def=G[p] where x

2.3 Micro-step synchronous automata

Micro-step automata communicate through signals x ∈ X . The labels l ∈ LX generated by
the set of names X are represented by a partial map of domain from a set of signals X noted
vars(l) to a set of values V ⊥ = V ∪{⊥}. The label ⊥ denotes the absence of communication
during a transition of the automaton. We note l′ ≤ l iff there exists l′′ disjoint from l′ such
that l = l′ ∪ l′′ and then l \ l′ = l′′. We say that l and l′ are compatible, written l �� l′,
iff l(x) = l′(x) for all x ∈ vars(l) ∩ vars(l′) and, if so, note l ∪ l′ their union. We write
supp(l) = {x ∈ X | l(x) �= ⊥} for the support of a label l and ⊥X for the empty support.

Synchronous automata account for primitive communications using read and write op-
erations on directed communication channels pairing variables x with directions represented
by tags. Emitting a value v along a channel x is written !x = v and receiving it ?x = v.
We write vars(D) for the channel names associated to a set of directed channels D. The
undirected or untagged variables of a synchronous automaton are its clocks noted c.

An automaton A = (s0, S, X,→) is defined by an initial state s0, a finite set of states S
noted s or x = v, labels LX and by a transition relation → on S × LX × S. The product
A1 ⊗ A2 of Ai = (s0

i , Si, Xi,→i) for 0 < i ≤ 2 is defined by ((s0
1, s

0
2), S1 × S2, X1 ∪ X2,→)

where (s1, s2) →l (s′1, s′2) iff si →l|Xi s′i for 0 < i ≤ 2 and l|Xi the projection of l on Xi. An
automaton A = (s0, S, X,→) is concurrent iff s →⊥ s for all s ∈ S and if s →l s′ and l′ ≤ l
then there exists s′′ ∈ S such that s →l′ s′′ and s′′ →l\l′ s′. A synchronous automaton
A = (s0, S, X, c,→), of clock c ∈ X , consists of a concurrent automaton (s0, S, X,→) which
satisfies

1. s →l s implies l = c or c �≤ l

2. s0 →c s0

3. s →c s′ implies s′ →c s′

4. sk−1 →lk sk and lk �= c∀k ∈]0, n]
then ∀i, j ∈]0, n] and i �= j, vars(li) ∩ vars(lj) = ∅.

We assume that a channel x connects at most one emitter with at most one receiver.
Multicast will however be used in examples and is modeled by substituting variable names
(one !x = v and two ?x = w1,2 will be substituted by two !x = v, !x2 = v and two ?x = w1

?x2 = w2 by introducing a local signal x2).

PI n˚1771

8 Besnard & Brunette & Gautier & Talpin

The composition of automata is defined by synchronized product and synchronous com-
munication using 1-place synchronous FIFO buffers. The synchronous FIFO of clock c and
channel x is noted sfifo(x, c). It serializes the emission event !x = v followed by the receipt
event ?x = v within the same transition (the clock tick c occurs after).

sfifo(x, c) def=

⎛
⎝s0, {s0..2}, {?x, !x, c}, c, s0c ��

!x=v�� s1
?x=v�� s2

c
��

⎞
⎠

Two synchronous automata are composable if their tagged variables are mutually disjoint.
Let Ai = (s0

i , Si, Xi, ci,→i)i=1,2 be two composable synchronous automata and c a clock and
write A[c2/c1] for the substitution of c1 by c2 in A. The synchronous composition A1 || cA2 is
defined by the product of A1, of A2 and of a series of synchronous FIFO buffers sfifo(x, c)
that are all synchronized at the same clock c.

A1 || cA2
def= (A1[c/c1]) ⊗

⎛
⎝ ⊗

x∈ (vars(X1)∩vars(X2))

sfifo(x, c)

⎞
⎠ ⊗ (A2[c/c2])

2.4 Micro-step semantics of SIGNAL’s data-flow graphs

As already demonstrated for Signal in [17], this framework accurately renders concurrency
and causality for synchronous (multi-clocked) specifications. In the following, before pre-
senting these semantics, we first introduce the Signal syntax and some of their constructs.

Clocks A clock expression e corresponds to a transition system T st
e from s to t which

evaluates the presence of signals in accordance to e.

T s,t
c

def=
(
s

lc−→t
)

T s,t
c∧d

def=

⎛
⎜⎜⎝

s′ ld
�����

�

s

lc ������

ld
�����

�
lcld �� t

t′ lc

������

⎞
⎟⎟⎠ /s′t′ T s,t

c∨d
def=

(
T st

c∧d ∪ T st
c ∪ T st

d

)

We write lc for the label l that corresponds to the clock c and canonically denote vx the
generic value of the signal x.

lx̂
def= (?x = vx) lx

def= (?x = 1) l¬x
def= (?x = 0)

Relations A synchronization relation x̂ = e accepts the events x̂ and e in any order, or
none of them, and then performs a clock transition c. Hence, the conditions expressed by x̂
and e need to occur at the same time.

Ax̂=e
def=

⎛
⎝s, {s, t}, {c, x} ∪ vars(e), c,

(
t

c−→s
) vx∈V⋃

vy∈V | y∈vars(e)

T s,t
x̂∧e

⎞
⎠

Irisa

Modeling multi-clocked data-flow programs in GME 9

Clock expressions must be rewritten to fit the definition of Te:

x̂ = e ∧ f
def=(x̂ = ŷ ∧ ẑ || ŷ = e || ẑ = f) /yz

x̂ = e ∨ f
def=(x̂ = ŷ ∨ ẑ || ŷ = e || ẑ = f) /yz

x̂ = e \ f
def=(x̂ = y || ŷ = e ∨ f || ¬y = f) /y

Equations A partial equation c ⇒ x = f(y) synchronizes x to the value of f by y at the
clock c. But x may also be present when either c or y is absent. Therefore, the automaton
requires x to be emitted with the value f(vy) only after the events y and c have occurred. If
at least one of either c or y is present, then x may or may not be present with some value u
computed by another partial equation. The semantics (combinatorially) generalizes to the
case of c ⇒ x = f(y1..n) with n ≥ 0.

Ac⇒x=f(y)

def=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s0, {s0..1, s2..4
vy

, | vy ∈ V }, {x, y} ∪ vars(d), τ,

⋃vz∈V | z∈vars(c)
vx,vy∈V

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1

τ

����
��

��
� ?y=vy

��������������?x=vx

��
s0

τ

		

?x=vx

lc

��

?y=vy

��

lc?y=vy �� s3
vy

!x=f(vy)�� s4
vy

τ �� s0

s2
vy

τ

�������� lc

�����������
?x=vx

��

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Structuration Composition p || q and restriction p/x are defined by structural induction
starting from the previous axioms with

Ap || q
def= Ap || cAq Ap/x

def= (Ap)/x

3 GME

Gme is a configurable Uml-based toolkit that supports the creation of domain-specific
modeling and program synthesis environments [1]. It is developed by the ISIS institute at
Vanderbilt University, and is freely available at [11]. Metamodels are proposed in the envi-
ronment to describe modeling paradigms for specific domains. Such a paradigm includes, for
a given domain, the necessary basic concepts in order to represent models from a syntactical
viewpoint to a semantical one. It also includes all relationships between those concepts,
their organization, and all rules governing the construction of models.

Note To avoid any confusion between Signal and Gme concepts, the following convention
is adopted in the rest of this paper: words beginning with a capital letter refer to Gme con-
cepts, and those in italics refer to concepts of our metamodel. Mainly, be careful with the

PI n˚1771

10 Besnard & Brunette & Gautier & Talpin

notion of model.

