
HAL Id: inria-00001030
https://hal.inria.fr/inria-00001030

Submitted on 16 Jan 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

,pdfcreator=HAL,pdfproducer=PDFLaTeX,pdfsubject=Computer Science [cs]/Other [cs.OH]

On the use of unfoldings to abstract communicating
automata into sets of scenarios

Thomas Chatain, Loïc Hélouët, Claude Jard

To cite this version:
Thomas Chatain, Loïc Hélouët, Claude Jard. On the use of unfoldings to abstract communicating
automata into sets of scenarios. [Research Report] PI 1751, 2005, pp.23. �inria-00001030�

https://hal.inria.fr/inria-00001030
https://hal.archives-ouvertes.fr

I
 R

 I
 S

 A
IN

S
T
IT

U
T
 D

E
 R

E
C

H
E
R

C
H

E
 E

N
 IN

FO

R
M

ATIQ
UE E

T S
YSTÈMES ALÉATOIRES

P U B L I C A T I O N
I N T E R N E
No

I R I S A
CAMPUS UNIVERSITAIRE DE BEAULIEU - 35042 RENNES CEDEX - FRANCEIS

S
N

 1
16

6-
86

87

1751

ON THE USE OF UNFOLDINGS TO ABSTRACT
COMMUNICATING AUTOMATA INTO SETS OF

SCENARIOS

THOMAS CHATAIN, LOÏC HÉLOUËT, CLAUDE JARD

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTÈMES ALÉATOIRES

Campus de Beaulieu – 35042 Rennes Cedex – France
Tél. : (33) 02 99 84 71 00 – Fax : (33) 02 99 84 71 71

http://www.irisa.fr

On the use of unfoldings to abstract

communicating automata into sets of scenarios

Thomas Chatain* , Löıc Hélouët** , Claude Jard***

Systèmes communicants
Projet DistribCom

Publication interne n˚1751 — October 2005 — 23 pages

Abstract: We consider the problem of automatic abstraction, from a low-
level model given in term of network of interacting automata to a high-level
message sequence chart. This allows the designer to play in a coherent way
with the local and global views of a system, and opens new perspectives in
reverse model engineering of concurrent systems. Our technique is based on a
partial order semantics of synchronous parallel automata and the construction
of a complete finite prefix of an event-structure coding all the behaviors. We
present the models and algorithms. The examples presented in the report have
been processed by a small software prototype we have implemented.

Key-words: Unfoldings, HMSC, Automata networks, Model engineering

(Résumé : tsvp)

* IRISA/INRIA, Thomas.Chatain@irisa.fr
** IRISA/INRIA, Loic.Helouet@irisa.fr

*** IRISA/ENS Cachan, Claude.Jard@bretagne.ens-cachan.fr

Centre National de la Recherche Scientifique Institut National de Recherche en Informatique
(UMR 6074) Université de Rennes 1 – Insa de Rennes et en Automatique – unité de recherche de Rennes

Sur l’utilisation des dépliages pour abstraire

des automates communicants en ensembles de

scénarios

Résumé : Nous considérons le problème de l’abstraction automatique d’un
modèle de bas niveau donné en terme d’un réseau d’automates finis commu-
nicants, en un ensemble de scénarios donné sous la forme d’un HMSC (”High-
level Message Sequence Chart”). Ceci permet au concepteur d’un modèle
d’utiliser de façon cohérente les vues locale et globale d’un système, et ouvre
de nouvelles perspectives pour la rétro-ingénierie des modèles de la répartition.
Notre technique est fondée sur la sémantique d’ordre partiel d’automates par-
allèles synchronisés et la construction d’un préfixe fini complet de la struc-
ture d’événements codant l’ensemble des comportements. Nous présentons les
modèles et les algorithmes. Les exemples présentés dans ce rapport ont été
calculés par un prototype logiciel que nous avons développé.

Abstraction using Unfoldings 3

1 Introduction

Designing a distributed application is a complex task. At the final stage of the
modeling, once the different architectural decisions have been made, designers
usually obtain a set of communicating sequential components. During earlier
stages of software development, designers use more abstract and visual repre-
sentations such as scenarios. For instance, Message Sequence Charts (MSCs) [9]
are an appealing visual formalism to capture system requirements. They are
particularly suited for describing scenarios of distributed telecommunication
software [7]. Several variants of MSCs appear in the literature (sequence di-
agrams , message flow diagrams, object interaction diagrams, Live Sequence
Charts) and are used in a number of software engineering methodologies in-
cluding UML [8]. They provide the designer with a global view of the dynamic
behavior of the system, given in a declarative manner.

However, there is often a gap between the local view defined as sequential
components and the more global view described by scenarios. Some scenarios
cannot be implemented by sequential machines, and some compositions of se-
quential machines do not have finite representation in terms of MSCs. This
is why a lot of recent works have been developed to automatically generate
communicating automata (at least a skeleton) from MSCs [1,5] in the con-
text of a top-down design methodology. Obviously, building a bridge in the
opposite direction is also an interesting problem, as it would allow designers
to play freely with any style of specification (global declarative or distributed
imperative) while preserving the coherence of both views. A solution to this
problem could also be the basis of another important challenge called “aspect
modeling”, in which a new feature described as a set of scenarios can be added
safely to an already existing model of communicating machines. This will im-
ply sophisticated formal techniques, since the required transformations modify
dramatically the structure of the automata.

