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ABSTRACT
The Schoof-Elkies-Atkin algorithm is the only known method
for counting the number of points of an elliptic curve defined
over a finite field of large characteristic. Several practical
and asymptotical improvements for the phase called eigen-
value computation are proposed.

1. INTRODUCTION
The aim of the Schoof-Elkies-Atkin (SEA) algorithm is to
compute the cardinality of elliptic curves defined over finite
fields. While the case of small characteristic is more effi-
ciently covered by p-adic methods (see [15, 11]), SEA is still
the only efficient known method used in the case of large
characteristic.

The SEA algorithm for a curve defined over a finite field Fq

of large characteristic p performs a lot of polynomial oper-
ations of various natures. It computes modulo polynomials
of degree ranging from 2 to about log q. For these, all the
standard machinery of asymptotically fast operations is used
(see in particular [10] and [17]).

A lot of algorithms have been designed to make SEA efficient
(see [1, 7, 14, 16]). The aim of this article is to describe a fast
version of the search for the eigenvalue in the cases of Elkies
primes as well as Schoof’s basic algorithm. We explain the
impact of these improvements on the recent records obtained
for large q’s.

The eigenvalue phase has been studied by Maurer and Müller
in [13]. Their approach is based on a baby step giant step
procedure. It splits in three computationnally important
parts: first the computation of the initial data (Xq modulo
the eigenfactor of the division polynomial); second the com-
putation of the two lists of elements that are to be matched;
third the finding of the match between the two lists. This
third step is usually trivial for baby step giant step ap-
proaches, but in the present situation, the elements in the
lists are computed and stored in a non-unique representa-

tion in order to avoid costly inversions modulo a large degree
polynomial. We present theoretical and practical improve-
ments for these three phases of the eigenvalue computation.

In Section 2, we recall briefly the SEA algorithm. In Sec-
tion 3 we focus more precisely on the eigenvalue computation
and distinguish the three main steps that are developped in
Sections 4, 5 and 6, that contain the new material. In Sec-
tion 7 we provide some practical experiments showing that
some asymptotically fast algorithms are not to be used for
the current range of applicability. We also give some data
from a new record obtained using the techniques described
in the following work.

We use the standard notation M(n) to designate the time
needed to compute the product of two degree n polynomials
over our base field.

2. THE SEA ALGORITHM
Throughout the article, let E denote an elliptic curve defined
over Fq by an equation of the form Y 2 = X3 +AX +B. We
refer for instance to [2, 12] for the following facts.

There is a group law on an elliptic curve, that is known as
the tangent-and-chord method. Over any field, the formulae
are rational. Repeated use of this law leads to the introduc-
tion of division polynomials. Define the bivariate division
polynomials in Fq[X, Y ] associated to E via:

Ψ−1 = −1, Ψ0 = 0, Ψ1 = 1, Ψ2 = 2Y,

Ψ3 = 3X4 + 6AX2 + 12BX − A2,

Ψ4 = 4Y (X6+5AX4+20BX3−5A2X2−4ABX−8B2−A3),

and for n ≥ 1,

Ψ2n = Ψn(Ψn+2Ψ
2
n−1 − Ψn−2Ψ

2
n+1)/(2Y ),

Ψ2n+1 = Ψn+2Ψ
3
n − Ψ3

n+1Ψn−1.

A classical modification of the division polynomials leads to
a univariate version which is more convenient to use. Indeed,
if n is odd, after replacing each occurence of Y 2 by X3 +
AX+B, the polynomial Ψn becomes a polynomial in X only,
that we call fn. And if n is even, Ψn becomes of the form
2Y times a polynomial in X alone that defines fn also in
that case. The recurrence formulas for Ψn can be rewritten



in terms of fn and we get

f2m = fm(fm+2f
2
m−1 − fm−2f

2
m+1), (1)

f2m+1 =



fm+2f
3
m − R2f3

m+1fm−1 if m is odd,
R2fm+2f

3
m − f3

m+1fm−1 if m is even,
(2)

where R = 4(X3 + AX + B).