To use Gme, a user first needs to describe a modeling paradigm by defining a project
using the MetaGME paradigm. This paradigm is distributed with Gme. All modeling
paradigm concepts must be specified as classes through habitual Uml class diagrams. To
build these class diagrams, MetaGME offers some predefined Uml-stereotypes [13], among
which we use only the following in our metamodel: First Class Object (FCO), Model, Set,
Atom, Reference, and Connection. FCO constitutes the basic stereotype in the sense that
all the other stereotypes inherit from it. It is basically used to represent abstract concepts
(represented by classes). Atoms are elementary objects in the sense that they cannot include
any sub-part, while the Model is used for classes that may be composed of various FCOs.
In a different way, a class with the Set stereotype can contain a sub-set of FCOs registered
in the same Model. A Reference is a typed pointer (as in C++), which refers to another
FCO. The type of the pointed FCO is indicated on the metamodel by an arrow (in Fig. 1,
the SignalRef reference points to a Signal).

Figure 1: Signal-Meta’s Identifier class diagram

There are different kinds of relations that can be expressed between classes, which use
these stereotypes. First, the Containment relation is characterized on the class diagram by
a link ending with a diamond on the container side. Such a link is shown in Fig. 1 for
example between the Input atom and the InterfaceDefinition Model. Inheritance relations
can be represented as in Uml or with two other operators: implementation inheritance and

Irisa

Modeling multi-clocked data-flow programs in GME 11

interface inheritance. In implementation inheritance, the subclass inherits all of the base
class’ attributes, but only those containment associations where the base class functions as
the container. At the opposite, interface inheritance allows no attribute inheritance but does
allow full association inheritance, with one exception: containment associations where the
base class functions as the container are not inherited. All the other types of relationship
are specified by classes that use the Connection stereotype.

There are different kinds of relations that can be expressed between classes, which use
these stereotypes. First, the Containment relation is characterized on the class diagram
by a link ending with a diamond on the container side. Such a link is used in Fig. 1 for
example between the Input atom and the InterfaceDefinition Model. Inheritance relations
can be represented as in Uml or with two other operators: implementation inheritance and
interface inheritance. In implementation inheritance, the subclass inherits all of the base
class’ attributes, but only those containment associations for which the base class functions
is the container. At the opposite, interface inheritance allows no attribute inheritance but
does allow full association inheritance, with one exception: containment associations for
which the base class functions is the container are not inherited. All the other types of
relationship are specified by classes that use the Connection stereotype.

In Fig. 1, some FCOs use a stereotype suffixed by ”Proxy”, such as Module that uses
”ModelProxy”. Such stereotypes are references inside the metamodel to a FCO declared
in another paradigm sheet. To complete these class diagrams, attributes can be added to
classes. These attributes are typed: BooleanAttribute, EnumAttribute that corresponds
to a finite list of choices, and FieldAttribute that is a typed text field (string, integer or
double).

In these class diagrams, Gme provides a means to express the visibility of FCOs within
a model through the notion of Aspect (i.e. one can decide which parts of the descriptions
are visible depending on their associated aspects). Moreover, it is possible to restrict the
use of certain FCOs (add/remove in/from a Model) to a specific Aspect, even if these FCOs
are visible in other Aspects.

Finally, OCL Constraints can be added to class diagrams in order to check some dynamic
properties on a model designed with this paradigm (e.g. the number of allowed connections
associated with a component model). OCL constraints are checked when the events on which
constraints are associated with are emitted. There are different kinds of events corresponding
to the main action during the modeling, such as create a FCO, connect to a FCO, and change
a FCO attribute.

The whole above concepts constitute the basic building blocks that are used to define
modeling paradigms in Gme. Such a modeling paradigm is always associated with a para-
digm file that is produced automatically. Gme uses this file to configure its environment
for the creation of models using the newly defined paradigm. This is achieved by the
MetaGME Interpreter, which is a plug-in accessible via the Gme Graphical User Interface
(GUI). This tool first checks the correctness of the metamodel, then generates the paradigm
file, and finally registers it into Gme.

PI n˚1771

12 Besnard & Brunette & Gautier & Talpin

Similarly to the MetaGME Interpreter, other components can be developed and plugged
into the Gme environment. The role of such a component consists of interacting with
the graphical designs. To achieve the connection between the component and Gme, an
executable module is provided with the Gme distribution, which enables the generation of
the component skeleton. It can be generated in C/C++ or Java. In C++, the skeleton is
written using the low-level COM language or the Builder Object Network (BON) API
[13]. GME distinguishes three families of components that can be plugged to its environment:
Interpreter, Addon, and PlugIn.

• The role of an Interpreter is to check information, such as the correctness of a model,
and/or produce a result, such as a description file. It is the case for the MetaGME
Interpreter. An interpreter is applied on user demand and has a punctual execution.
Further details are given in Section 6.

• Contrarily to the Interpreter, an Addon is executed as soon as a project is opened,
and it works throughout the graphical modeling. An Addon reacts to specific events
sent by Gme. The Gme Constraint checker is an example of an Addon. During the
description of models, it checks each OCL constraint specified in the used paradigm
whenever events to which they relate are emitted by Gme.

• Finally, the PlugIn differs from the above two families of components in that it is
paradigm-independent. This means that a PlugIn could apply generic operations on
models independently of their modeling paradigm. For example, the Auto-Layout
PlugIn provided with Gme has to set the position of each graphical entity to minimize
the number of link intersections and to improve the readability of the selected model.

4 SIGNAL metamodel

The Signal metamodel, called Signal-Meta, describes all the syntactic elements defined in
Signal v4 [3]. Signal-Meta is composed of several paradigm sheets that define all the rela-
tions between the different kinds of signals, Signal operators, and Signal process models.
They define as Atom each Signal operator presented in Section 2 and each other one derived
from them described in [3]. They also define as Model each Signal container (e.g. process
model, sub-process, module), and as Connection each kind of relation between operators
and/or identifiers. Section 4.1 gives more details about the representation of Signal-Meta
concepts, and Annex A describes all Signal-Meta paradigm sheets. Moreover, to facilitate
the modeling, we specify different Aspects presented in Section 4.2. The corresponding di-
vision separates mainly the data-flow part and the control part of Signal specifications. To
complete this metamodel, OCL constraints defined in Signal-Meta bring some interactivity
during the modeling. The list of all current OCL constraints can be found in Annex B. The
main goal was to keep as much expressiveness as possible in Signal-Meta than in Signal,
and to facilitate user modeling with, for example, n-ary operators.

Irisa

Modeling multi-clocked data-flow programs in GME 13

4.1 Signal-Meta concepts

Among all paradigm sheets, the Identifiers ’ one represented in Fig. 1 defines Atoms for
the different kinds of signals (Input, Output, and Local), and constants (ConstantValue and
Parameter). All these Atoms have several attributes including their types, which is an
enumeration of all intrinsic types of Signal. The DeclaredType attribute is dedicated to a
type imported from a Signal library or to a type already declared in Gme. The declaration
of a new type is done via the TypeDeclaration Model. There are different kinds of types, such
as enumeration type, structure type or process model type, which are chosen in the TypeKind
attribute. The way to declare a new type is different according to the kind of the type: for
example, a structure type is specified by adding Local Atoms in the TypeDeclaration Model
and by ordering them, whereas all values of an enumerated type have to be specified in the
EnumValues attribute.