This context motivates our work on some “reverse distributed model en-
gineering”. We begin with simple models, which are networks of synchronous
parallel finite state automata for the imperative aspect, and MSCs for the
declarative aspect. The problem is thus to automatically obtain a MSC from
an automata network, which codes all the runs of the system, runs being de-
fined as partial orders of transition occurrences. The finiteness of the automata

PI n˚1751

4 Chatain & Hélouët & Jard

and the synchronous communication ensure that such a transformation is pos-
sible. This question has already been addressed from the theoretical point of
view in term of formal languages in [3]. They show that any single Büchi au-
tomaton with a structural property, called diamond, and with all its states
accepting, is able to generate the language of a bounded MSC. However, this
problem is undecidable for asynchronous communicating finite state machines.
This justifies our choice to consider synchronous networks and to propose an
original algorithm to produce a concrete MSC, as readable as possible. Figure
1 shows an example of such network, which consists of two automata A0 and
A1, synchronized on their common event x. Figure 1 gives the corresponding
MSC we would like to compute. Notice that the MSC graph is complex due to
the fact that this example was designed to show all the tricky aspects of the
transformation. A more realistic example is treated in Section 4.

We will use the notion of unfolding, and the fact it can be finitely generated
by a finite complete prefix. This is based on the unfolding theory, as presented
in [4,2]. In the paper, we adopt nevertheless a direct approach, without using
Petri nets as usual, in order to avoid to introduce a new intermediary formal
model. The question of using the finite prefix as a generator of the unfolding
is also new up to our knowledge.

The rest of the paper is organized as follows. Section 2 defines formally au-
tomata networks, MSCs and the notion of runs. The next section 3 is devoted
to the generation of possible runs by the construction of a finite complete prefix
of the unfolding. Section 4 presents how the MSC automaton and the refer-
enced basic MSCs are extracted from the prefix. We conclude by a discussion
summarizing the approach and proposing a few perspectives.

2 Definition of Automata Networks and MSCs

2.1 Networks

An initialized labelled automaton is a tuple A = 〈S, Σ,→, s0〉 where S is a
finite set of states, Σ is a set of labels, → ⊆ S × Σ × S is a set of labelled
transitions, and s0 ∈ S is the initial state. For a transition t = (s, a, s′) ∈ →,

we denote α(t)
def
= s its source, β(t)

def
= s′ its target, and λ(t)

def
= a its label.

I
def
= {1, . . . , n} denotes a finite set of indices. We consider the synchronous

parallel composition of the initialized labelled automata Ai = 〈Si, Σi,→i, s
0
i 〉i∈I

Irisa

Abstraction using Unfoldings 5

1

2

0

1

2

0

a

b

c

e

x

d

x

b

ab cd

b cex cd

hmsc Global view

A0 A1

b

msc b
A0 A1

c

d

msc cd

A0 A1

a

b

msc ab

A0 A1

c

e

x

msc cex

Fig. 1. A network of two synchronized automata and its scenario view.
The network of Figure 1 is formally defined by:

S0 = {0, 1, 2} S1 = {0, 1, 2}
Σ0 = {a, b, x} Σ1 = {c, d, e, x}
s0
0 = 0 s0

1 = 0
→0 = {(0, a, 1), (1, b, 2), (2, x, 0), (2, b, 2)}
→1 = {(0, c, 1), (1, e, 2), (2, x, 0), (1, d, 0)}

In an interleaving semantics, the network behavior is defined as the (global)
initialized labelled automaton A = 〈S, Σ,→, s0〉 where:

– S
def
= S1 × · · · × Sn

– Σ
def
=

⋃
i∈I Σi

– ((si)i∈I , a, (s′i)i∈I) ∈ → iff

⎧⎨
⎩

∀i ∈ {1, . . . , n}
{

(si, a, s′i) ∈ →i

∨ (si = s′i ∧ a /∈ Σi)
∧ ∃i ∈ {1, . . . , n} (si, a, s′i) ∈ →i

– s0 def
= (s0

1, . . . , s
0
n)

PI n˚1751

6 Chatain & Hélouët & Jard

10

20

00

a

b

x

b

11

21

01

a

b

b

c

c

c

d

d

d

12

22

02

a

b

b

e

e

e

Fig. 2. The synchronized product.

A B C

m

n

o

msc SynchroBarrier

Fig. 3. bMSC representation of rendez-vous

Intuitively, we force the automata to evolve synchronously when they ex-
ecute a transition labelled by the same name. In the other case, they evolve
independently. Figure 2 shows the product automaton of our example. Se-
quential runs are the different paths in the graph of the product automaton.
Unfortunately, this notion of run does not enlight the causal relations between
the different occurrences of transitions (seen as atomic events), as done in
MSCs. In our context, the right notion of run is the partial ordering of events
that have occurred. Hence, runs of a system will be defined as basic MSCs.

2.2 Message Sequence Charts

MSCs are composed of basic scenarios (or bMSCs), that depict interactions
among several objects. These interactions are then composed hierarchically
by means of operators (loop, choice, sequence, ...). For the sake of simplicity,
we will only consider a single hierarchical level. Interactions in the automata
networks we consider are synchronous (i.e. Rendez-vous communication): they
are blocking, and involve several participants. For this reason, communications
in bMSCs will be represented by references to other bMSCs describing how a

Irisa

Abstraction using Unfoldings 7

communication mechanism is implemented. Such Rendez-vous can be imple-
mented using a synchronization barrier, as depicted in Figure 3. In MSCs,
referencing inside a diagram is allowed by inline expressions. Here, we will
only consider references to simple bMSCs depicting communications among a
given set of components. We do not allow reference nesting, and will not use
inline expressions with opt, alt or loop.