The degree of fn is (n2 − 1)/2 if n is odd and (n2 − 4)/2 if
n is even. These polynomials describe the multiplication by
n of a point on E in a very explicit way:

Proposition 2.1. For any P = (X, Y ) in E and for any
n ≥ 1, we have

[n]P =

„

X − Ψn−1Ψn+1

Ψ2
n

,
Ψn+2Ψ

2
n−1 − Ψn−2Ψ

2
n+1

4Y Ψ3
n

«

.

Furthermore, if P is not a 2-torsion point, then [n]P = 0 if
and only if fn(X) = 0.

Over an algebraic closure of Fq, let ϕ be the Frobenius en-
domorphism of E that sends (X, Y ) to (Xq , Y q). It verifies
an equation of the form ϕ2 − tϕ + q = 0 and the number of
Fq-rational points of E is #E = q + 1 − t. Hasse’s bound
ensures that the absolute value of the trace t is bounded by
2
√

q. Schoof’s algorithm proceeds by computing t modulo
small primes ` using the action of ϕ on the set of `-torsion
points E[`], until enough modular information is known to
reconstruct the trace and the cardinality of E by the Chinese
Remainder Theorem.

For every prime ` one needs to find the value of t mod ` such
that the equation

ϕ2(P ) − [t]ϕ(P ) + [q]P = 0 (3)

holds for all P in E[`]. Using f`(X), this boils down to
testing:

(Xq2

, Y q2

) + [q](X, Y ) = [t](Xq , Y q) (4)

where all operations are to be thought of as modulo f`(X),
and modulo the equation of E.

In the so-called Elkies case, the characteristic polynomial of
ϕ has two linear factors modulo `; therefore the restriction of
ϕ to E[`] has two rational eigenspaces, one of these (call it V )
being characterised by some polynomial of degree (`− 1)/2,
that we note g`(X) and which is a divisor of f`(X). The
action of the Frobenius on (X, Y ) ∈ V is simply ϕ(X, Y ) =
(Xq , Y q), with the first term being reduced modulo g`(X)
and the second modulo g`(X) and Y 2− (X3 +AX +B). We
shall be interested in computing the eigenvalue of ϕ, namely
the integer k, 0 < k < ` s.t. ϕ(X, Y ) = [k](X, Y ) or:

(Xq , Y q) = [k](X, Y ). (5)

Indeed, the trace modulo ` is then deduced from the formula
t ≡ k + q/k mod `.

Detecting the primes ` for which we are in the Elkies case
amounts essentially to finding roots of the modular equation
of degree `. Then building the corresponding factor of the

division polynomial is a non-trivial task for which several
techniques exist. For those steps, we refer to [16, 14].

On a heuristic basis, for a general curve, we expect to be in
the Elkies case for about half of the primes `. Combining
this with Hasse’s bound and the prime number theorem, we
obtain that, asymptotically, the largest ` we have to consider
is about log q (here, log is the natural logarithm).

3. COMPUTING THE EIGENVALUE
We turn to the main question we are interested in, namely
the computation of the eigenvalue in the SEA algorithm
when ` is an Elkies prime: we are given a factor g` of the
division polynomial, of degree (`−1)/2, and we want to find
an integer k such that equation (5) is verified in the algebra
A = Fq[X, Y ]/(Y 2 − (X3 + AX + B), g`(X)).

Although this case is the most important one in practice,
we put it in a slightly more general context, so that we also
include the resolution of equation (4) and the isogeny cycle
approach that finds t mod `r (see Remark 6.1 below).

Let us assume we are given P1 and P2 two points of E defined
over an algebra A and we want to find a value k modulo `
such that P2 = [k]P1. This covers the resolution of equations
(4) and (5), but the initialisation of the points is different.
Also in the case of (4), k can be zero whereas in (5) this
is not possible. Since k = 0 is easily detected anyway, we
assume from now that k is in [1, ` − 1].