To use in a Model some signal (resp. some constant or index of an iteration) declared in
an upper-level Model, one can use a SignalRef (resp. a ConstantRef) with the same name.
Another way for the different Model levels to communicate is to use Input/Output/Parameter
Atoms. These kinds of Atoms are declared as ports in Gme. This means that they are visible
in the Model where they are added and in the upper-level Model, so that one can connect
them to upper Atoms. Input/Output/Parameter Atoms can be added in all Models that
inherit from the InterfaceDefinition abstract Model.

Input Output Local Parameter ConstantValue

Delay Extraction Merging Add ClockSynchronized

Table 1: Some of Signal-Meta concepts and their icons

The second line of Table 1 shows the appearances during the modeling of some FCO
representing Signal operators. These appearances are images given in an FCO attribute
in the metamodel. Delay corresponds to the delay operator, Extraction to the sampling
operator, Merging to the merge operator, Add to the addition operator, and ClockSynchro-
nized to the clock synchronization operator (all arithmetic, comparison and clock relation
operators are represented as for the Add Atom with their corresponding symbol). To facili-
tate the modeling, we add an Atom for boolean expressions and another one for arithmetic
expressions in which respectively the boolean expression and the arithmetic expression can
be expressed as a textual formula in an attribute.

The main Models of Signal-Meta are ModelDeclaration, SubProcess, and Module. A
ModelDeclaration corresponds to a Signal process model, which can be either an action,
a function, a node, or a process. This choice is done via a ModelDeclaration attribute. A
ModelDeclaration consists of a container in which are declared Input/Output/Local signals,
static Parameters, ModelDeclaration and TypeDeclaration Models, and in which one can

PI n˚1771

14 Besnard & Brunette & Gautier & Talpin

Figure 2: Signal-Meta’s ’Expression Connection’ paradigm sheet

add FCOs corresponding to Signal operators to express relations between signals. Finally,
the Module Model is a library of ModelDeclaration, TypeDeclaration, and ConstantValue
FCOs. Another interesting point is the way to represent Signal process model instantia-
tions. Gme provides a means to express instance objects, thus it would be possible to create
instances of ModelDeclaration Models. A Gme instance of a Model is a deep copy of this
Model in which no FCO can be added or removed, but in which attribute values can be
modified. To guarantee the exact correspondence between the instance and the correspond-
ing ModelDeclaration, we add a Reference, called ModelInstance, in Signal-Meta. Thus,
ModelDeclaration objects are referenced without creating a deep copy of the Model and in
a way that guarantees the exact correspondence between the instance and the declaration.

Concerning relations, Fig. 2 corresponds to one of these paradigm sheets and represents
all relations between Signal-Meta concepts, except clock relations, which are described in
another paradigm sheet. Among them, we can highlight Definition whose destination is
a Signal or a SignalRef (gathered in the SignalOrRef abstract concept - see Fig. 1), and
which allows to specify the definition of a signal. For a given signal, such a Connection can be
used only once. Signal offers a means, called partial definition, to avoid the syntactic single
assignment rule for the definition of a signal, even if semantically, this rule applies. Similarly,

Irisa

Modeling multi-clocked data-flow programs in GME 15

Signal-Meta offers the PartialDefinition Connection to be able to define, in different Models,
the different parts of the signal definition.

To simplify the modeling, we make several Signal operators become n-ary operators in
Signal-Meta. This is done in different ways according to the operator. For operators of type
OrderedInputExpr (e.g. Merging), we use OrderedInputs Connections that have a Priority
attribute whose value allows to order the incoming Connections. Operators of type Input-
Expression (e.g. arithmetic) are divided into two categories: associative and commutative
operators, and the other ones (DissymetricExpr) for which the first element needs to be
identified (e.g. the substraction operator). The first category uses only ExpressionInputs
Connections, while the second one uses FirstOperand to identify the first element.

4.2 Aspects

Signal-Meta organizes its concepts in four Aspects: Interface, Dataflow, ClockAndDepen-
dence, and Library. The Interface Aspect is dedicated to represent input/output signals of
a ModelDeclaration and its static parameters. Moreover, a Specifications Model can be added
to describe clock and dependence relations between these signals. Signals and parameters
are ordered according to their position in this Aspect. The Dataflow Aspect is dedicated to
design all computations of the process and its data flow, whereas the ClockAndDependence
Aspect contains all clock and dependence relations between signals, instantiations, and sub-
processes. Thus, the latter contains mainly clock constraint and relation operators (e.g.
ClockSynchronized, ClockUnion), the Dependence Atom, SignalOrRef s, and all Connections
to link them. The Dataflow Aspect can contain all other Signal operators.

This separation of concerns, also recommended by Jackson in [12], makes the modeling
more readable. Indeed, Connections in the Dataflow Aspect represent data flows, while
they represent only relations in the Clock Relation. However, this separation between the
data-flow and the control parts is not so obvious in Signal. Actually, Signal primitives
implicitly express clock relations between their input/output signals, for example the delay
and arithmetic operators synchronize automatically their inputs and their outputs. Thus,
operators in the Dataflow Aspect also express the control part of the process.

Finally, a Library Aspect is dedicated for the concept of Module. Indeed a Module does
not express the data-flow or the control of a process. It only corresponds to a library of
constant, type, and process model declarations.

4.3 OCL constraints and extension

To be able to give some specific information during the modeling, we specify a number
of OCL constraints to Signal-Meta. They are mainly used to check the coherence of the
values of FCO attributes. For example, one constraint checks that, if the value of the
NumberOfInstants attribute of the Delay Atom is a number and not a name of a signal,
this number is not negative. Another constraint checks that the values of the Priority
attribute for all OrderedInputs Connections with the same destination FCO are different. To

PI n˚1771

16 Besnard & Brunette & Gautier & Talpin

complete these constraints, other constraints are automatically generated by the MetaGME
Interpreter to check the cardinality affected to each relation.

To facilitate the modeling, we have defined all processes considered intrinsic by Signal in
a Gme library. In fact, this library contains three Modules and one ModelDeclaration to
represent all usual mathematical functions (e.g. cosine, sine), specific functions to manage
complex number and to read (resp. write to) the standard input (resp. output). To represent
these functions, we have only defined their interface, which is enough to create ModelInstance
FCO that refers to them, and to connect their input/output signals and parameters.

5 Example

Here, we apply the metamodel presented in the previous Section to the design of a classical
watchdog example. The goal of this watchdog process is to control that some action process
is executed within some delay. At each time, the action process emits an order signal when
it begins its execution, and a finish event when it finishes it. If the job is not finished in
time, the watchdog must emit an alarm signal to indicate at what time an error occurs.
Moreover, if a new order occurs when the previous one is not finished, the time counting
restarts from zero. A finish signal out of delay, or not related to an order, will be ignored.

(a) Inter-
face

(b) Dataflow (c) ClockAndDependence

Figure 3: The Watchdog example

The Watchdog process can be specified in Gme as shown in Fig. 3. Fig. 3(a) represents
the Interface Aspect in which are described the input/output signals and the static parame-
ters of the process. Thus, one has to drag and drop an Input Atom (red boxes) for the order
and finish signals, and an Output Atom (green boxes) for the alarm. In order to count the
time, another input signal called tick, which must be provided at regular interval, is added
to the Interface Aspect to represent each tick of a clock. Finally, the delay to process an

Irisa

Modeling multi-clocked data-flow programs in GME 17

order is expressed as a number of ticks by a Parameter Atom. The types of each of these
signals/parameters are specified in the attributes of the corresponding Atom.