In our framework, a bMSC is defined as a finite set of events. Each event
is represented as the vector of its predecessors on each instance. The absence
of predecessor on an instance is denoted by the null event •. We associate a
label to each event, which will serve to note the corresponding transition of
the automata. For example, considering a system with three instances, the
event e3 denoted by ((e1, (1, a, 2)), •, (e2, (3, a, 4))) is a synchronization event
between the first and the third instance, and having the events e1 and e2 as
immediate predecessors on these instances. There is no immediate predecessor
on the second instance since it does not participate in the synchronization.
The labels are (1, a, 2) and (3, a, 4), denoting for instance the transitions to
synchronize in an automata network. Formally, a bMSC over a set of instances
I is a tuple B = (E, Σ, A, Θ), where E = {(ei, σ)i∈I , σ ∈ Σ} is a set of events
such that each ei ∈ {•} ∪ E × Σ. E contains local events (events such that
|{ei �= •}| = 1) and interactions (events such that |{ei �= •}| > 1). Σ is a
local alphabet, A is an alphabet of local actions and interaction names, and
Θ : Σ −→ A assigns a global name to events.

When fi = (e, σ), we denote πi(f) = e. We will say that e is a predecessor
of f , and write e → f when ∃i ∈ I such that πi(f) = e. E also contains a
specific event ⊥ = (•, . . . , •)i∈I called the initial event that has no predecessor.
We will say that an event is minimal in a bMSC iff ⊥ is the unique predecessor
of all its components. A bMSC must also satisfy the following properties :

i) the reflexive and transitive closure →∗ of → is a partial order.
ii) (synchronization) ∀e = (ei)i∈I ∈ E, we require that ∃!a, ∀i ∈ I, ei �=

• =⇒ Θ(σi) = a. This property means that all components participating
to an event must synchronize.

iii) (local sequencing) ∀i ∈ I, ∀e ∈ E, ei �= • =⇒ πi(e) = ⊥ or (πi(e))i �=
•

iv) (no choice) ∀(e, e′) ∈ E2, ∀i ∈ I, e �= e′ =⇒ πi(e) �= πi(e
′). This property

forbids the introduction of choices in a bMSC.

PI n˚1751

8 Chatain & Hélouët & Jard

bMSCS are good candidates to model causal relations in runs of a dis-
tributed system. Causality between events is defined by →∗. When neither
e →∗ e′, nor e′ →∗ e, we will say that e and e′ are independent (or concurrent).
The set of minimal events in B w.r.t →∗ is denoted by min(E). We will say
that an event is minimal for an instance i ∈ I if the predecessor event on com-
ponent i is ⊥. It is maximal for this instance if it is not a predecessor event
for an event on this instance. The minimal (resp. maximal) event on instance i
(when it is defined) will be denoted by mini(E)(resp. maxi(E)). A bMSC B1
is a prefix of a bMSC B2 if and only if E1 ⊆ E2 and ∀e ∈ E1, Θ1(e) = Θ2(e).
The empty bMSC is the tuple B∅ = ({⊥}, ∅, ∅, ∅). Figure 4 is an example of
bMSC. This bMSC defines the behavior of 2 instances A0 and A1. Events
a, b, c, e are local actions, and reference x represents a synchronous interaction
between A0 and A1.

The sequential composition of two bMSCs B1 = (E1, Σ1, A1, Θ1), B2 =
(E2, Σ2, A2, Θ2) is the bMSC B = (E, Σ1 ∪ Σ2, A1 ∪ A2, Θ), where :

E =

E1 ∪
(

E2 \
({⊥} ∪ {mini(E2)|i ∈ I})

)

∪
⎧⎨
⎩

(e′1, . . . e
′
n)|∃i ∈ I, ∃(e1, . . . , en) ∈ mini(E2)

∧∀j ∈ I, e′j =

{
(maxj(E1), σ) if ej = (⊥, σ)
ej otherwise

⎫⎬
⎭

Θ(σ) = Θ1(σ) if σ ∈ Σ1, Θ2(σ) otherwise

More intuitively, sequential composition merges two bMSCs along their com-
mon instances axes by addition of an ordering between the last event on each
instance of B1 and the first event on the same instance in B2.

A High-level Message Sequence Chart (HMSC) is a tuple H = (N,→
,M, n0, F), where N is a set of nodes, →⊆ N ×M× N is a transition rela-
tion, M is a set of bMSCs, n0 is the initial node, and F is a set of accepting
nodes. HMSCs can be considered as finite state automata labelled by bMSCs.

A HMSC H defines a set of paths PH . For a given path p = n0
M1−→ n1

M2−→
n2 . . .

Mk−→ nk ∈ PH we can associate a bMSC Bp = M1 ◦ M2 ◦ · · · ◦ Mk. The
runs of a HMSC H are the prefixes of all bMSCs generated by paths of H .
The run associated to the empty path is B∅.

Irisa

Abstraction using Unfoldings 9

2.3 Runs as Partial Orders

A run of an automata network Ai = 〈Si, Σi,→i, s
0
i 〉i∈I is defined as a bMSC

M = (E, Σ, A, Θ), with the following properties:

i) Σ =
⋃
i∈I

−→i. Hence, for an event e = (ei)i∈I , each ei is of the form

ei = (e′, t), and we will denote τi(e)
def
= t, αi(e)

def
= α(t) and βi(e)

def
= β(t).

We define βi(⊥)
def
= s0

i .
ii) A =

⋃
i∈I

Σi.

iii) Θ(t) = λ(t)
iv) (local sequencing) ∀i ∈ I ei �= • =⇒ αi(e) = βi(πi(e))

As Σ, A, Θ are implicit for a given set of events E, we will often denote
a bMSC B = (E, Σ, A, Θ) by its set of events E. Intuitively, an event e �= ⊥
represents the synchronization of actions of the automaton Ai such that ei �= •;
and ei = (e′, t) means that the local action on automaton Ai is t, and the
previous action that concerned the automaton Ai was e′. Note that property
iii) implies that for a given component i ∈ I and for any chain ⊥ −→ e1 =
(⊥, t1) −→ e2 = (e1, t2) . . . −→ ek = (ek−1, tk) such that ∀j ∈ 1..k, ej

i �= •, the
sequence t1.t2 . . . tk is a path of automaton Ai.

