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Abstract

A new kind of application is born. Code coupling applications consist of applications that can be divided into modules.
They often need to run on several clusters. However, in these huge architectures that we call “cluster federations™, there’s a
large number of nodes. Faults may appear very frequently. Thus a fault tolerance mechanism that fits these architectures and
these kind of applications should be provided. We propose a hierarchical checkpointing protocol that combines synchronized
methods inside clusters and communication induced methods between clusters. Our protocol has been evaluated by a discrete
event simulation. The first results show that it works well for the targeted applications.
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1 Introduction

Cluster federations are very particular architectures. They contain a large number of nodes and are heterogeneous : inside
the clusters, there are high performance networks (SAN) while clusters are linked by LANs or WANs. The applications
running on such architectures are often divided into modules. These modules may need to run in different clusters for various
reasons : for security needs, for hardware needs, or just because the application needs a very large number of nodes. An
example of such an application could be a code coupling simulation. Several parallel simulation modules that sometimes
need to communicate with each other.

There are lots of papers describing checkpoint / restart protocols inside a cluster in the literature, but few for these kind of ar-
chitectures. We want to take advantage of the high performance networks in the clusters and to take into account inter-cluster
links. Inside clusters synchronization is possible (thanks to the SAN) while a global synchronization would be really expen-
sive. Our protocol is hierarchical : it uses coordinated checkpointing techniques inside clusters and communication-induced
checkpointing between them.

The protocol has been simulated and we’ve seen that it works well with applications like code coupling.

The continuation of this document is made up as follows. The second Section shows the design principles, then Section 3
describes the hierarchical protocol combining coordinated and “communication induced” checkpointing (called HC31 check-
pointing protocol thereafter). Section 4 presents some of the algorithms, Section 5 shows a sample execution with the HC?|
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checkpointing protocol. Section 6 gives a brief description of our discrete event simulator and presents the performance
evaluation. Before concluding, Section 7 is about related work.

2 Design Principles

This section presents the model considered in our work and the design principles of the HC?I checkpointing protocol.
2.1 Models and Assumptions
Application Model. We look after parallel applications like code coupling. Processes of these kinds of application can be
divided into groups (modules). Processes inside a same group communicate a lot while communications between processes

belonging to different groups are limited. Communications can be pipelined as in Figure 1 or they can consist of exchanges
between two simulation modules for example.
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Figure 1. Application Model

System Model. This protocol has been designed using the following system model. As shown in the figure 2, a node is
a module at system level that implements the protocol. It is able to save the processes states, to catch every inter-processes
messages, and to communicate with other nodes for protocol needs.
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Figure 2. System Model

Architecture Model and Network Assumptions. A cluster federation is a set of clusters linked by a WAN (Wide Area
Network). Inter-cluster links can be dedicated ones or even Internet. It fits well with the kinds of application described above.
Indeed each group of processes may run in a cluster where network links have small latencies and large bandwidths (System
Area Network). We assume that a sent message will be received in an arbitrary but finite laps of time. This means that the



network is reliable, it doesn’t lose messages. This assumption implies that the fault tolerance mechanism should take care of
messages in transit, they should not be lost.

Failure Assumptions. We assume that only one fault occurs at a time. However, the protocol can be extended to tolerate
simultaneous faults as explain in the Future Work Section. The failure model is fail-stop. It means that when a node fails it
won’t send messages anymore. The protocol does not take into account neither omission nor Byzantine faults.

2.2 Checkpointing Large Scale Applications in Cluster Federations

The basic principle of all checkpoint / rollback methods is to periodically store an application consistent state to be able

to restart from there in case of failure in the future. A parallel application state is composed by the set of the states of all its
processes. Consistent means that there is neither in transit message (sent but not received) nor ghost message (received but
not sent) in the set of process states stored.
A message generates a dependency. For example, Figure 3 presents the execution of two processes which both store their
local state (S1 and S2). A message m is sent from process 2 to process 1. If the execution is restarted from the set of states
S1/S2 the message m will have been received by process 1 but not sent by process 2 (ghost message). Process 2 will send m
again which is not consistent because S1 happens before S2. The happen before relation is described in details in [4].
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Figure 3. Dependency between two states