In the Dataflow Aspect (Fig. 3(b)), three local signals are declared: hour, cnt, and
zcnt. The hour signal represents the internal clock to count the time. The cnt signal works
as a countdown before emitting an alarm: when cnt is 0, the alarm is emitted with the
value of hour. The value of cnt is fixed, by order of priority, to: (i) delay when an order
is emitted, (ii) defValue when finish is emitted, (iii) the previous value of cnt contained
by zcnt decremented by one, or finally to (iv) defValue. This order is fixed using the
Priority attribute of all incoming Connections on the Merging Atom. In Fig. 3(b), red
links connect their source FCO as first operand of the destination FCO, green links connect
a boolean expression to an Extraction Atom, black links whose destination is a Signal Atom
correspond to a Definition of this signal, and finally other black links are Connection specific
for each operators (cf. Fig. 2).

In the Clock Aspect (Fig. 3(c)), hour and tick are synchronized using the ClockSyn-
chronized Atom. This leads hour to be incremented at each tick. Moreover, cnt has to be
present each time one of the input signals is present. This is expressed with the ClockUnion
Atom whose result is affected to cnt.

6 Model Interpretation

Taking advantage of the ease of modeling in Gme, we make Gme become a front-end for
Polychrony, the current development platform for Signal, through the use of Signal-
Meta. Then, we need to transform the graphical specifications using Signal-Meta to the
corresponding Signal programs. Therefore, we have implemented a Gme Interpreter for
Signal-Meta models, which acts similarly as the MetaGME Interpreter for MetaGME meta-
models. Figure 4 represents the different steps during the interpretation. There are three
main steps:
Step 1: Tree generation. Each FCO selected in the Gme GUI is associated with a tree
(the intermediate representation in Fig. 4) whose root is the selected FCO. Each node of
these trees corresponds to a Signal process model, and each leaf to a symbol (e.g. signal,
constant) in the generated program. The tree is built by recursive instantiations of each
node into BON objects [13] according to their type in the metamodel. The root FCO is
first instantiated. Then, all its contained Models and FCOs, which correspond to symbols
(e.g. Input, Output), are instantiated. The same process is applied recursively on each
sub-Model. For example, the instantiation of a Module Model results in the instantiation of
its contained elements among which ModelDeclaration, TypeDeclaration, and ConstantValue
FCOs. While ConstantValues are only Atoms, and thus leafs of the tree, ModelDeclarations
and TypeDeclarations contain subparts. In the same manner, each of these container ele-
ments recursively instantiates its own symbols and Signal process models.

PI n˚1771

18 Besnard & Brunette & Gautier & Talpin

representation
intermediate

GME Gui

...

Interpreter

.sig .xml

update
model
automatic

interactive
feedback
visualizing

2: Check&Build

3: write in files

...

1: graph generation

Figure 4: From Gme to Signal files.

Step 2: Check&build. This step consists in building the Signal equations for each node
of the tree created at the previous step. Each Model (ModelDeclaration, SubProcess, etc.)
has to build the equations corresponding to each element it contains.

To produce these equations, we need to analyze all concepts and all relations (i.e. Con-
nections) between them. This analysis consists in visiting each node of a directed graph
whose arcs are Connections. To analyze the graph, we need to select start/end points,
which allows, as much as possible, to avoid visiting the same path twice. We call end-
statements these start/end points. Basically, it corresponds to all named elements (e.g.
signal, declaration of model, model instance). Actually, the analysis consists first in pro-
ducing the Signal code corresponding to the end-statement from which the analysis starts;
then if there are specific Connections (for example Definition) whose source is the starting
FCO, the analysis follows them in the backward direction and tries recursively to produce
the Signal code corresponding to the FCO(s) which is(are) the source of this(these) con-
nection(s). The analysis is stopped when the source of a Connection is an end-statement
or when an error, such as cycle or FCO without a needed Connection, is detected. More
precisely, inside a Model, an equation is produced:

• for each Connection of type Definition, PartialDefinition, and ConstraintInputs whose
destination is either a Local or an Output Atom (or SignalRef Reference which points
to such an Atom). As shown in Fig. 3(b), taking the example of the hour local signal,
there is a Definition Connection whose destination is hour and whose source is the
Add Atom. Then, the analysis follows the two Connections whose destination is the
Add Atom. The first one leads to the One ConstantValue, which is an end-statement,
thus the analysis stops. The second one leads to a Delay Atom, thus the analysis needs
to continue following the Connection linked to the Delay Atom. This leads finally to

Irisa

Modeling multi-clocked data-flow programs in GME 19

an end-statement, which is the hour local signal itself. So the produced equation is
hour := (One + (hour$(1) init (0))).

• for each Atom representing a clock constraint or a dependence relation. For example,
in Fig. 3(c), the ClockSynchronized Atom is the destination of two ConstraintInputs
Connections: one from the tick signal and one from the hour signal. As result, the
equation tick ^= hour is produced.

• for each ModelInstance Reference, which refers to a ModelDeclaration that indicates
the model to instantiate. To produce an equation of a Signal process instantiation,
an intermediate signal is generated for each Input/Output/Parameter FCO of the
referred Model. For each Connection to these FCOs, an equation is created using the
intermediate signal as the Connection destinations.

• for each TypeDeclaration Model. According to the kind of type declaration, the anal-
ysis is different: for enumeration types, we use the EnumValues attribute in which
there is one value per line; for structure types, all Local Atoms are listed; for model
types, all Input/Ouput/Parameter Atoms are listed and the corresponding interface
is generated; finally, for external types, the content of the DeclaredType attribute is
used.

Input/output signals and parameters are ordered in the interface of a Signal model
according to the position of their corresponding Atoms in the Interface Aspect.

In the same step before the equation generation, some corrections could be applied to
the graphical Model, for example, when a Reference points to an FCO that is not declared
in the same scope as the Reference. In this situation, the properties of the corresponding
graphical components are systematically updated.

As soon as an error is encountered during this second step, a message is displayed in the
Gme console, indicating FCOs concerned by the error as HTML links. Whenever the user
clicks on a link, the corresponding graphical object is automatically displayed. This is very
convenient to make rapid corrections.

Step 3: Dump in files. The third and last step consists in visiting one more time each
node of the tree and writing the corresponding equations into destination files at the relevant
place in the Signal model. The declarations of signals, constants, and labels are built and
added at the same time. The code of Fig. 5 corresponds to the application of our interpreter
on the watchdog example described in Fig. 3.

As a global remark, we have to mention that the interpretation process can only be
applied to higher-level Models. We impose this restriction in order to be sure that the
selected Models do not use signals declared at an upper level in the hierarchy of a Model.
So, the interpreter only generates a file for selected Models, which are immediate children
of the Root Folder (i.e. the root of the current project).

Finally, we can notice that the second and the third steps can be specialized. The
interpreter generates files using the Signal syntax. However, it is possible to specialize the
interpreter to construct equations using, for example, XML syntax.