A0 A1

a c

b e

x

msc Run

Fig. 4. A run as defined as a bMSC with inline references.

This run corresponds to the concatenation of the bMSCs AB and CEX of
Figure 1. Its events are:

0 = ⊥, 3 = ((1, (1, b, 2)), •),
1 = ((0, (0, a, 1)), •), 4 = (•, (2, (1, e, 2))),
2 = (•, (0, (0, c, 1))), 5 = ((3, (2, x, 0)), (4, (2, x, 0)))

PI n˚1751

10 Chatain & Hélouët & Jard

The question now is to represent all the possible runs. This is the role of
the unfolding, which superimposes all the runs, shares the common prefixes
and distinguishes the different histories using the notion of conflict.

3 Generation of Runs

3.1 Unfolding

We consider the union of all possible runs, forming a new event set E. The
absence of choices is no more guaranted. This is why we define the conflict
relation # on the events as follows:

e # e′ iff ∃f, f ′ ∈ E

⎧⎪⎪⎨
⎪⎪⎩

f �= f ′

f →∗ e
f ′ →∗ e′

∃i ∈ I πi(f) = πi(f
′)

Informally, two events are in conflict if they have a common ancestor event
that branches on a same instance.

The unfolding of the synchronous parallel composition of the initialized
labelled automata Ai = 〈Si, Σi,→i, s

0
i 〉i∈I is the set U of all events that are

not in self-conflict: U
def
= {e ∈ E | ¬(e # e)}. Graphically, we draw a circle for

each event, and an arc from e′ to e, labelled by i each time ei = (e′, t). Figure
5 shows the shape of the unfolding of the network of Figure 1.

A (finite) run (also called a configuration) of the unfolding is a bMSC B =
(F, Σ, A, Θ) where Σ, A, Θ are defined as usual, and F is a finite subset of E

which is conflict-free and causally closed, i.e:

{∀e, f ∈ F ¬(e # f)
∀f ∈ F ∀e ∈ E e →∗ f =⇒ e ∈ F

Proposition 1. The unfolding contains all the possible runs.

3.2 A Trivial Solution for MSC Extraction

As explained previously, our goal is to compute a global declarative view de-
fined as a MSC from a distributed imperative view of a distributed system
given by a network of automata. The existence of a trivial solution to this
problem is guaranteed by the following proposition.

Irisa

Abstraction using Unfoldings 11

1

c

⊥

a

d

e

b

1

0

0

1
1

x0

1
c d1

1

c

d

e

1

1
1

1
c d1

a b

0

0 x0

b

0

x0

1

0

b x0

1
0

0

1

1

c

⊥

a

d

e

b

1

0

0

1
1

x

0

1

b0

Fig. 5. The unfolding of the network of Figure 1 and its finite complete prefix.

Proposition 2. Let A = (S, Σ,−→, s0) be the global initialized labelled au-
tomaton obtained by synchronous product of automata (Ai)i∈I. Let H = (S, b(Σ),−→′

, s0, S) be the HMSC where b(σ) is the bMSC containing a single local action
performed by an automaton or a single interaction performed by all automata
involved in a synchronous communication, and −→′= {(n, b(σ), n′)|(n, σ, n′) ∈−→)}.
Then, the set of runs of H and the set of runs of (Ai)i∈I are equivalent.

We can imagine the resulting HMSC by having a look on Figure 2. Clearly,
it does not fulfill our goal of reverse model engineering. We must try to fill as
much as possible the bMSCs.

3.3 Finite Complete Prefix

The unfolding U of an automata network is an infinite structure. However, it is
possible to work on a finite representation of U called a finite complete prefix.

For a configuration c ⊆ U and for an automaton i ∈ I, we define the last
event ↑ic that concerned i in c as the event f ∈ c such that:

(fi �= • ∨ f = ⊥) ∧ �f ′ ∈ c πi(f
′) = f

PI n˚1751

12 Chatain & Hélouët & Jard

Proposition 3. For a configuration c ⊆ U and for an automaton i ∈ I, ↑ic
is unique.

We denote ↑c, the vector (↑i c)i∈I of last events. The global state vector
associated with a configuration c is also defined as the states of each automaton
after having performed the event ↑ic, i.e.

GState(c)
def
= (βi(↑ic))i∈I

For all e ∈ U , �e� def
= {f ∈ E | f →∗ e} is a configuration, called the local

configuration of e. We define the set C of cut-off events of an unfolding as:

e ∈ C iff ∃f ∈ �e� \ {e} GState(�f�) = GState(�e�)

Actually the event f for a cut-off event e is generally not unique. We define
the regeneration configuration, denoted ∂e of a cut-off event e ∈ C as the
intersection1 of the local configurations �f� of the events f ∈ �e� \ {e} such
that GState(�f�) = GState(�e�):

∂e
def
=

⋂
f∈�e�\{e}

GState(�f�)=GState(�e�)

�f�.

Proposition 4. For all e ∈ C, GState(∂e) = GState(�e�).

The set {e ∈ U | �f ∈ C f →+ e} is a finite complete prefix of the
unfolding U .

Theorem 1. The finite complete prefix is a finite generator of the unfolding.