The last recorded consistent state is called the recovery line. [6] provides detailed information about the different check-
pointing methods.
Inside a cluster we use a coordinated checkpointing method. This means there is a two phase commit protocol during which
application messages are frozen. It ensures that the stored state (the cluster checkpoint) is consistent. Coordinated check-
pointing is possible inside a cluster thanks to the high performance network (low latency and large bandwidth). It has already
been done [8], [5],[11],[1] and is relatively easy to implement.
The large number of nodes and network performance between clusters don’t allow a global synchronization. An indepen-
dent checkpointing mechanism in which each cluster takes its Cluster Level Checkpoints (called CLC thereafter) won’t fit.
Tracking dependencies to compute the recovery line would be very hard at rollback time and clusters may rollback to very
old CLCs (domino effect).
If we intend to log inter-cluster communications (to avoid dependencies), we need the piecewise deterministic (PWD) as-
sumption. PWD assumption means that we are able to replay a parallel execution in a cluster that produces exactly the same
messages as the first execution. This assumption is very strong. Replaying a parallel execution means detecting, logging and
replaying all non-deterministic events. It is not always possible.
The assumption that inter-clusters communications are limited leads us to use a communication-induced method between
clusters. This means each cluster takes CLC independently, but information is added to each inter-cluster communication.
It may lead the receiver to take a CLC (called forced CLC) to ensure the recovery line progress. Communication-induced
checkpointing seems to keep enough synchronization and can be efficient.
So our proposition is an hybrid protocol combining coordinated and communication-induced checkpointing (HC?1).

3 Description of the HC?I Checkpointing Protocol

In this section we first present the checkpointing mechanism inside a cluster. Then we describe mechanisms used to track
inter-cluster dependencies and to decide when a CLC should be forced. Finally we describe, the rollback protocol and the



garbage collector needed to eliminate CLC that are no longer useful.
3.1 Cluster Level Checkpointing

In each cluster, a traditional two phase commit protocol is used. An initiator node broadcasts (in its cluster) a CLC request
(algorithm 3). All the cluster nodes acknowledge the request, then the initiator node broadcasts a commit. Algorithm 4
represents our implementation of the two phase commit protocol. Between the request and the commit messages, application
messages are queued to prevent intra-cluster dependencies (algorithm 5).

In order to be able to retrieve CLC data in case of a node failure, CLCs are recorded in the node own memory, and in the
memory of one other node in the cluster. Because of this stable storage implementation, only one simultaneous fault in a
cluster is tolerated.

Each CLC is numbered. Each node in a cluster maintains a sequence number (SN). SN is incremented each time a CLC
is committed. This ensures that the sequence number is the same on all the nodes of a cluster (outside the two phase
commit protocol). The SN is used for inter-cluster dependency tracking. Indeed, each cluster takes its CLC periodically,
independently from the others.

3.2 Federation Level Checkpointing

If we look at our application model, communications between two processes in different clusters may appear. It implies

dependencies between CLCs taken in different clusters. Dependencies need to be tracked to be able to restart the application
from a consistent state.
Forcing a CLC in the receiver’s cluster for each inter-cluster application message would work but the overhead would be huge
as it would force useless checkpoints. In Figure 4, cluster 2 takes two forced CLCs (the filled ones) at message reception,
and the application takes message into account only when the forced CLC is committed. CLC2 is useful: in the event of a
failure, a rollback to CLC1/CLC2 will be consistent (m1 would be sent and received again). On the other hand, forcing CLC3
is useless: cluster 1 has not stored any CLC between its two message sending. In the event of a failure it will have to rollback
to CLC1 which will force cluster 2 to rollback to CLC2. CLC3 would have been useful only if cluster 1 would have stored a
CLC after sending m1 and before sending m2.
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Figure 4. Limitation of the number of forced CLCs

Thus, a CLC is forced in the receiver’s cluster only when a CLC has been stored in the sender’s cluster since the last
communication from the sender’s cluster to the receiver’s cluster. To do this, CLCs are numbered in each cluster with a SN
(as described in previous section). The current cluster’s sequence number is piggy-backed on each inter-cluster application
message (Section 4.3 describes the message data structure). To be able to decide if a CLC needs to be initiated, all the
processes in each cluster need to keep the last received sequence number from each other cluster. All these sequence numbers
are stored in a DDV (Direct Dependencies Vector, [2]). Algorithm 6 shows how the receiver decides if it needs to initiate a
forced CLC.