PI n˚1771

20 Besnard & Brunette & Gautier & Talpin

process Watchdog =

{ integer delay; }

(? integer order;

event finish;

event tick;

! integer alarm;)

(| alarm := (hour when (cnt = Zero))

| hour := (One + (hour$(1) init (0)))

| cnt ^= (order ^+ tick ^+ finish)

| cnt := ((delay when ^order)

default (defValue when finish)

default ((zcnt - One) when (zcnt >= Zero))

default defValue)

| zcnt := (cnt$(1) init (-1))

| tick ^= hour

|)

where

constant integer One = (1);

constant integer defValue = (-1);

constant integer Zero = (0);

integer hour;

integer cnt;

integer zcnt;

end; % process Watchdog

Figure 5: Code generated by the Interpreter on the watchdog example

7 Discussion

The modeling paradigm introduced in this paper constitutes the first work for generalizing
the use of formal methods proposed by Polychrony. This approach is developed using
metamodels to achieve a relative independence from the modeling platform. The higher their
abstraction expression level is, the more adaptable to various operational environments they
will be. Indeed, Model Driven Software Development is based on a number of common
standards such as XMI, OCL and UML, that can be mapped onto different environments.
Thus, we have chosen Gme to develop the metamodel, because it is indeed a good solution to
create a metamodel quickly, and it offers automatically a customized modeling environment.

The metamodel combined with the Interpreter makes from Signal-Meta a new front-end
for Polychrony. Actually, Signal-Meta and its interpreter check only structural informa-
tion of the graphical specification, such as cyclic definitions or the well-formedness of the
modeling. There is no verification of types and clock constraints. The Signal compiler is
in charge of these verifications. One of our future goals is to obtain a graphical and fully
interactive modeling under Gme. Currently, the interaction is limited to structural errors

Irisa

Modeling multi-clocked data-flow programs in GME 21

detected by the OCL constraints added to Signal-Meta. We should extend the modeling so
that the environment is able to check deeper semantic errors and to display them graphically
and dynamically during the modeling.

Anyway, to really generalize the use of formal methods, our metamodel must be acces-
sible in more popular frameworks, such as Eclipse. The ATLAS Group from INRIA [2]
has realized a bridge between Gme and the Eclipse Modeling Framework (EMF) [8]. Some
transformations [4] have been developed between MetaGME metamodels and EMF meta-
models. However, these transformations keep only concepts and relations between them,
they do not cover all features offered by Gme: for example, all informations concerning As-
pects disappear. With this restriction, all metamodels realized with Gme, and particularly
for our interest Signal-Meta, can be transformed to metamodels under EMF. However, it
is important to note that the current Interpreter uses the BON API and so is dedicated to
Gme. Thus, it must be specifically developed for Eclipse.

This metamodel can be considered as a first effort toward the development of a more
general-purpose Uml profile for modeling real-time and embedded systems, called MARTE [15].
Moreover, Signal-Meta constitutes a kernel to create environments for multi-clock systems.
Signal-Meta has already been extended for different purpose. A first extension has been
done to model multi-clock mode automata [6]. In this work, the automaton describes the
control of the systems, and in each state of the automaton, Signal equations are built in
the Signal-Meta way. The interpreter was also extended to transform such an automaton
into the corresponding Signal program.

Another extension, called Mimad [5], concerns the design of avionics systems based on
the Integrated Modular Avionics (IMA) architecture develop around the APEX-ARINC
653 standard. Initially, some predefined services have been implemented in a Polychro-

ny library [10]. All these services and all levels of the IMA Architecture extend Signal-Meta
to build Mimad. Each level of the IMA Architecture is represented and inherits from Signal-
Meta FCO, which allows to reuse easily features of the interpreter. Signal-Meta are mainly
used in Mimad to represent specific user-designed functions and the data flow between the
input/output signals of IMA levels. The interpreter has also been extended to produce the
Signal program using processes developed in Polychrony.

8 Conclusions

In this paper, we have presented Signal-Meta, the metamodel of the Signal language devel-
oped in Gme and its Interpreter to transform the graphical specifications into Signal pro-
grams. Both tools make from Gme a new front-end for the Polychrony workbench.
Moreover, Signal-Meta has already been used as foundations to build more specialized multi-
clocked environment such as for mode automata and for avionics system design.

As discussed in Section 7, Signal-Meta and its interpreter check only structural informa-
tion. There is no type checking or clock constraint verification. To complete the modeling
under Gme and to overcome these limitations, one of the possible way is to interface directly
Polychrony as a Gme Addon. Thus, the internal representation of the Signal compiler

PI n˚1771

22 Besnard & Brunette & Gautier & Talpin

could be produced automatically during the modeling, and then give access to possible clock
or type problems.

References

[1] Aditya Agrawal, Gabor Karsai, and Akos Ledeczi. An end-to-end domain-driven soft-
ware development framework. In OOPSLA ’03: Companion of the 18th annual ACM
SIGPLAN conference on Object-oriented programming, systems, languages, and appli-
cations, pages 8–15, New York, NY, USA, 2003.

[2] ATLAS Group (INRIA & Lina, Université de Nantes). ATL, ATLAS Transformation
Language, Reference site. http://www.sciences.univ-nantes.fr/lina/atl/.

[3] Loic Besnard, Thierry Gautier, and Paul Le Guernic. SIGNAL V4-INRIA version:
Reference Manual. http://www.irisa.fr/espresso/Polychrony/doc/document/V4_
def.pdf.

[4] Jean Bézivin, Christian Brunette, Régis Chevrel, Frédéric Jouault, and Ivan Kurtev.
Bridging the Generic Modeling Environment and the Eclipse Modeling Framework. In
Proceedings of the 4th workshop in Best Practices for Model Driven Software Develop-
ment, OOPSLA, October 2005.

[5] Christian Brunette, Romain Delamare, Abdoulaye Gamatié, Thierry Gautier, and Jean-
Pierre Talpin. A Modeling Paradigm for Integrated Modular Avionic Design. Technical
Report RR-5715, INRIA, October 2005.

[6] Christian Brunette and Jean-Pierre Talpin. Compositional modeling and transforma-
tion of multi-clocked mode automata. Technical Report RR-5728, INRIA, October
2005.

[7] Consortium, Sacres. The Declarative Code DC+, Version 1.4. ftp://ftp.irisa.fr/
local/signal/publis/research_reports/dc+.ps.gz, november 1997.

[8] Eclipse Modeling Framework. Reference site. http://www.eclipse.org/emf/.

[9] ESPRESSO-IRISA. Polychrony website. http://www.irisa.fr/espresso/
Polychrony.

[10] Abdoulaye Gamatié and Thierry Gautier. Synchronous Modeling of Modular Avionics
Architectures using the Signal Language. Technical Report RR-4678, INRIA, 2002.

[11] Institute for Software Integrated Systems (ISIS). Vanderbilt University. The Generic
Modeling Environment (GME). http://www.isis.vanderbilt.edu/Projects/gme/.

[12] Ethan K. Jackson and Janos Sztipanovits. Using separation of concerns for embedded
systems design. In EMSOFT ’05: Proceedings of the 5th ACM international conference
on Embedded software, pages 25–34, New York, NY, USA, 2005. ACM Press.

Irisa

Modeling multi-clocked data-flow programs in GME 23

[13] Akos Ledeczi, Miklos Maroti, and Peter Volgyesi. The Generic Modeling Environment.
In Proceedings of the IEEE Workshop on Intelligent Signal Processing (WISP’01), May
2001.

[14] Hervé Marchand, Patricia Bournai, Michel Le Borgne, and Paul Le Guernic. Synthesis
of Discrete-Event Controllers based on the Signal Environment. In Discrete Event
Dynamic System: Theory and Applications, volume 10 of 4, pages 325–346, October
2000.

[15] OMG. UML Profile for modeling and analysis of real-time and embedded systems
(MARTE). OMG document realtime/05-02-06.