1 The union can also be considered. This will produce different basic MSCs. This suggests that
the extraction algorithm could be parameterized.

Irisa

Abstraction using Unfoldings 13

The following algorithm computes the finite complete prefix U .

Initialization

1. create the initial event: U = ⊥ = (•)i∈I , with GState({⊥}) = (s0
i)i∈I ;

2. C ← ∅;
Repeat until deadlock

1. select a tuple (xi)i∈I where xi ∈ {•}∪ →i, such that:

– ∃a ∈ Σ ∀i ∈ I

{
xi = • =⇒ a /∈ Σi

xi �= • =⇒ λi(xi) = a
– ∀i ∈ I xi �= • =⇒ ∃e′i ∈ U \ C, βi(e

′
i) = αi(xi)

2. build the event e = (ei)i∈I , where

{
ei = (e′i, xi) if xi �= •
ei = • otherwise

3. if e /∈ U ∧ ¬(e # e) in U ∪ {e}
– U ← U ∪ {e};
– if ∃e′ ∈ �e� with GState(�e′�) = GState(�e�):

then C ← C ∪ {e};
∂e ←

⋂
f∈�e�\{e}

GState(�f�)=GState(�e�)

�f�

Figure 5 (right) shows the prefix obtained from our example. Let us consider
the event e, labelled by x. It is a cut-off event. Its regeneration configuration
∂e is {⊥}. This is graphically represented by an oscillating arrow.

4 MSC Extraction

MSC extraction starts with the abstraction of the prefix. Intuitively, for a given
finite complete prefix, we define X as a subset of configurations that contains
the local configuration of the cut-off events, their regeneration configuration,
the local configuration of the terminal events, and that is closed under inter-
section. X can be projected on each instance in order to obtain a network of
“abstract automata”. The product forms the HMSC automaton. Basic MSCs
are obtained by considering all the events occuring in an interval between two
configurations of X, and transitions are deduced from configurations inclusion.

PI n˚1751

14 Chatain & Hélouët & Jard

We denote by P the finite complete prefix of the unfolding U of an automata
network. An event e is terminal if there exists no f ∈ U such that e → f . Let
X be the set of configurations inductively defined as:

– {⊥} ∈ X
– for all e cut-off event, �e� ∈ X ∧ ∂e ∈ X;
– for all terminal event e, �e� ∈ X;
– for all x, x′ ∈ X, x ∪ x′ is a configuration =⇒ x ∩ x′ ∈ X.

We denote by Y
def
= {�e� | e ∈ C} the local configurations of cut-off events.

For all x ∈ X, let us define Ex
def
= x \ ⋃

x′∈X
x′�x

x′. The sets Ex are subsets of

elements that are not contained in any smaller configuration of X. They define
the bMSCs that will be extracted from the prefix.

For all x ∈ X, the sets Ex′ with x′ ∈ X, x′ ⊆ x are a partition of x. For
all event e ∈ x we denote E−1(e, x) the unique configuration x′ ∈ X such that
x′ ⊆ x and e ∈ Ex′ . Let us define an abstraction of the prefix P , where the
elements of X play the role of “macro-events”. For all i ∈ I we define the set
Xi of macro-events that concern i as:

Xi
def
= {x ∈ X | ∃e ∈ Ex, ei �= • ∨ e = ⊥}

For the example of Figure 5, we have:

– X = {⊥,⊥cd,⊥ab,⊥abcex,⊥abb}
– E⊥ = ⊥, E⊥cd = cd, E⊥ab = ab, E⊥abcex = cex, E⊥abb = b
– X0 = {⊥,⊥ab,⊥abcex,⊥abb}, X1 = {⊥,⊥cd,⊥abcex}
– Y = {⊥cd,⊥abcex,⊥abb}

For all i ∈ I and for all x ∈ Xi \ {{⊥}}, the last event that concerned i in
x \ Ex is ↑i(x \ Ex). We define the macro-event that immediately precedes x

on i as πi(x)
def
= E−1(↑i(x \ Ex), x).

Using this definition, for each i ∈ I we can now define the initialized labelled
macro-automaton

Ai
def
= 〈Xi \ Y, {Ex | x ∈ Xi},→i, {⊥}〉

Irisa

Abstraction using Unfoldings 15

where

→i =
{(πi(x), Ex, x) | x ∈ Xi \ {{⊥}} ∧ x /∈ Y }

∪ {(πi(x), Ex, E
−1(↑i∂e, ∂e) | x ∈ Xi ∧ x = �e� with e cut-off event}

Figure 6 shows the network of macro-automata obtained from our example.
Let A = 〈S, Σ,−→, s0〉 be the synchronous product A1 × A2 × · · · × An.
The HMSC extracted from a finite complete prefix P is defined as HP =
(S,−→′, b(Σ), s0, S), where ∀σ ∈ Σ, b(σ) is the bMSC obtained by adding ⊥ as
predecessor of all minimal events to σ, and −→′= {(s, b(σ), s′)|∃s, σ, s′) ∈−→
}. For our example, the HMSC computed from the synchronous product in
Figure 6 is the resulting HMSC of Figure 1 announced in the beginning.

⊥ab

0⊥

ab

cex

b

cex

cd
0

1

ab cex

cd

cd b

Fig. 6. The network of macro-automata and its product

Theorem 2. Let P be a finite complete prefix of an automata network unfold-
ing, and let (Ai)i∈I be the set of “macro-automata” obtained from P . Let H be
the HMSC obtained from the synchronous product (Ai)i∈I . The runs of (Ai)i∈I

and the runs of H are equivalent.