DDV, [i] is the it DDV entry of cluster j, and SN; is the sequence number of cluster i.

For a cluster j:

If i=j, DDV, [i]=SN;

If i), DDV;[i]= last received SN; (0 if none).

Note that the size of the DDV is the number of clusters in the federation, not the number of nodes. In order to have the same
DDV and SN on each node inside a cluster, we use the synchronization induced by the CLC two phase commit protocol to



synchronize them (as described by algorithm 4). Each time the DDV is updated, a forced CLC is initiated which ensures that
all the nodes in the cluster which takes a CLC will have the same DDV at commit time. The current DDV is stored with each
CLC.

3.3 Logs to Avoid Huge Rollbacks

In order to limit the number of clusters that rollback, if the sender’s cluster of a message doesn’t fail while the cluster in
which there’s the receiver does, we don’t want the sender’s cluster to rollback. When a message is sent outside a cluster, the
sender logs it optimistically in its volatile memory (logged messages are used only if the sender doesn’t rollback). This is
shown by algorithm 5. The message is acknowledged with the receiver’s SN which is logged along with the message itself
(algorithm 7). Next section explains which messages are replayed in the event of a failure.

3.4 Rollback

If a node fails inside a cluster, it is detected and the cluster rolls back to its last stored CLC (the description of the failure
detector is out of the scope of this paper). One node in each other cluster in the federation receives a rollback alert. It contains
the faulty cluster’s SN that corresponds to the CLC to which it rolls back.

When a node receives such a rollback alert from another cluster with its new SN, it checks if its cluster needs to rollback by
comparing its DDV entry corresponding to the faulty cluster to the received SN. If the former is greater or equal than the latter
its cluster needs to rollback to the first (the older) CLC which has its DDV entry corresponding to the faulty cluster greater
or equal than the received SN. The node that has received the alert initiates the rollback.

If a cluster needs to rollback due to a received alert, it will send a rollback alert containing its new SN to alert all the other
clusters. This is how the recovery line is computed.

Even if its cluster doesn’t need to rollback a node receiving a rollback alert broadcasts it in its cluster. The nodes which have
logged messages sent to a node in the faulty cluster acknowledged with a SN greater than the alert one or not acknowledged
at all, re-send them.

Our communication induced mechanism implies that clusters need to keep multiple CLC and logged messages. They need
to be garbage collected.

3.5 Garbage Collection

Our protocol needs to store multiple CLCs in each cluster in order to compute the recovery line at rollback time. The
memory cost may become important. Periodically, or when a node memory saturates, a garbage collection is initiated. Our
garbage collector is centralized. A node initiates a garbage collection, it asks one node in each cluster to send back its list of
all the DDVs associated with the stored CLCs. Then it simulates a failure in each cluster and keep for each ones the worst SN
to which they might rollback. It sends a vector containing all the worst SNs to one node in each cluster which broadcasts it in
its cluster.

Each node removes the CLCs which have its cluster DDV entry smaller than the worst SN associated to its cluster.
They also remove logged messages that are acknowledged with a SN smaller than the receiver’s cluster worst SN. Algorithm
8 about garbage collection messages is at the end of next section.

4 Algorithms

This section presents the main algorithms of the HC3I Checkpointing Protocol. More details can be found in [7] (in
French). To make it simple we introduce the notion of leader. In each cluster one primary leader and one secondary
leader are chosen (in a static way at the initialization). These nodes are responsible for failure detection, restarting faulty
nodes and inter-cluster protocol communications (rollback alert and garbage collection messages). The algorithms are not
detailed, for example, takeTentativeCkPt() means storing the local state locally and on another node (and waiting for its
acknowledgement).

Each cluster has a unique ID, and in each cluster, each node has also a unique rank.

4.1 Data Structures

These are some data structures used in the algorithms.