3.1 Baby Step Giant Step Approaches
Müller and Maurer [13] have designed several algorithms for
solving the eigenvalue problem that are faster than plain
enumeration of all k’s that costs O(`) operations. We de-
scribe several other ways of implementing these and analyze
their cost in detail. The principle is to use some baby step
giant step approaches.

The first approach is the classical one. Write k in base u as
k = cu + d where 0 ≤ d < u and 0 ≤ c < `/u (we could do
slightly better by testing ±k at the same time). Then we
rewrite our equation as:

P2 − [c]([u]P1) = [d]P1.

We precompute all [d]P1’s for a cost of u elliptic operations
over A and have c vary, taking at most `/u values. This al-

gorithm is minimized for u =
√

`, yielding an algorithm that
requires O(

√
`) operations in the elliptic curve to compute

the points to match.

Since the group law on an elliptic curve is expensive, it is
better to use a multiplicative decomposition of the value k
we are looking for: the integer k is to be thought of modulo
` and cannot be zero modulo `. Therefore we look for an
identity of the form

[i]P2 = [j]P1

in E over A. Taking two values I and J such that IJ > `, it
is always possible to find 1 ≤ i ≤ I and 1 ≤ ±j ≤ J such that
k = j/i (see for instance [10, §5.10]). Taking I = J = d

√
`e,

we obtain again a complexity of O(
√

`) operations in the
curve to compute the points to match. The difference with



the additive decomposition of k is that we now have pure
multiples of a point on each side. This is easier to handle
and allows to perform the computations with only the point
abscissae.

Remark 3.1. Maurer and Müller have proposed another
method. The idea is to use the fact that doubling a point
is easy and we look for k = j/2i mod ` for 1 ≤ i, j ≤ I, J.
This makes sense in the case where one computes in a non-
projective manner, allowing divisions; otherwise doubling is
not really faster than the use of division polynomials as pre-
sented in Section 5. For large values of `, inversions must
be avoided as much as possible, and the doubling strategy is
no longer a competitive alternative. Furthermore, the values
for I and J are expected to be O(

√
`) for most primes `, but

in the case where 2 has a small order modulo `, this is not
true.

3.2 Elementary Steps of the Algorithm
The algorithm for finding k decomposes in the following el-
ementary steps that will be studied in turn:

1. Compute initial data. This means basically computing
P1 and P2, but depending on cases, only their abscissae
might be required.

2. Compute the abscissa of [i]P1 and the abscissa of [i]P2

for 1 ≤ i ≤ d
√

`e in projective form.

3. Find a match between the two lists of rational fractions
in A.

3.2.1 Computation of initial data.
In the case of equation (4), one needs to compute Xq , Y q ,

Xq2

and Y q2

. We will give in Section 4 a fast way to deduce

Xq from Y q and Xq2

from Y q2

. This means that only two
(expensive) binary powerings are to be done.

In the case of equation (5), one needs Xq and Y q . However
if furthermore ` ≡ 3 mod 4, a trick by Dewaghe [6] allows to
fully determine the eigenvalue if it is known up to sign. It
means that one can work with abscissae only and compute
only Xq . Hence only one expensive binary powering is re-
quired. In the other case, where ` ≡ 1 mod 4, Müller and
Maurer were computing both Xq and Y q in order to get the
full signed eigenvalue. By our algorithm in Section 4, one
can improve this and compute first Y q by binary powering,
and then deduce Xq.

3.2.2 Construction of the lists.
Once the abscissae of P1 and P2 are known, one computes
the abscissae of multiples of them. We insist on the fact
that even if the ordinates are known, since we are working
in projective form and want several consecutive multiples, it
is better not to use them at this stage. The match will give
only the solution up to sign, and then using the ordinate
or Dewaghe’s trick the sign is computed. In Section 5 we
show an efficient way of computing these multiples, thus
improving by a constant factor the strategy of Müller and
Maurer.

3.2.3 The matching problem.
Since we deal with projective coordinates to avoid inver-
sions, the matching in the two lists is not immediate. Sev-
eral approaches are possible, starting from redoing all the
inversions, to completely avoiding them. We recall some of
them and propose a new one in Section 6.