Let us consider the more realistic example shown in Figure 7 (left). It is
a simple connection and release protocol between two peers. The two peers
(sender and receiver) are presented on top of the figure. They are connected
through channels of size one. The automata of channels are given at the bottom
of the figure. In this protocol, the sender can initiate a connection by sending
the Creq message (”!” and ”?” characters denote the send and receive actions
respectively). After that, it can decide locally to close the connection by send-
ing the message Dreq, or receives the message Ddreq indicating that a distant
disconnection has been made by the receiver. In case of collision (reception

PI n˚1751

16 Chatain & Hélouët & Jard

of Ddreq in state 2), the connection is also closed. On the receiver side, after
having received the Creq, the received may decide to close the connection by
sending the distant disconnection message Ddreq. If not, the Dreq message
is received in state 1. In that case, it is required that the receiver alerts the
sender by the Dconf message to allow it to close locally the connection. Note
that in case of collision, it is possible to receive a message Dreq in state 0,
which must be skipped.

1

2

0

1

2

0

!Creq

!Dreq

?Creq

?Dreq

?Dconf ?Ddreq

?Ddreq

?Dreq

!Dconf

!Ddreq

0

1 2

!Creq !Dreq
?Creq ?Dreq

0

1 2

!Ddreq !Dconf
?Ddreq ?Dconf

⊥

!Creq?Creq

!Dreq!Ddreq

?Dreq

!Dconf

?Dconf

?Ddreq?Dreq?Ddreq

!Creq

0
1

3
2

1

0

1
3

3

2

2

0

3 1

2 3

0 1

0 2 1

0

Fig. 7. The Connect-Disconnect protocol with channels of size one and its prefix.

Figure 7 (right) shows the prefix of the unfolding of this example. We show
three cut-off events, corresponding to the three basic patterns of the protocol,
which are local disconnection, distant disconnection and collision. The MSC
view produced by our method is shown in Figure 8.

5 Discussion

We have addressed the problem of reverse model engineering, and more pre-
cisely the automatic translation of synchronous networks of finite automata

Irisa

Abstraction using Unfoldings 17

!Req

Disc Collide Ddisc

hmsc Global view

S SR RS R

?Creq

!Ddreq

?Ddreq

msc Ddisc

S SR RS R

?Creq!Dreq

?Dreq

!Dconf

?Dconf

!Creq

msc Collide

S SR RS R

?Creq!Dreq

?Dreq

!Dconf

?Dconf

msc Disc

S SR RS R

!Creq

msc !Req

Fig. 8. MSC extracted from Automata of Figure 7.

into message sequence charts. A trivial solution is to build the product au-
tomaton and to interpret transition labels as basic MSCs. Unfortunately, this
degenerated MSC does not fulfill the requirements of reverse engineering, which
are to present the concurrent histories of the system using as much as possible
a partial order view.

This work introduces new techniques that permit to recover a global partial-
order based view of a system described by composition of sequential compo-
nents, and hence seems relevant for reverse model engineering. The main algo-
rithm is the unfolding of the network of automata. It computes the set of all
partial order runs. Thanks to the finiteness of the system, this set is finitely
generated by a prefix. From this prefix, we showed a way to extract basic partial
order patterns (bMSCs). The removal of these patterns in the prefix, followed
by a local projection lead to an abstract network of “macro-automata”. A
HMSC with the same behavior as the initial automata network can then be
produced by computing the product of macro automata. An alternative could

PI n˚1751

18 Chatain & Hélouët & Jard

be to consider a parallel construct in the HMSC, as proposed for instance in
netcharts [6].

The algorithms have been implemented in a software prototype (a few
thousand of lines of C-code). The next step will be to be able to deal with more
complex systems. First, we have to relax the synchronous assumption to take
benefit of the asynchronous communication in MSCs. We think it is possible
to find a class of systems in which synchronous communication can be safely
replaced by an asynchronous one without changing the set of partial runs. Let
us recall nevertheless that asynchronous communicating automata and MSC
define uncomparable languages. This means that a translation of automata into
MSC may not exists. Furthermore, deciding whether a network of asynchronous
automata defines a MSC language is an undecidable problem. Hence, to be
effective in an asynchronous framework, our approach will necessarily apply to
a restricted class of automata. Secondly, the MSCs we obtain are dependent of
two things: the definition of cut-off events and the definition of configurations
that are extracted from the finite complete prefix. So far, an event is a cut off
event if its configuration has already been seen in its causal past. This leads
to some duplications of events in the finite complete prefix. The definition of
cut-off events can be refined using the adequate orders proposed by J. Esparza
in [2]. This enhancement will reduce the duplication of events. Concerning
the definition of configurations to extract (the X set), we can decide to share
more or less common prefixes in the bMSCs, and find a tradeoff between the
number of duplications and the size of the considered bMSCs. This could be
parameterized.

References

1. L. Hélouët and C. Jard. Conditions for Synthesis of Communicating Automata from HMSCs,
5th International Workshop on Formal Methods for Industrial Critical Systems (FMICS), ARE.
Stefania-Gnesi, I. Schieferdecker (ed), GMD FOKUS, Apr. 2000.

2. J. Esparza and S. Römer. An Unfolding Algorithm for Synchronous Products of Transition
Systems, Proc. of Concur 1999, Lecture Notes in Computer Science 1664, pp. 2-20, 1999.

3. A. Muscholl and D. Peled. From Finite State Communication Protocols to High-Level Message
Sequence Charts, Proc. of ICALP’01, Lecture Notes in Computer Science 2076, pp. 720-731,
2001.

4. K. Mac Millan. A Technique of State Space Search Based on Unfolding, Journal of Formal
Methods and System Design, 9, 1-22 (1992), Kluwer.