[16] Dumitru Potop-Butucaru and Benoit Caillaud. Correct-by-construction asynchronous
implementation of modular synchronous specifications. In Proceedings of the Fifth In-
ternational Conference on Application of Concurrency to System Design (ACSD’05),
pages 48–57. IEEE Press, 2005.

[17] Jean-Pierre Talpin, Dumitru Potop-Butucaru, Julien Ouy, and Benoit Caillaud. From
multi-clocked synchronous processes to latency-insensitive modules (short paper). In
Proceedings of the fifth ACM International Conference on Embedded Software (Emsoft),
pages 282–285, Jersey City, NJ, USA, September 2005. ACM Press.

PI n˚1771

24 Besnard & Brunette & Gautier & Talpin

Annexes

A Signal-Meta paradigm sheets

This Section describes all paradigm sheets of Signal-Meta showing at the same time the
class diagram and the declaration of Aspects. The reader is referred to [3] for a precise
description of the corresponding syntactic structures.

A.1 Containers

Fig. 6 specifies all abstract and non-abstract Models of Signal-Meta. The main kinds
of Models, characterized by abstract Models, are Models with an Interface Aspect (Inter-
faceDefinition), with a ClockAndDependence Aspect (ModelsWithClockRelations), and/or
with a Dataflow Aspect (ModelsWithDataflow). Several Models derive from these classes.
For example, ModelDeclaration gathers the three kinds. All Signal process models are
gathered in the ModelDeclaration Model. Its ModelType attribute allows to choose between
an action, a function, a node, and a process.

Figure 6: ’Models’ paradigm sheet

SubProcess, Specifications, and IterationInit gather only the ClockAndDependence and
the Dataflow Aspect. SubProcess is simply a ModelDeclaration without any interface. Spec-
ifications is used to specify properties between the Input/Output signals of the Model that
contains it. The Specifications Model can be contained by all Models with an Interface
Aspect. The Specifications Model has an attribute (ProcessAttribute) to qualify the corre-

Irisa

Modeling multi-clocked data-flow programs in GME 25

sponding model as safe, deterministic automaton, or unsafe.

IterationInit can only be contained by an Iterate Model and is used to describe the
specifications needed to initialize the iteration. Signal offers two constructions to express
iterations: array and iterate. These constructions are gathered in the same Iterate Model.
The choice between these constructions is made through the IterateType attribute.

TypeDeclaration is used to declare any kind of types (see Section 4.1). It inherits from
InterfaceDefinition to allow the declaration of the interface of model type (action, function,
node, and process). It also inherits from ModelsWithClockRelations to declare the signals
contained by a structure type and to specify the signals and their clock relations for a bun-
dle type (a bundle is a structure whose fields are not synchronized and in which some clock
constraints can be specified). Enumerated types are declared by specifying each value of
the enumeration in the EnumValues attribute. The ArrayDimensions attribute serves to
declare the dimensions for an array type (e.g. [10]integer), DeclaredType to specify the name
of any existing type, and ExternalInitValue to specify the initial value for any signal that
uses an external type. Note also that all Models that inherit from InterfaceDefinition have
a Status attribute to specify the visibility (private or public) inside a Module.

A Module corresponds to a library of model processes, type declarations, and constants.
The Library Aspect is dedicated to this Model. And, like ModelDeclaration, Module inherits
from the RootModel abstract Model. This means that they can be added to the root of a
Gme project based on Signal-Meta.

Fig. 6 also specifies two References: ModelInstance and UseModule. A ModelInstance
corresponds to an instance of a ModelDeclaration (see Section 4.1). It is only through Mod-
elInstance that one can define the Input signals and the static Parameters. In fact, Inputs
and Parameters can not be defined inside their Model, and a ModelDeclaration corresponds
only to the declaration of a model process. At the opposite, Outputs can only be defined
inside their Model.

UseModule is used to import external Modules. The import of a Module is required as
soon as a ModelDeclaration, a ConstantValue, and/or a type declared in an external Module
is used (except for intrinsic processes).

A.2 Signals and constants

Fig. 7 describes all kinds of Signals and Constants of Signal-Meta or References on them.
There are three kinds of Signals: Input and Output that can only be added to Models with
an Interface Aspect, and Local, which can be added to any ModelsWithDataflow or Type-
Declaration Models (see Fig. 17). A Signal is characterized by a name, and by a type.
An OCL constraint guarantees that the name of the signal is unique inside a Signal-Meta
Model. The type is either one of those listed in the Type attribute (this list corresponds to

PI n˚1771

26 Besnard & Brunette & Gautier & Talpin

Figure 7: ’Identifiers’ paradigm sheet

that given in [3]), or that specified in the DeclaredType attribute. As for TypeDeclaration,
the type can be an array type, thus the dimensions of the array must be specified in the
ArrayDimensions attribute. This attribute can contain either integer values, or the names
of constant values. Finally, Local signal has a specific attribute (IsStatevar), which indicates
if the signal is a state variable.

Similarly, there are two kinds of Constants: Parameter that can only be added to Model
with an Interface Aspect, and ConstantValue, which can be added to any ModelsWith-
Dataflow Models (see Fig. 17). Like a Signal, a Constant is characterized by a name that
must also be unique inside a Model, and by a type. However, a Parameter can be typed
by a model type, then its list of types (the ParameterType attribute) is extended with the
four kinds of model types (action, function, node, and process). And for a ConstantValue,
a specific Value attribute indicates its static value. Finally, we can also note that a Con-
stantRef can refer either a Constant, or an Index. An Index is used by an Iterate Model. It
is characterized by a starting value (From attribute), a final value (To attribute), and the
value (Step attribute) to add at each iteration to go from the starting value to the final one.

Irisa

Modeling multi-clocked data-flow programs in GME 27

A.3 Operators

Figure 8: ’Signal expressions’ paradigm sheet

Fig. 8 and 9 express a division of Signal operators (except clock relation ones) in
different categories according to the Connection that can be linked to them (see Fig. 10).
OrderedInputExpr (OrderedOutputExpr) gathers operators, which require to define exactly
the order of each incoming (resp. outgoing) Connection, for example for the Merging opera-
tor. This order is obtained according to the value of the Priority attribute on OrderedInputs
(resp. OrderedOutputs). Thus, all incoming (resp. outgoing) Connections that have the
same destination FCO must have different values in their Priority attribute.

ConstantExpr gathers all FCOS that can be used to build a constant expression to define
for example the value of a Parameter. ConstantExpr includes mainly constants, arithmetic
and boolean operators, and the sampling and merging operators.

InputExpression operators (e.g. arithmetic) are divided into two categories: associative
and commutative operators, and the other ones called DissymetricExpr (see Fig. 9) for
which the first element needs to be identified (e.g. the substraction operator). The first

PI n˚1771

28 Besnard & Brunette & Gautier & Talpin

Figure 9: ’Dissymetric Expressions’ paradigm sheet

category contains all InputExpressionoperators that do not inherit from DissymetricExpr.
The first category uses ExpressionInputs Connections, while the second one differentiates
the first element with a FirstOperand Connection.

There are two ways to define a signal. One can use either one single Definition or several
PartialDefinition Connections. For PartialDefinition, it is possible to specify a default value
by setting the value of the DefaultValue to true.