4. RECOVERING X
q FROM Y

q

Let h(X) be a polynomial of degree n over Fq. In the
eigenvalue computation, h is g`. It is clear that computing
Xq mod h(X) and Y q = Y (X3 +AX +B)(q−1)/2 mod h(X)
costs O((log q)M(n)) operations in Fq. It turns out that we
can in fact compute Xq mod h(X) from the value of Y q with
less operations than by a direct binary powering computa-
tion.

4.1 Two Algorithms
We can write F (X) = Y 2q ≡ (X3 + AX + B)q mod h(X) ≡
(Xq)3 + AXq + B. We note that W = Xq satisfies W 3 +
AW + B = F (X) mod h, but also that W is a root of h.
Hence, we should recover Xq as the (hopefully unique) root
of

gcd(W 3 + AW + B − F (T ), h(W )) (6)

computed in B[W ], where B = Fq[T ]/(h(T )). This gcd is
easy to compute, since all operations are performed over
B. Moreover, its cost is dominated by the first reduction,
namely h(W ) mod (W 3 + AW + B − F (T )), and is readily
seen to be O(nM(n)) operations in Fq, which means that
this approach will be faster than simply computing Xq when
n � log q. Some special code for computing this reduction
has to be written, benefiting from the very special form of
the cubic polynomial.

We can design a faster method as follows. Let P (W ) =
W 3 + AW + B, H = P − F (T ), so that P = F mod H.
Write h(W ) in base P as:

h(W ) =
X

i

hi(W )P i

with deg(hi) ≤ 2. According to [10, Theorem 9.15], this
costs O(M(n) log n). Then:

h(W ) mod H ≡
X

i

hi(W )F i

=
X

i

(hi,0 + hi,1W + hi,2W
2)F i

= (
X

i

hi,0F
i) + W (

X

i

hi,1F
i) + W 2(

X

i

hi,2F
i)

for a cost of three modular compositions (modulo h(X)), or

O(n1/2
M(n)+n(ω+1)/2), where ω is the complexity exponent

of matrix multiplication.

In the special case where h is a divisor of f`, one can replace
(6) by:

gcd(W 3 + AW + B − F (T ), f`(W )), (7)

still to be computed in B[W ]. Even in the case where f`(W )
has a degree which is higher than the degree of h, this can be
worthwile, since f` can be evaluated quickly using (1) and



(2): at each step in the recursive process, the polynomials
are reduced modulo W 3 +AW +B−F (T ), so that comput-
ing f`(W ) modulo W 3 + AW + B − F (T ) requires requires
O(log `) operations in B, that is O((log `)M(n)).

4.2 An Example
Consider the curve E : Y 2 = X3 + 2X + 3 over Fq = F1009.
For ` = 13, one eigenfactor is given by

g13(T ) = T 6 +641T 5 +755T 4 +993T 3 +468T 2 +183T +503,

F (T ) ≡ (T 3 + 2T + 3)q

= 974T 5 + 964T 4 + 475T 3 + 902T 2 + 945T + 832,

gcd(W 3 + 2W + 3 − F (T ), g13(W ))

= W − (614T 5 + 667T 4 + 441T 3 + 130T 2 + 283T + 190)

the root of which is easily checked to be indeed T q mod
g13(T ).

4.3 Failures
The gcd could be trivial in rare cases. These are easy to dis-
cover and in that event, switching to the traditional compu-
tation of Xq is easy. In our numerous experiments this never
happened, except for curves that we especially designed for
the only purpose of making this method fail.

4.4 Application to Schoof’s Basic Algorithm
As an application, we could speed up Schoof’s original de-
sign. The optimal way to check (3) is as follows:

1. Compute Y q ≡ Y Z(X) ≡ Y (X3 + AX + B)(q−1)/2 mod
f`(X);

2. Deduce Xq from Y q as just shown;

3. Compute (Xq2

, Y q2

) as Xq2

= Xq◦Xq , Y q2

= (Y Z(X))q =
Y Z(X)(Z(X) ◦ Xq) by two modular compositions with the
same Xq;

4. Compute (Xq2

, Y q2

) + [q](X, Y ), and then look for t.