Constants
e nbClusters number of clusters.
e myClusterld; the ID of cluster i.
o nbNodes; the number of nodes in cluster i.
o myRank; ; the ID of node j in the cluster i.
o |Set; set of cluster i leaders.
o otherLeaders; set of the other clusters leaders - in each cluster, the leaders have to be able to communicate with the
others.
Timers
e iMALIVETimer delay between heartbeats for the failure detection.
o chCkAliveTimer delay during which we should have receive at least one heartbeat from every node in a cluster.

tentativeCkPtTimer maximum time between a checkpoint request and its corresponding commit.

o waitForAllTimer maximum time to wait after a checkpoint request for receiving all acknowledgments.

gCTimer time between garbage collections.

ckPtTimer time between two unforced CLCs.

Others

e mySn; ; the sequence number.

myDDV, ; the DDV.

duringCkPt; ; a boolean to know if a node is currently in the two phase commit protocol (i.e. checkpointing).

hb; ; a vector with nbNodes; entries to remember the received heartbeats.

o oldHb; ; a copy of hb; ;.

ckPtAckSet; ; set of nodes that have acknowledge a checkpoint request.

gcAckSet; ; set of nodes that have acknowledge a garbage request.

initiator; ; rank of the last CLC initiator.

Logs Each node logs in volatile memory messages related to inter-cluster communications : the message itself, the re-
ceiver’s ID, and the sequence number of the receiver (known by the message acknowledgement).



4.2 Initialization

Algorithm 1 is the initialization sequence, it is done by each node in the cluster federation at launch time. It sets the DDV,
the sequence number, some variables and initialize some timers.

for ¢ «+— 0 to nbClusters do
| myDDV[i] < 0;

mySn «— 0;

duringCkPt «— false;

| aunchTi mer (iIMALIVETimer ) ;

| aunchTi mer ( ckPtTimer ) ;

if ROLE = leader then

L l'aunchTi mer ( chCkAliveTimer ) ;

Algorithm 1: initialization
4.3 Messages Structure

Messages exchanged by nodes have the following structure :
o sender the identity of the sender (its rank and cluster IDs)

— sender.rank
— sender.clusterld

o type (see Message dispatching algorithm).
o subtype (see ckPtHandler algorithm).

e sn the sender’s sequence number.

o data the message itself.

In Section 3.2 (“Federation Level Checkpointing”), it is explained why messages need to contain sn, for dependencies track-
ing. It is used by the receiver to know if it needs to take a forced CLC.



Algorithm 2 dispatches a message according to its type and its sender. Some of these algorithms are presented in the
following of this section.

Data : m, the received message
if m.sender.siteld=myClusterld then
message from the cluster;
switch m.type do
case CKPT

L ckPtHandl er(m);

case ROLLBACK
L rol | backHandl er (m);

case FD
| fdHandl er(m);

case GC
| gcHandl er(m);

case INTERNALALERT
| internal Al ertHandl er(m);

otherwise
just a normal application message from the same cluster - nothing to do;
if duringCkPt =true then
| storeMessage(m);

else
| deliver(m);

else
message from another cluster in the federation;
if duringCkPt =true then
let the coordinated checkpoint finish;
| storeMessFronQut(m);
else
switch m.type do
case ROLLBACKALERT
the node is part of its clusters 1Set;
L rol | backAl ert Handl er(m);

case ACK
| ackFronmut si deHandl er (m);

otherwise
L just a normal application message;
messFr onQut si deHandl er (m) ;

Algorithm 2: Messages Dispatching



4.4 Checkpointing Algorithms

This algorithm (3) initiates a CLC in a cluster, like it is explained in Section 3.1 (“Cluster Level Checkpointing™).

initialization of some data structures;
ckPtAckSet «+ (;

duringCkPt « true;

initiator «— myRank;

take the node’s own tentative checkpoint;
takeTentati veCkPt ();

ask the other nodes in the cluster to do the same;
br oadCast ReqCkPt () ;

in case of failure during the checkpoint;

I aunchTi mer ( waitForAllTimer ) ;

Algorithm 3: initiateCkPt

Algorithm 4 is executed when receiving checkpointing Messages. It is our implementation of the two phase commit pro-
tocol described in Section 3.1.
The names of the functions are used to describe what they do. For example, launchTimer launches a timer, and sendCkP-
tAck(id,sn) sends an acknowledgement (i.e. the type of the message will be “CKPT” and its subtype will be “ACK”) with sn
to the node represented by id.
We can see that the synchronization induced by the two phase commit protocol also synchronizes the DDV on all the cluster
nodes.