There are two choice operators: IfThenElse and SwitchCase. The IfThenElse operator
gives a choice between two alternative expressions for the definition of a signal. This Atom
has to be the destination of at least one boolean condition, exactly one Then Connection
and one Else Connection. The boolean condition is expressed, as for any ConditionnedExpr
(Fig. 12), by one (or several) Condition Connection linked to a BooleanExpr and/or by one
(or several) WhenSignal Connection linked to a SignalOrRef. The WhenSignal Connection
has been introduced to be able to test the presence of a signal or the value of a boolean signal
without creating an intermediate boolean expression. Thus, the WhenSignal Connection has
an attribute (SignalState) that specifies the kind of test: test the presence, test if the boolean
signal is True/False.

The SwitchCase operator represents an expression of processes that allows to compose
definitions according to the different values of a signal. The type of the signal must be ei-
ther integer or an enumerated type. An ExpressionInputs Connection links the SwitchCase
to the corresponding signal. A case is represented by a SubProcess that is linked to the
SwitchCase by a CaseConnection. This Connection has two attributes: CaseType to choose
the kind of conditions (i.e. giving an enumeration of values, an interval, or an else case),

Irisa

Modeling multi-clocked data-flow programs in GME 29

Figure 10: ’Connections between expressions’ paradigm sheet

and CaseValue to express either the enumeration of values or the interval.

Figure 11: ’Numeric Expressions’ paradigm sheet

PI n˚1771

30 Besnard & Brunette & Gautier & Talpin

Figure 12: ’Boolean expressions’ paradigm sheet

Fig. 11 and 12 describe respectively all arithmetic and boolean operators. For both,
there is a specific Atom (NumExpr and BoolExpr) that has been added to ease the modeling
by just writing the arithmetic (resp. boolean) expression in the attribute of that Atom.
Moreover, for boolean expression, we give access to such an Atom in the Dataflow Aspect
(BoolExpr Atom) and in the ClockAndDependence Aspect (WhenCondition Atom).

A.4 Relations

Fig. 13 describes all relations (i.e. Connections) of Signal-Meta and all attributes carried
by them. Among these attributes, we can mention SrcField (resp. DstField), which gives
access, for signals of type structure or bundle, to the name of the signal (inside the structure
or the bundle type), which is at the source (resp. destination) of the Connection .

CastType specifies the type for the cast of the value of the signal at the source of the
Connection.

LastIterationValue and ArrayRecovery are attributes that are only used inside an Iterate
Model. LastIterationValue specifies that we are interested by the value of the previous
iteration or by the value of the signal for the current instant. ArrayRecovery allows to
specify the expression returned if the iteration tries to access to an index out of the array
dimensions.

Irisa

Modeling multi-clocked data-flow programs in GME 31

Figure 13: ’Connections’ paradigm sheet

Finally, UseClockAsSrc is a boolean attribute that indicates: (i) if it is True that the
clock of the signal at the source of the Connection is used, (ii) if it is False that the value
of the signal is used.

A.5 Clock relation and constraint operators

Fig. 14 describes all clock relation and clock constraint operators and how they can be
used. Thus, we can express the union of clocks (ClockUnion), their intersection (ClockInter-
section), and their difference (ClockComplementary). It is possible to synchronize two (or
more) signals (ClockSynchronized), to specify that two (or more) signals are never present
at the same instant (ClockExclusion). One can also constraint two (or more) signals to be
synchronized and to have the same value at each instant (ClockIdentity), or specify that the
clock of one (or more) signal is faster (resp. slower) than another one using the ClockGreater

PI n˚1771

32 Besnard & Brunette & Gautier & Talpin

Figure 14: ’Clock Expressions’ paradigm sheet

(resp. ClockSmaller) Atom.

These clock constraint operators can be applied on all FCOs that inherits from the De-
pInOut abstract class (see Fig. 15). This means that they can be applied to signals (or
SignalRef), and on each FCO which inherits from Label : ModelInstance and SubProcess
(see Fig. 6). This inheritance means that both FCOs have a name that identifies them.
Moreover, the WhenCondition Atom declared in Fig. 12 can also participate to clock con-
straints and clock relations.

We have also added a new functionality to Polychrony to be able to deduce the
minimal clock of a signal (different from the null clock) according to the clocks of their
partial definition. This is done in Signal-Meta via the MinClock Set. This Set contains all
FCOs that inherit from the DepInOut abstract class and whose clocks need to be deduced.

A.6 Dependences

Fig. 15 introduces the Dependence operator, which allows to specify a scheduling for differ-
ent Signals (or SignalRef s), SubProcesses, and ModelInstances. These scheduling specifica-

Irisa

Modeling multi-clocked data-flow programs in GME 33

Figure 15: ’Dependence’ paradigm sheet

tions can also be conditioned by a boolean expression specified in a WhenCondition Atom
(see. Fig. 12).

A.7 Assertions and pragmas

Figure 16: ’Assertion and Pragma’ paradigm sheet

Fig. 16 introduces the Polychrony concept of Pragma. A pragma has no semantic
effect. It can be ignored by a compiler, or it can trigger a specific processing. A pragma is
characterized by a name, a list of objects with which it is associated, and a statement.

The name qualifies the kind of Pragma. There are different predefined kinds in Po-

lychrony. They are listed in the PolychronyPragma attribute. These kinds of Pragma
allow for example to call external C/C++/Java code, to add some comments in some pro-
cess models, or to add some external call that are interpreted when translated into the
Sigali representation. Other kinds of pragma can be added by specifying their name in
the NewPragma attribute. The list of objects with which it is associated is built by listing
all FCOs contained in the Pragma Set. By default, when the Set is empty, the pragma is
associated with the current process model.

Fig. 16 also introduces the intrinsic process of assertion: Assert. To use it, one has only
to write the assertion expression in the Assertion attribute.

Finally, Fig. 17 describes only the FCOs that can be contained by the ModelsWith-
Dataflow abstract Model.

PI n˚1771

34 Besnard & Brunette & Gautier & Talpin

Figure 17: ’ModelsWithDataflow containment’ paradigm sheet

B Signal-Meta OCL constraints

In this Section, we describe the OCL constraints added to Signal-Meta and checked dur-
ing the definition of any Signal-Meta-based application model by the Constraint Checker

Irisa

Modeling multi-clocked data-flow programs in GME 35

provided with Gme. In Gme, an OCL constraint is characterized by a textual description
(allowing to precise more information about the constraint), an equation, an event, a priority
and a depth. The equation corresponds to an invariant property of the Model, which must
hold during the whole design phase. If one or more events are specified in a constraint, the
associated equation is checked whenever the events are produced by the Gme environment.
Examples of events are On Create, On Delete and On Connect. When no event is specified,
the constraint is only checked on user demand. The priority specified on a constraint is an
integer: from 1 (for the highest) to 10 (for the lowest). Finally, events can be produced by
the constrained FCO itself or from its descendant FCOs (e.g. this is the case for Models,
which may include other FCOs). The depth characterizes the sensitiveness of the constraint:
0 for events from the directly concerned FCO, 1 for events from the FCO or any of its direct
descendant and Any for events from any of its descendants.