Asymptotically, we would replace one modular composition

in 3. by the same trick again for computing Xq2

from Y q2

.

4.5 Application to our Original Problem
In the case of the eigenvalue computation for Elkies primes,
we work modulo g` of degree (` − 1)/2. The complexity of
computing Xq by binary powering is O((log q)M(`)). Deduc-
ing it from Y q by a naive GCD computation has a complex-
ity of O(`M(`)). Since most of the time is spent on primes
` of size about log q, this does not give any asymptotic im-
provement. Computing the GCD using modular composi-
tions has a complexity of O(

√
`M(`) + `(ω+1)/2) which is

asymptotically faster by log factors for ω = 3, and even bet-
ter if one takes ω < 3. And the last method of computing
the GCD using f` has a complexity of O((log `)M(`)), which
is asymptotically the best of the three methods.

5. COMPUTATIONS WITH DIVISION POLY-
NOMIALS

5.1 Incremental computation of multiples of a
point

In order to test equation 5, one has to compute the consecu-
tive multiples of a torsion point. This is not exactly the same
question as the classical scalar multiplication problem where
variants of the binary powering algorithm have been studied
at length since this is the basic operation in cryptographic
protocols.

We are in a context (operations modulo h) where inversions
are very expensive compared to multiplications so the pro-
jective variants have to be used and the classical formulae
will yield a cost of a dozen of multiplications per element to
compute. In the following, we will see furthermore that in
all cases we can work with (projective) abscissae only. We
refer for instance to [4] for some details on how to compute
efficiently n times a point in this context.

To compute all the multiples of a point, we use division poly-
nomials, and improve slightly the constant in the complexity
given in [13]. Assume that we have computed the values of
fi for 1 ≤ i ≤ n + 2, evaluated at the abscissa of a point
P = (x, y). Then by the formulae of Proposition 2.1, we can
deduce the abscissae of [i]P for 1 ≤ i ≤ n in an affine or
projective form.

After some initialisations to deal with small indices, assume
that we have computed all the values of fi up to i < k. Then
fk can be computed with the help of (1) or (2) depending
on the congruence of k modulo 4. In order not to recompute
several times the same values, we introduce the polynomials
Ui = fi−1fi+1 and Vi = f2

i , so that the formulae simplify to

f2m = Vm−1Um+1 − Vm+1Um−1, (8)

f2m+1 = VmUm+1 − R2Vm+1Um, (9)

if m is odd and

f2m+1 = R2VmUm+1 − Vm+1Um (10)

otherwise, where R = 4(x3 + Ax + b) is the square of the
ordinate of the point P .

Therefore, in order to compute all the fi, Ui, Vi up to i ≤ n+
2, we need 3.5n+O(1) products and n+O(1) squares in the
ring where the abscissa x of the point P we want to multiply
lives. The abscissae of the multiples of P can be written in
the form Ni(x)/Di(x), where Ni and Di are polynomials
that are computed at a cost of two more multiplications
using the formulae

Ni

Di
(x) =

8

>

>

<

>

>

:

x − Ui

RVi
if i is even,

x − RUi

Vi
if i is odd.

(11)

Proposition 5.1. For any P = (x, y) in E, the abscissae
of the points [i]P for 1 ≤ i ≤ n can be computed in a pro-
jective form at a cost of 5.5n + O(1) products and n + O(1)
squares in the ring that contains x.