Data : m received from a node in the cluster
switch m.subType do
case REQ
the node is requested to take a tentative checkpoint;
if duringCkPt =false then
Not currently checkpointing;
st opTi nmer ( ckPtTimer ) don’t initiate a new checkpoint;
initiator < m.sender.rankremember the initiator’s rank;
duringCkPt « true;
takeTentati veCkPt ();
sendCkPt Ack( m.sender,myDDV ) acknowledgement;
| l'aunchTi ner ( tentativeCkPtTimer ) ;
else
the node is already in a checkpoint phase;
if m.sender.rank=<initiator then
only the one with the smallest rank is taken into account;
if initiator =myRank then
the node was the other initiator;
L st opTi nmer (waitForAllTimer ) ;
renoveCkPt AckSet () ;
else
the node was not the other initiator;
L st opTi ner ( tentativeCkPtTimer ) ;

initiator < m.sender.rank;
sendCkPt Ack( m.sender,myDDV ) ;
| launchTi ner ( tentativeCkPtTimer ) ;

case ACK

If we receive an Ack, we are the initiator;

add( ckPtAckSet,m.sender,receivedDDV ) ;

if ckPtAckSet =ALLINGRP then

st opTi ner ( waitForAllTimer ) ;
computeNewDDV generate a new DDV in which entries are the max of the corresponding entries in all the
DDVs;

conput eNewDDV( ckPtAckSet,newDDV ) ;
makeTent at i vePer nanent () ;
duringCkPt « false;

br oadCast CkPt Conmi t (newDDV ) ;

case COMMIT

st opTi ner ( tentativeCkPtTimer ) ;

makeTent at i vePer manent () this also increment mySn;
myDDV «— newDDV,

duringCkPt « false;

del i ver Al | () deliver all the waiting messages;

repl ayMessFrontut () ;

sendAl | () send all the waiting messages;

| launchTi ner ( ckPtTimer ) ;

Algorithm 4: ckPtHandler

Algorithm 5 is executed when a process is sending a message to another one in the cluster federation. The message
is caught by the fault-tolerant layer. It puts the right message type and subtype, the sender identity and current sequence

10



number... It checks if the message needs to be queued (if communications need to be frozen due to a current checkpoint
being stored) or logged (if it’s an inter-cluster message).

4.5 Application Messages Transmission

Data : mess, the sent message
the message type and subtype are set by the function that call send, for example sendCkPtAck will set type to CKPT and
subtype to ACK;
if duringCkPt =true then
froze communications during checkpointing;
| storeToSend(mess);
else
mess.sn «— mySn;
mess.sender.rank < myRank;
mess.sender.clusterld «— myClusterld,;
send the message on the network;
transmt(mess);
if it’s an inter-cluster communication, log it;
if receiver.clusterld # myClusterld then
the logging is optimistic and doesn’t need stable storage;
| ogVvol atil e(mess);
its sn is suppose to be infinite (i.e. will have to be replayed) until the acknowledgment;
| ogVvol atil e(0);

Algorithm 5: send

Algorithm 6 is called when a message is coming from an other cluster. It checks if a CLC has to be initiated by comparing
the received sequence number and its corresponding DDV entry as explained in Section 3.2. It acknowledges the messages
with the appropriate sequence number.

It comes from another cluster, check the dependences;

if m.sn>myDDV [m.sender.clusterld] then

acknowledge the message with the next sequence number: a checkpoint will be taken;
acknow edgeMess(mySn ++) ;

update the DDV;

myDDV[m.sender.clusterId] < m.sn;

the message will be delivered at the commit;
storeMessage(m);

L initiateCkPt();

else

acknowledge the message with the current sequence number;
acknow edgeMess(mySn);

| deliver(m);

Algorithm 6: messFromOutsideHandler

Algorithm 7 represents the fact that inter-cluster are logged (by the sender) with the sequence number that the receiver has
at reception time, as soon as they are acknowledged.
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an inter-cluster send is acknowledged with the receiver current sn in the message data;
| ogVol atil e(m.sn);
the received sn will replace the oo stored during the message logging phase;