Irisa

Abstraction using Unfoldings 19

5. M. Abdallah, F. Khendec, and G. Butler. New Results on Deriving SDL Specifications from
MSCs, Proc. of 9th SDL Forum, pp. 51-66, Montreal.

6. M. Mukund, K.N. Kumar, and P.S. Thiagarajan. Netcharts: Bridging the Gap between HMSCs
and Executable Specifications, Proc. of Concur 2003, Lecture Notes in Computer Science 2761,
pp. 296-310, 2003.

7. E. Rudolph, O. Graubmann and J. Grabowski. Tutorial on Message Sequence Charts, Computer
Networks and ISDN Systems - SDL and MSC, Vol. 28, 1996.

8. G. Booch, I. Jacobson and J. Rumbaugh. Unified Modeling Language User Guide, Addison-
Wesley, 1997.

9. ITU, Message Sequence Charts, standard Z.120, 2000.

Appendix : proofs

proof of proposition 1

Proof. It is a direct consequence of the definitions. By definition, a run is
conflict-free, and by construction, it is causally closed. The unfolding is built
by considering the union of all runs. By definition, the conflict relation # is
the consequence of the local choices in each automaton, and it is inherited by
causality.

proof of proposition 2

Proof. i) Runs(H) ⊆ Runs((Ai)i∈I). Suppose this does not hold. Then there
is a run r ∈ Runs(H) and a process i such that the projection of r on i is not
accepted by Ai (i.e. the sequence of transitions on i defined by run r is not
a path of Ai). This means that there is a word w = v1.a1.v2.a2 . . . vk.ak.vk+1

with ∀p ∈ 1..k, ap ∈ Σi such that b(w) is a word of H, but w is not a word of
A. Contradiction.

ii) Runs((Ai)i∈I) ⊆ Runs(H). All linearizations of Runs((Ai)i∈I) are ac-
cepted by A. Let r be a run of (Ai,i∈I , and w = σ1.σ2 . . . σk be a linearization
of r. w is accepted by A, so there is a word b(w) accepted by H . The run of
H associated to b(w) is the run r′ = b(σ1) ◦ b(σ2) ◦ · · · ◦ b(σk). r′ is isomorphic
to r, as if two letters of w are independent, then their translation in b(w) are
also independent. Hence, ∀r ∈ Runs((Ai)i∈I), there is an equivalent run in
Runs(H).

PI n˚1751

20 Chatain & Hélouët & Jard

proof of proposition 3

Proof. Let us consider the set Li(c)
def
= {f ∈ c | fi �= • ∨ f = ⊥}, we show

that Li(c) is totally ordered by the relation →. The maximum as used in the
definition is thus unique. Suppose there exists two events f, f ′ ∈ Li(c). Since
by definition, they are in the same configuration c, they cannot be in conflict.
They cannot be neither concurrent since they correspond to transitions of the
automaton i, which is sequential. Thus they are causally related.

proof of proposition 4

Proof. Let e ∈ C. There are finitely many f ∈ �e�\{e} such that GState(�f�) =
GState(�e�). The intersection of the local configurations of several such events
f is conflict-free and causally closed, so it is a configuration F . We will show
that GState(F) = GState(�e�).

For this we show that more generally for two configurations F and F ′ such
that GState(F) = GState(F ′) = S and F ∪ F ′ is conflict-free (which is true
for our local configurations since they are subsets of �e�), GState(F ∩F ′) = S.
Indeed let i ∈ I; if ↑i(F ∪ F ′) ∈ F ∩ F ′, then ↑i(F) = ↑i(F

′) = ↑i(F ∩ F ′) =
↑i(F∪F ′). If ↑i(F∪F ′) /∈ F∩F ′, then ↑i(F∪F ′) ∈ F \F ′ or ↑i(F∪F ′) ∈ F ′\F .
Let us say that ↑i(F∪F ′) ∈ F \F ′; then ↑i(F

′) ∈ F∩F ′ and ↑i(F
′) = ↑i(F∩F ′).

Then βi(↑i(F
′)) = βi(↑i(F ∩ F ′)) = βi(↑i(F)).

proof of theorem 1

Proof. The finiteness of the prefix follows directly the fact that our systems of
parallel synchronous automata are of finite state (each automaton has a finite
number of states and interactions are memory less). The difficult part is to
show that the unfolding can be obtained from the finite complete prefix. This
is the role of the ↑�e� for each cut-off event e.

Let c be a configuration that contains a cut-off event e. We show that c can
be reduced to a configuration c′ that has strictly less events than c by replacing
the events of �e� by those of ∂e, and by “translating” the events of c\�e�. This
reduction can be iterated until we obtain a configuration cP ⊆ P without any
cut-off event. The configuration c can be obtained from c′ by performing the
reverse of the reduction operations, which is obtained simply by exchanging
the role of �e� and ∂e in the reductions.

Irisa

Abstraction using Unfoldings 21

Formally, c′ def
= ∂e∪{h(f) | f ∈ c \ �e�}, where the mapping h is defined in-

ductively as follows: for all event f = (f1, . . . , fn) ∈ c\ �e�, h(f)
def
= (f ′

1, . . . , f
′
n)

with f ′
i

def
=

⎧⎨
⎩
• if fi = •
(↑i∂e, t) if fi = (↑i �e�, t)
(h(g), t) if fi = (g, t) with g �= ↑i�e�

By construction c′ is causally closed. Let us check the absence of conflicts. For
all event f ∈ c′ and for all i ∈ I, we have to show that there is no more than
one event f ′ ∈ c′ such that πi(f

′) = f .