5.2 Application to SEA
In Schoof’s original algorithm, Proposition 5.1 is used with

points (Xq, Y q) as well as (Xq2

, Y q2

)+[q](X, Y ) in the alge-
bra Fq[X, Y ]/(f`(X), Y 2−(X3+AX+B)). In the eigenvalue
finding phase of the SEA algorithm, the points concerned are
(X, Y ) and (Xq, Y q) in the algebra Fq[X, Y ]/(g`(X), Y 2 −
(X3 + AX + B)). In this latter case, we note that when the
abscissa is precisely the element X that is used to build the
extension of Fq, as long as n is less than about the square
root of the degree of g`, the polynomials fi, Ui, Vi have a
degree small enough so that no reduction modulo g` occurs,
so that the computations are much faster than for the other
abscissa. Furthermore, in that case, since X, R and R2

are polynomials of small constant degrees, multiplication by
them takes a negligible time. Therefore, computing the ab-
scissae of the first n multiples of (X, Y ) takes 3n + O(1)
multiplications and n + O(1) squares, most of them being
between polynomials of small degrees and without any re-
duction modulo g`.

Remark 5.1. The difference (by a constant factor) in the
complexities of computing the multiples of (X, Y ) and (Xq, Y q)
means that in practice one should adjust the baby step giant
step procedure in order to minimize the overall cost. How-
ever, tuning this can be done only for a particular implemen-
tation since the difference between the complexities is related
to the cost of the multiplication of polynomials of all degrees
from 1 to (` − 1)/2.

6. TESTING FOR RATIONAL EQUALITY
The problem we want to adress is the following: we are given
I 4-tuples of polynomials ai, bi, ci, di for 1 ≤ i ≤ I ≤ n of
degree less than n and a polynomial h of degree n. Assuming
that bi and di are invertible modulo h for all i, we want to
find (if they exist) two indices i and j such that

ai(X)

bi(X)
≡ cj(X)

dj(X)
mod h(X).

Computing all the possible crossproducts leads to a complex-
ity which is quadratic in I, which annihilates the benefit of
the baby step giant step approach.

6.1 Algorithm 1
The simplest idea for performing the task is to compute
inverses. After computing the inverses of all the bi and di

modulo h, it amounts to 2I multiplications modulo h. Hence
2I inverses and 2I multiplications modulo h are enough to
find the matching indices.

However, computing an inverse modulo h has an asymptoti-
cal cost of O(M(n) log n) which is larger than for a multipli-
cation. Quite often in our context, this theoretical prediction
is also true in practice. Hence one wants to save inversions.

For that, the classical trick by Montgomery can be used:
computing the 2I inverses can be done using only one inver-
sion and 6I−6 multiplications. Hence the complexity of the
test is reduced to 8I − 6 multiplications and 1 inversion.

We propose a variant that requires no inversions. The idea

is to test ai/bi ≡ cj/dj mod h by

ai

Q

k 6=i bk
Q

k bk
≡

cj

Q

k 6=j dk
Q

k dk
mod h

or ãi = c̃j where

ãi = ai

“

Y

k 6=i

bk

”“

Y

k

dk

”

mod h,

c̃j = cj

“

Y

k 6=j

dk

”“

Y

k

bk

”

mod h.

Let us explain how we can compute the ãi’s and c̃j ’s in a
quick way. Denoting a[k..l] the product akak+1 · · · al, we
first evaluate the following quantities that we put in a dia-
gram in which each line will give one of the ai.

d[1..I]b[2..I] a[1]
b[1] d[1..I]b[3..I] a[2]
b[1..2] d[1..I]b[4..I] a[3]
... ... ...
... d[1..I]b[I − 1..I] a[I − 2]
b[1..I − 2] d[1..I]b[I] a[I − 1]
b[1..I − 1] a[I]
b[1..I]

A similar picture is drawn for ck and dk. The first step is
to compute the elements in the first columns. This costs
2I multiplications. The last element of the second picture
is the complete product of the dk. We will then compute
the elements of the second column of the first picture using
this product. And similarly, we compute the second column
of the second picture using the complete product of the bk

that is taken from the first picture. This costs again 2I
multiplications. Once the data in the picture are known, it
suffices to multiply the elements in each line to get all the
ãk and c̃k, at a cost of 4I multiplications. The total time is
therefore 8I multiplications modulo h and no inversions.