Algorithm 7: ackFromQutsideHandler

4.6 Garbage Collection

Algorithm 8 draws what is done for garbage collection. As described in section 3.5, initiating a garbage collection means
sending a request for garbage collection to all the leaders in the federation. Then, this algorithm shows what does a node
do when receiving such a request (it sends its entire DDV list, one DDV per CLC stored). When all the DDV lists have
been received by the initiator, it computes the recovery line (explained in 3.5) then send it to all other leaders in the cluster
federation. If a leader receives such a message it broadcasts it in its cluster and every node collects all its obsolete data.

switch m.subtype do
case REQ
| sendGCACK(myDDV );

case ACK
add( gcAckSet,m.sender,receivedDDV ) ;
if gcAckSet.size=nbClusters then
the initiator has received all the DDVs;
st opTi ner (gCTimer ) ;
conput eRecover yLi ne( gcAckSet,recoveryLine) ;
sendCol | ect ( otherLeaders,recoverylLine) ;

case COLLECT
if ROLE = _LEADER then
| broadcast Col | ect (recoveryLine) ;

| cl ean(recoveryLine) ;

Algorithm 8: gcHandler

5 Example

Figure 5 shows a sample execution on three clusters. It is composed of three parts. Each part is a snapshot of the execution.
On each part, the execution time goes from left to right, each horizontal line represents a parallel execution on a cluster. The
boxes are for the CLCs, the darker ones are forced CLCs. The corresponding DDVs are embedded in the CLC’s boxes.

The first part shows a normal execution until a failure appears in cluster 2. Notice that each cluster stores a first CLC which is
the beginning of the application. Cluster 1 sends message m1 to cluster 2, it sends its SN (1) along with m1. When receiving
m1, cluster 2 compares the received SN with cluster 1 DDV entry (0). 1 is greater than 0, this forces cluster 2 to take a CLC
before delivering m1 to the application level. When receiving m2 from cluster 1, cluster 2 doesn’t have to initiate a CLC, the
received SN (1) is equal to cluster 1 DDV entry in cluster 2. As for m1, we see that m3, m4 and m5 force CLCs respectively
on clusters 3,3 and 1. Notice that inter cluster messages are acknowledged with the local SN + 1 (the inter-cluster message
will be delivered after the CLC is committed). Logged messages are not represented to keep the figure easy to read.

When a fault is detected in cluster 2, the whole cluster rolls back to its last stored CLC, its new SN is 3. So it sends a rollback
alert with the SN 3 (second part of the figure). Cluster 1 doesn’t have any cluster 2 DDV entry greater or equal to the received
SN in its DDVs stored with the CLCs, it doesn’t need to rollback. On the over hand, cluster 3 has to rollback to the first CLC
that has its associated DDV containing cluster 2 entry greater or equal (equal in the sample) than the received SN. So cluster
3 has to rollback (third part of the figure) and sends an alert with its new SN (3).

Cluster 2 has never received messages from cluster 3 so its DDVs entries corresponding to cluster 3 are all equal to 0. It does
not need to rollback. Cluster 1 has to rollback to its last CLC which has 4 as cluster 3 entry. It sends a rollback alert with its
new SN (3) but no cluster has to rollback (due to the DDV lists).

12



Furthermore, the node in cluster 1 receiving the rollback alert from cluster 3, broadcasts it in its cluster. The node which has
sent m4 has to re-send it. It is acknowledged with SN=4, and the alert contains SN=3.
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Figure 5. HC3I checkpointing protocol sample

6 Evaluation

To evaluate the protocol, a discrete event simulator has been implemented. We have evaluated the overhead of the protocol
in terms of network and storage cost first, then we observe what happens with different communication patterns. At last the
garbage collector effectiveness and cost are evaluated.

6.1 Simulator

C++SIM library (http://cxxsim.ncl.ac.uk) has been used to write the simulator. This library provides generic threads, a
scheduler, random flows and classes for statistical analysis. Our simulator is configurable. The user has to provide 3 files:
a topology file, an application file and a timer file. In the topology file, there is the number of clusters, the number of nodes
in each cluster, the bandwidth and latency in each cluster and between clusters (represented as a triangular matrix) and the
federation MTBF (Mean Time Between Failures). The application file contains, for each cluster, the nodes mean computation
times, communication patterns between computations (represented by sends probabilities between nodes) and the application
total time. At last, the timers file contains the delays for the protocol timers for each cluster (delays between two CLCs,
garbage collection,...).