– if f ∈ ∂e and f �= ↑i∂e then there exists a unique f ′ ∈ ∂e such that
πi(f

′) = f ; and by definition of h no event of the form h(g) with g ∈ c\ �e�
may satisfy πi(h(g)) = f .

– if f = ↑i∂e then by definition of ↑i∂e there is no f ′ ∈ ∂e such that πi(f
′) =

f . And the events of the form h(g) with g ∈ c\�e� that satisfy πi(h(g)) = f
are the images by h of the events g ∈ c \ �e� that satisfy πi(g) = ↑i�e�.
There is no more than one such g because c is conflict-free.

– if f is of the form h(g) with g ∈ c \ �e�, then the events f ′ that satisfy
πi(f

′) = f are the images by h of the events g′ ∈ c \ �e� that satisfy
πi(g

′) = g. There is no more than one such g′ because c is conflict-free.

proof of theorem 2

Proof. First, let us prove that the executions of the network (Ai)i∈I of macro-
automata correspond to the configurations of the unfolding U . Each execution
of (Ai)i∈I corresponds to a configuration c of U , which can be reduced to a
configuration cP of the prefix P , which does not contain any cut-off event. The
state reached by the macro-automata Ai after this execution is labelled by the
configuration xi ∈ Xi \ Y such that ↑ic = maxi(Exi

). A macro-event Ex can
be added to cP (and hence to c) iff for all i ∈ I, x ∈ Xi =⇒ πi(x) = xi.
In the state (x1, . . . , xn), the macro-automata Ai with x ∈ Xi can synchro-
nize on the transitions (πi(x), Ex, x) labelled by Ex (with x ∈ X \ Y) iff
for all i ∈ I, x ∈ Xi =⇒ xi = πi(x). In this case for each i such that
x ∈ Xi the macro-automaton Ai reaches the state labelled by x ∈ Xi \ Y .
Similarly, the macro-automata Ai with x ∈ Xi can synchronize on the tran-
sitions (πi(x), Ex, E

−1(↑i∂e, ∂e)) labelled by Ex (with x ∈ Y) iff for all i ∈ I,
x ∈ Xi =⇒ xi = πi(x). In this case for each i such that x ∈ Xi the macro-
automaton Ai reaches the state labelled by E−1(↑i∂e, ∂e) ∈ Xi \ Y .

PI n˚1751

22 Chatain & Hélouët & Jard

Thus the network of automata and the prefix define the same unfolding,
and so does the HMSC.

Now, let us prove the equivalence of runs by induction on the size of the
runs. Let us show that for all R, run of H and of (Ai)i∈I , and for all e,

R ∪ {e} ∈ Runs((Ai)i∈I) ⇐⇒ R ∪ {e} ∈ Runs(H)

Let us consider as in proposition 3, the totally ordered set Li(c)
def
= {f ∈

c | fi �= • ∨ f = ⊥} (=⇒) Let us suppose that R ∈ Runs(||Ai, i ∈ I) ∩
Runs(H),R ∪ {e} ∈ Runs(||Ai, i ∈ I), but R ∪ {e} �∈ Runs(H). Then, this
means that there is an instance i ∈ I such that Li(�e�) \ {⊥} is a word

accepted by Ai, Li(R) is a word accepted by H (i.e there is a path p = n0
M1−→

n1 . . .
Mk−→ nk+1 such that Li(R) is a prefix of the projection of Op on instance

i), but Li(R).e is not accepted by H . Hence, there is no extension p′ of p such
that Li(R).e is a prefix of the projection of O′

p on i.
If mi = ↑i(R) is maximal on i in Mk, then this means that there is no

M such that mini(M) = e and nk+1
M−→ nk+2. Nodes of our HMSC are

configurations of our finite complete prefix. Let us call Xnk+1
the configuration

associated to nk+1. If mi is not a cut off event, following the definition of the
transition relation in H there is no X ′, configuration of the prefix such that
Xnk+1

� X ′ and e = mini(X
′ \ Xnk+1

). Still according to the definition of the
transition relation in H , if mi is a cut off event, then there is no configuration
Y such that �mi� � Y and e = mini(Y \ �mi�). So, as the finite prefix is a
finite generator of the unfolding (thm 1), mi �−→i e in any part of the unfolding
of (Ai)i∈I , so R ∪ {e} is not a run of (Ai)i∈I . If mi is not a maximal event of
Mk, then as Li(R).e is not a prefix of the projection of Op on i, mi �−→i e in
Mk nor in the unfolding of (Ai)i∈I .
(⇐=) Let us suppose that R ∈ Runs((Ai)i∈I)∩Runs(H),R∪{e} ∈ Runs(H),
but R ∪ {e} �∈ Runs((Ai)i∈I). This means that there exists an instance i and

a path p = n0
M1−→ n1 . . .

Mk−→ nk+1 in H such that Li(R).e is a prefix of the
projection of Op on i. Furthermore, Li(R) is accepted by Ai, but Li(R).e is
not. If mi = maxi(R) is the maximal event of Mk−1 on instance i, then e is the

minimal event for i in Mk. Hence, the transition nk
Mk−→ nk+1 implies that there

are two configurations X, Y in the prefix such that X � Y and e = mini(Y \X).
Hence, there is a transition mi −→i e in the prefix, and Ai can accept event

Irisa

Abstraction using Unfoldings 23

e from the local state reached in R. Similary, if mi is contained in Mk, then
there is a configuration Y such that EY = Mk, mi −→i e, and Ai can accept
event e from the local state reached in R. Hence, R ∪ {e} ∈ Runs((Ai)i∈I).

As B∅ is a run of H and (Ai)i∈I , then by induction the runs of H and
(Ai)i∈I are equivalent.

PI n˚1751