6.2 Algorithm 2
This algorithm is due to Shoup. We recall it here and ana-
lyze its complexity.

Let ~w be a random vector of F
n
q . For a polynomial a(X) in

Fq[X] of degree less than n, denote by ~a the coefficient vector
of a(X) = a0 + a1X + · · · + an−1X

n−1, or more precisely
~a = [a0, a1, . . . , an−1]. Define the linear map associated to
~w:

Lw : Fq[X]<n → Fq

a(X) 7→ ~a · ~w

where · denotes the scalar product of two vectors. Define the
n×n matrix of the multiplication by a(X) in Fq[X]/(h(X)):

Ma =
“

~a| ~aX| · · · | ~aXn−1
”

,

where the coefficient vector of a(X)X i mod h(X) forms the
i-th column of Ma.

Proposition 6.1. For any d(X) in Fq[X]/(h(X)), one
has

Lw(a(X)d(X)) = (tMa ~w) · ~d.



If ai(X)dj(X) − cj(X)bi(X) 6= 0, then with high proba-
bility, Lw(ai(X)dj(X) − cj(X)bi(X)) 6= 0. Let us fix i
in [1, I], so that we have to evaluate Lw(ai(X)dj(X)) and
Lw(bi(X)cj(X)) for j in [1, I].

Using Proposition 6.1, if we have precomputed tMai
~w and

tMbi
~w, then the check boils down to scalar multiplications.

The matrix Mai
is a matrix of multiplication and there-

fore the product of this matrix times a vector has a com-
putational cost of O(M(n)). By Tellegen’s principle [18] the
transpose of this matrix can also be multiplied by a vec-
tor within the same complexity. Hence the computation of
tMai

~w and tMbi
~w costs O(M(n)) for each i. Then the dot

products can be organized in matrices so that in the end the
overall cost is O(IM(n) + nIω−1).

For the application to the SEA algorithm, we have I ≈ √
n,

so that we have replaced the inversion by an operation which
is asympotically much more costly. On the other hand the
constants are much smaller.

6.3 Incremental Computations
Algorithms 1, 2 have been analyzed for worst-cases. In an
average case analysis, assuming that the matching pair is
uniformly distributed, we can improve the constant in front
of the IM(n) part of the complexity by reordering the com-
putations in Algorithms 1. The idea is to use the available
data as soon as possible to test for a match. We skip the de-
tails and only mention that for Algorithms 1 one can get an
average complexity of 6I modular multiplications, whereas
the worst case requires 8I modular multiplications. In prac-
tice, we use these incremental versions.

6.4 Theoretical Comparison
In the case of the eigenvalue computation, we work modulo
g` which is of degree (`−1)/2, and I is d

√
`e. The complexity

of Algorithm 1 is then O(
√

`M(`)) and the complexity of

Algorithm 2 is O(
√

`M(`) + `(ω+1)/2).

We assume that asymptotically fast algorithms are used for
polynomial multiplication so that M(n) is O(n log n log log n)
and we assume that naive algorithms are used for matrix
multiplication so that ω = 3. This corresponds to the im-
plementation in NTL. Then Algorithms 1 has complexity
Õ(`1.5) and Algorithm 2 has complexity Õ(`2). Hence Al-
gorithm 2 should be slower than Algorithm 1.

Remark 6.1. In the case where for the given ` the eigen-
value is found to have a small order in F

∗
` , it is interesting to

continue the effort and try to get information modulo some
power of ` as described in [5]. In this method, a factor of f`r

is found by pushing torsion points along a path of isogenies
for increasing values of r, in a kind of Hensel lifting process.
At each step of this lifting, one has to solve an equation sim-
ilar to the one we have studied and a baby step giant step
is to be used. The algorithms described in the present sec-
tion apply also in this context, but this time we have to work
modulo a polynomial of degree n of the order d`r−1, where d
is the order of the eigenvalue. The bound I is still

√
` and

we see that Algorithm 1 has the best asymptotical complexity
of Õ(d`r−0.5).