The simulator is composed of four main threads. The thread Nodes takes the identity of all the nodes, one by one. The thread
Network stores the messages and computes their arrival time. There is also a thread Timers to simulate all the different timers,
and a thread Controler that controls the other threads (launches them, displays results at the end,...). Communication between
threads is done by shared variables.

The simulator can be compiled with different trace levels. In the higher, we can observe each node action time-stamped
(sends, receives, timer interruptions, log searches...). The lowest simulator output is statistical data, as messages count in
clusters and between each cluster, number of stored CLCs, number of protocol messages,...
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6.2 Network Traffic and Storage Cost

Evaluating network traffic and storage cost is very hard. It depends on how the protocol is tuned. If the frequency of
unforced CLCs is low in a cluster, the SNs won’t grow too fast so inter-cluster messages from this cluster would have a low
probability to force CLCs. Reducing the protocol overhead becomes easy. If no CLC is initiated, the only protocol cost con-
sists in logging optimistically in volatile memory inter-cluster messages and transmitting an integer (SN) with them. There
is also a little overhead due to message interception (between the network interface and the application).

To take advantage of the protocol, the timer that regulates the frequency of unforced CLCs in a cluster should be set to a value
that is much smaller than the MTBF of this cluster.

To illustrate this, the simulator simulates 2 clusters of 100 nodes. In both clusters the network is "Myrinet like” (10us latency
and 80MB/sec bandwidth). The clusters are linked by ”Ethernet like” links (150us latency and 100MB/sec bandwidth). The
application total execution time is 10 hours. There are lots of communications inside each cluster and few between them. It
can be a simulation running on cluster 0 and a trace processor on cluster 1 for example. The table below displays the number
of messages (intra and inter-cluster).

Sender’s | Receiver’s | Message
Cluster Cluster Count
Cluster 0 | Cluster 0 2920
Cluster 1 | Cluster 1 2497
Cluster 0 | Cluster 1 145

Cluster 1 | Cluster 0 11
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Figure 6. Number of CLCs in Cluster 0

Graph 6 and 7 show the number of forced and unforced committed CLCs in each cluster according to the delay between
unforced CLCs in cluster 0 (x axis, in minutes). Cluster 1 delay between CLCs is set to infinite. Cluster 0 stores some forced
CLCs (8) because of the communications from cluster 1. This number of forced CLCs is constant - there are few messages
from cluster 1. Notice that the total number of stored CLCs is smaller than t";jf;;;zf;‘i‘gfgfé”:e + number of forced CLCs
because the timer is reseted when a forced CLC is established. Clusters store few more CLCs, but they are placed better (in
time). Cluster 1 doesn’t store any unforced CLCs as its timer is set to infinite, but it stores some forced CLCs induced by
incoming communications from cluster 0. The number of these forced CLCs is proportional to the number of CLCs stored in
cluster 0 - numerous messages come from cluster 0.

One may want to store more CLCs in cluster 1, if this cluster is intensively used and computation time is expensive for
example. Graph 8 shows that cluster O (which "delay between CLCs” timer is set to 30 minutes) won’t store more CLCs even
if cluster 1 timer is set to 15 minutes. This is thanks to the low number of messages from cluster 1 to cluster 0.
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Figure 8. Impact of the Number of CLCs in Cluster 1

6.3 Communication Patterns

To better understand the influence of the communications patterns on the checkpointing protocol, Graph 9 shows what
happens when the number of messages from cluster 1 to cluster 0 increases. Both cluster “delay between CLCs” timers are
set to 30 minutes. The application is the same as in previous section except for the number of messages from cluster 1 to
cluster O that is represented on the x axis.

The number of forced CLCs increases fast with the number of messages from cluster 1 to cluster 0. If the two clusters
communicate a lot in both ways, SNs will grow very fast and most of the messages will induce a forced CLC.