Constraint: CheckParameterConnections
Description: A Parameter can only be affected by a constant expression (numeric,
boolean, merge and extraction on constant expression, or a TypeDeclaration or a
ModelDeclaration).
Attach to: ModelsWith-
Dataflow

Event: on Close Model Priority : 2 Depth : 0

Constraint: CheckPragma
Description: To create a new pragma, select first NEW PRAGMA in the Polychrony
Pragma field.
Attach to: Pragma Event: on Change At-

tribute
Priority : 2 Depth : 0

Constraint: ConnectedOnlyIfModelType
Description: A TypeDeclaration can only be connected as source to a Parameter if it
is a model.
Attach to: TypeDeclaration Event: on Connect and

on Change Attribute
Priority : 2 Depth : 0

Constraint: CyclicReference
Description: A Connection cannot have the same object at both extremity.
Attach to: Connections Event: on Create Priority : 1 Depth : 0

Constraint: DefAndPDefConstraint
Description: A signal and all its references must be defined by a definition connection
or by several partial definition connections. An input (and not its reference) can only
be connected by one Definition connection.
Attach to: SignalOrRef Event: on User De-

mand only
Priority : 2 Depth : 0

PI n˚1771

36 Besnard & Brunette & Gautier & Talpin

Constraint: EmptyAssertion
Description: The assertion expression is empty.
Attach to: Assertion Event: on User De-

mand only
Priority : 2 Depth : 0

Constraint: IfThenElseComplete
Description: IfThenElse expressions must have one Then connection, one Else con-
nection and at least one condition expression.
Attach to: ModelsWith-
Dataflow

Event: on Close Model Priority : 2 Depth : 0

Constraint: IndexPriorities
Description: Index can only have Inputs with priority value equal to 1, 2 and/or 3 to
represent the affectation to the From, To, and/or Step field.
Attach to: OrderedInputs Event: on Change At-

tribute
Priority : 1 Depth : 0

Constraint: NoClockOfConnectionForBoolOrNum
Description: When the destination FCO is a BoolExpr or a NumExpr, do not use the
signal clock or the source field attributes. Specify the use of signal clock or the source
signal inside the BoolExpr or a NumExpr expression.
Attach to: ExpressionInputs
and FirstOperande

Event: on Change At-
tribute

Priority : 1 Depth : 0

Constraint: NoDstFieldForInputDefinition
Description: No destination field for Definition or PartialDefinition whose destination
is an Input. Use Tuple to affect multiple field signals.
Attach to: Input Event: on Change At-

tribute
Priority : 1 Depth : 0

Constraint: NoStatevarInTypeDeclaration
Description: No Local Atom with Statevar attribute set to true in TypeDeclaration.
Attach to: TypeDeclaration Event: on New Child

and on Change At-
tribute

Priority : 1 Depth : 1

Constraint: OnlyClockConstraintInBundle
Description: You can only put clock constraints and clock relations in bundle type
TypeDeclaration.
Attach to: TypeDeclaration Event: on New Child

and on Change At-
tribute

Priority : 1 Depth : 0

Irisa

Modeling multi-clocked data-flow programs in GME 37

Constraint: OnlyDstConnForUpLvl
Description: Connections to Outputs can only be created in the model where outputs
are defined.
Attach to: Output Event: on Connect Priority : 1 Depth : 0

Constraint: OnlyDstConnForUpLvlOfModelInstance
Description: Input can be only connected as destination from the upper level of the
ModelInstance. You cannot connect to input of ModelDeclaration.
Attach to: Input Event: on Connect Priority : 1 Depth : 0

Constraint: OnlyIndexOrIdentifier
Description: You can only connect Identifiers or Index expressions.
Attach to: Iterate Event: on Connect Priority : 1 Depth : 0

Constraint: OnlyInOutForModelProcess
Description: You can only put Input, Output, Parameter and Specifications in Model
process (action, function, node or process).
Attach to: TypeDeclaration Event: on New Child

and on Change At-
tribute

Priority : 1 Depth : 0

Constraint: OnlyLocalInBundleOrStruct
Description: You can only add Local signals in ’struct’ or ’bundle’ type.
Attach to: TypeDeclaration Event: on New Child

and on Change At-
tribute

Priority : 1 Depth : 0

Constraint: OnlyOneDefaultValue
Description: A signal can only have one default value.
Attach to: PartialDefinition Event: on Change At-

tribute
Priority : 1 Depth : 0

Constraint: OnlyOneElseCaseAsDst
Description: Only one else case can be connected to a SwitchCase Atom.
Attach to: SwitchCase Event: on Connect and

on Change Attribute
Priority : 1 Depth : 0

Constraint: OnlyOneExpressionInputs
Description: This expression can only have one ExpressionInputs Connection.
Attach to: ArrayRestructura-
tion, Counter, Repetition, De-
lay, Window, and Not

Event: on Connect Priority : 1 Depth : 0

PI n˚1771

38 Besnard & Brunette & Gautier & Talpin

Constraint: OnlyOneIdentifierAsInput
Description: You can only connect one identifier (signal or constant or reference) as
source input and only Cases as destination outputs.
Attach to: SwitchCase Event: on Connect Priority : 1 Depth : 0

Constraint: OnlyOrderedInOutIfParameter
Description: A ModelInstance can have OrderedIn-
put/OrderedOutput/OrderedParameter Connections only if it refers to a Parameter
of type action/function/node/process.
Attach to: ModelInstance Event: on Connect and

on Change Association
Priority : 2 Depth : 0

Constraint: PositiveDelay
Description: The delay must be greater or equal to 1.
Attach to: Delay Event: on Change At-

tribute
Priority : 1 Depth : 0

Constraint: PositiveRepetitionNumber
Description: The number of repetition must be greater or equal to 1.
Attach to: Repetition Event: on Change At-

tribute
Priority : 1 Depth : 0

Constraint: PositiveSizeOfWindow
Description: The size of the window must be greater or equal to 1.
Attach to: Window Event: on Change At-

tribute
Priority : 1 Depth : 0

Constraint: PrivateOnlyInModule
Description: The private status can only be used in Module.
Attach to: InterfaceDefini-
tion, and ConstantValue

Event: on Change At-
tribute

Priority : 3 Depth : 0

Constraint: ReferOnlyModelProcess
Description: ModelInstance cannot refer to a Parameter which is neither an action,
neither a function, neither a node, nor a process.
Attach to: ModelInstance Event: on Change As-

sociation
Priority : 1 Depth : 0

Constraint: UniqueName
Description: The name of each entity in a Model must be unique.
Attach to: ModelsWithClock-
Relations and Module

Event: on Close Model Priority : 1 Depth : 0

Irisa

Modeling multi-clocked data-flow programs in GME 39

Constraint: UniquePriorityOrderedConnections
Description: All priorities must be different for Connections whose destination is a
Merging, a SequentialDefinition, a CartesianProduct, a ModelInstance, an Index, a
Concatenation, an ArrayEnumeration, a Tuple, or an Iterate.
Attach to: ModelsWith-
Dataflow

Event: on Close Model Priority : 2 Depth : 0

Constraint: ValidModelInstance
Description: The parent of the referenced ModelDeclaration or Parameter must be
an ancestor of the ModelInstance.
Attach to: ModelsWith-
Dataflow

Event: on New Child
and on Change Associ-
ation

Priority : 1 Depth : 1

Constraint: ValidName
Description: Format of the name is invalid. The name must begin with an alphabetic
character and be completed with alphanumeric characters and/or underscore.
Attach to: ModelsWithClock-
Relations, ModelInstance,
Module, Identifiers, and
Connections

Event: on Change
Property

Priority : 1 Depth : 0

Constraint: ValidRef
Description: The parent of the referenced signal (or constant) must be a strict ancestor
(cannot have the same direct parent) of the reference.
Attach to: ModelsWith-
Dataflow

Event: on New Child
and on Change Associ-
ation

Priority : 1 Depth : 1

PI n˚1771

40 Besnard & Brunette & Gautier & Talpin

Irisa