7. PRACTICAL COMPARISONS
7.1 Range of Application
Remember that on a heuristic basis the maximum prime `
we are going to deal with is around log q (natural logarithm
of q). In the first step of the SEA algorithm that we do
not study here, we need to use the modular equation of de-
gree `. Computing these equations is a challenging task and
we refer to [8] for a fast method of doing it. With today’s
technology, we consider that beyond ` = 10, 000, this algo-
rithm takes a time which is no longer reasonable. It means
that the maximum size of q we could handle today with the
SEA algorithm is about 104300 (but this computation would
require a huge amount of resources).

We have implemented the whole SEA algorithm with the
different strategies proposed here. We used the C++ pro-
gramming langage with the NTL library. We compare the
different algorithms, keeping in mind the practical limits
mentionned in the previous paragraph. All the running
times are given on a 2.4GHz Opteron 250 processor. The
non-smooth shapes of the curves displaying running times
are due to the way the FFT is implemented in NTL, with
big gaps at certain values.

7.2 Computing Xq from Y q

We did experiments for primes q varying from 100 to 3000
decimal digits. For each prime we took the estimated maxi-
mal value of ` ≈ log q, and we compared the different meth-
ods for computing the GCD of Section 4. The results are
shown in Figure 1. Although the method with modular com-
positions is asymptotically the slowest one, it beats the other
methods by a large factor in the current range of applica-
tions.

For comparison with the previous algorithm, the time to
compute Xq by the binary powering would have been about
1450 seconds for 1000 digits (now 48 seconds), and 16700
seconds for 2000 digits (now 460 seconds).

Figure 1: Methods for computing the GCD when

recovering Xq from Y q.
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7.3 Testing Rational Equality
We did the same kind of measurements for the algorithms of
Section 6. The theoretical complexity of the test of rational



equality using Algorithm 3 looks attractive compared to the
complexity of Algorithm 2. However, in practice the con-
stants in the complexity of Algorithm 2 are so small that for
all values in the practical range it is faster than Algorithm
3, as demonstrated in Figure 2. Hence our improvements to
previous algorithms do not lead to practical speed-ups for
the currently feasible sizes.

Figure 2: Testing rational equality.
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Remark 7.1. In order to validate our complexity anal-
ysis, we have done simulations to find a point where the
asymptotically fast algorithms win against the others. We
have kept q fixed to 2000 digits, and let ` grow, since the
dependance in q just appears in the cost of the base field
operations and is (in principle) well under control. For `
around 106, we could see (at last!) the algorithm using f`

for the GCD and the rational equality test by Algorithm 1
becoming faster than the other algorithms.

7.4 Some Data from a New Record
We computed the cardinality of E : Y 2 = X3 + 4589X +
91128 over the prime field F102004+4863 (see the announce-
ment [9]). A typical large value of ` is 4649. Computing
Xq mod Φ`(X, j(E)) took 45, 192 seconds (without count-
ing the computation time for Φ`); computing g` took 500
seconds using the techniques described in [3]; from this, com-
puting Y q mod g` required 16, 657 seconds and Xq from Y q

took only 458 seconds using the approach with modular com-
positions (in which 7 seconds were used to write h in base
P , 222 to compute the three modular computations). In the
eigenvalue phase, one takes I = 69; computing all ci and
di costed 310 seconds. One of the eigenvalue turns out to
be k = 43/14 = 4320 mod `. The time for computing the
2 × 14 L functions was 73 seconds, the time for applying
them (13×69+43) times was 105 seconds, and the time for
evaluating ai, bi for i ≤ 14 was 225 seconds.

8. CONCLUSIONS
We have presented several theoretical and practical improve-
ments to the eigenvalue computation phase of the SEA al-
gorithm. These improvements make this phase negligible
compared to the main two operations that have to be done
for each Elkies prime: computing Xq modulo the modular
polynomial Φ`(X, j) and computing Xq modulo the factor

of the division polynomial g`(X). Another part that can be
improved to become negligible is the computation of g`; this
is work in progress [3].

The conclusion is that to obtain a fast implementation of the
SEA algorithm one only has to concentrate on the optimiza-
tion of the implementation of the powering of X modulo a
polynomial, which is a classical building block in polynomial
factoring algorithms.
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