6.4 Garbage Collection

A garbage collection has got a non negligible overhead. If N is the number of clusters in the federation, each garbage
collection implies:

e N-1 inter-cluster requests
e N-1 inter-cluster responses which contains the list of all the DDVs associated to the stored CLCs in a cluster
e N-1 inter cluster collect requests

o A broadcast in each cluster
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However, our hybrid checkpointing protocol may store multiple CLCs in each cluster. They can become very numerous. It
also logs every inter-cluster application message. For the sample above, in the case of 103 messages sent from cluster 1 to
cluster 0, without any garbage collection, there’s 63 CLCs in each cluster. It means that each node in the federation stores
126 local states (its own 63 local states and the ones of one of its neighbor, because of the stable storage implementation).

If a garbage collection is launched every 2 hours, the maximum number of stored CLCs just after a garbage collection is 2 per
cluster in this sample. Only oldest CLCs are removed, as explain in Section 3.5, so rollbacks won’t be too big. The maximum
number of logged messages during the execution in the sample above is 4 in both clusters.

The table below shows for each garbage collection the number of CLCs stored just before and just after the collection.

Cluster 0 | Cluster 0 | Cluster 1 | Cluster 1
Before After Before After
10 2 11 2
18 2 18 2
15 2 14 2
14 2 15 2

A second experimentation simulates an application that runs on three clusters. Clusters 0 and 1 have the same configu-
ration as above. Cluster 2 is a clone of cluster 1. There’s approximately 200 messages that leave and arrive in each cluster.
The table below shows for each garbage collection the number of CLCs stored just before and just after the collection.

Cluster 0 (before) | 30 | 48 | 54 | 38
Cluster 0 (after) 2 | 2|22
Cluster 1 (before) | 50 | 80 | 78 | 64
Cluster 1 (after) 2 | 2|22
Cluster 2 (before) | 50 | 80 | 78 | 64
Cluster 2 (after) 2 | 2|22

A tradeoff has to be found between the frequency of garbage collection and the number of CLCs stored.

7 Related Work

A lot of papers about checkpointing methods can be found in the literature. However, most of the previous works are
related to clusters, or small scale architectures. A lot of systems are implemented at the application level, partitioning the
application processes into steps. Our protocol is implemented at system level so that programmers don’t need to write specific
code. Moreover the protocol in this paper takes clusters federation architecture into account. This section presents several
works that are close to ours.
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Integrating Fault-Tolerance Techniques in Grid Applications. [9] does not present a protocol for fault tolerance but it
describes a framework that provides hooks to help developers to incorporate fault tolerance algorithms. They have imple-
mented different known fault tolerance algorithms and it seems to fit well with large scale. However, these algorithms are
implemented at application level and are made for object-based grid applications.

MPICH-V. [3] describes a fault tolerant implementation of MPI. It is made for large scale architectures. All the communi-
cations are logged and can be replayed. This avoids all dependencies so that a faulty node will rollback, but not the others.
But this means that strong assumptions upon determinism have to be taken. Our protocol doesn’t need any assumption upon
the application determinism, moreover it takes advantage of the fast network available in the clusters.

Hierarchical Coordinated Checkpointing Protocol. The work presented in [10] is the closest from ours. It proposes
a coordinated checkpointing method, based on the two phase commit protocol. The synchronization between two clusters
(linked by slower links) is relaxed. In [10], it’s the coordinated checkpointing mechanism that is relaxed between clusters. It
is not an hybrid protocol like ours. Our protocol is more relaxed, it is independent checkpointing if there are no inter-cluster
messages.

8 Conclusion and Future Work

The protocol described in this paper is hierarchical, it is an hybrid method combining coordinated and communication
induced checkpointing. This approach is new and it should work well with “code-coupling” like applications. The protocol
needs to be tuned according to the underlying network, the application communication patterns and needs.

The dependency tracking mechanism can be improved by adding some transitivity (by sending the whole DDV instead of the
SN) in order to take less forced checkpoints. The user should be able to choose the degree of replication in the stable storage
implementation inside a cluster (in order to tolerate more than one fault in a cluster).lt should tolerate simultaneous faults in
different clusters (the garbage collector should take care of this). At last, the garbage collector should be more distributed.
A real implementation would be interesting to validate our protocol.
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