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Abstract— In this paper, we address the problem of com-
puting the egomotion of a vehicle in an urban environment
using dynamic vision. We assume a planar piecewise world
where the planes are mainly distributed along three principal
directions corresponding to the axes of a reference frame
linked to the ground plane with a vertical z-axis. We aim to
estimate both the motion of the car and the principal planes
in the scene corresponding to the road and the frontages
of the building from a sequence of images provided by an
on-board uncalibrated camera. In this paper, we present
preliminary results concerning the robust segmentation of the
road using projective properties of the scene. We develop a
two-stage algorithm in order to increase robustness. The first
stage detects the borders of the road using a contour-based
approach and primarily allows us to estimate the Dominant
Vanishing Point (DVP). The DVP and the borders of the
road are then used to constrain the region where the points
of interest, corresponding to the road lane markers, can be
extracted. The second stage uses a robust technique based on
projective invariant to match the lines and points between
two consecutive images in the sequence. Finally, we compute
the homography relating the points and lines lying on the
road into the two images.

Index Terms— Dominant vanishing point, cross-ratio, ho-
mography, road plane, urban environment

I. INTRODUCTION AND RELATED WORK

A safe navigation of autonomous vehicles in an outdoor
environment requires a robust localization process. During
the last decade, the DGPS has become the most used
technology for all outdoor environment applications. Nev-
ertheless, the localization quality depends on the number
of satellites the antenna can receive. High buildings and
trees decrease the signal/noise ratio by obstructing the
clear view and multiple paths corrupt the data. Chen [1]
indicates 95% of the Tokyo urban area does not allow a
GPS-based location. Furthermore, the resolution available
with such a system is about one meter in the best case.
That is not sufficient for the localization and guidance of
a driverless vehicle which requires about ten centimeters
accuracy.

Concurrently, due to the increasing power of computers,
it is now realistic to use vision sensor(s) as a major part
in the localization process in association with a DGPS-
based system. Indeed, the structured environment allows
to compensate for the loss of clear view. The urban scenes
contain generally sets of parallel lines, the majority of
them are aligned with the principal orthogonal directions
of the world coordinate frame. Hence, a vision-based

system sounds like a natural complement to the GPS
information in the highly-urbanized area.

Nevertheless, the architectural characteristics of urban
areas vary according to the brightness and the shadow
conditions and to the type of scenes, from ”open” environ-
ments like large boulevards and main streets to ”closed”
ones like the downtown old cities. In these different cases,
the determination of consistent structures like streets and
buildings in the image is one of the aims of segmentation
we have to achieve.

All vision-based localization methods in urban areas are
developed on two common assumptions:

• the ground is locally assumed to be plane,
• the man-made environment contains sets of ortho-

parallel lines.

Parallel lines in the 3D scene converge in the image to a
peculiar point, so called Vanishing Point (VP), when they
are viewed under perspective projection. The understand-
ing and interpretation of man-made environments can then
be greatly simplified by the detection of such vanishing
points.

Some authors only focus on improving the VP coor-
dinate precision to better reconstruct the 3D scene. They
generally present post-processing methods which enhance
the edge detection quality. Rother [2] subsets the detected
edges into 3 mutual orthogonal directions with respect to
orthogonality, camera and vanishing line criteria. In the
same way, Kosecka and Zhang [3] combine efficient im-
age processing techniques and expectation maximization
algorithm to partially calibrate a camera and estimate its
relative orientation with respect to the scene.

The same geometrical environment assumptions and
VP methods are also be used by authors to deal with
mobile robot navigation in indoor environments for mobile
robot navigation. Guerrero and Sagues [4] have developed
such a vision-based navigation algorithm. They succeed
in determining a qualitative free space ahead by compen-
sating the rotation motion with a monocular uncalibrated
camera. Lebegue and Aggarwal [5] describe an algorithm
to automatically reconstruct environments like hallways.

Snaith et al. [6] work on a prototype vision system for
the guidance of visually impaired people through urban
environments. They detect doorways and vertical edges to
facilitate center path travel. The dominant vanishing point
(DVP), intersection of the majority horizontal vanishing



lines (VLs) in image, is computed as the highest accumu-
lator score of a Hough Transform with the detected edges.
Antone and Teller [7] combine Hough Transform and
expectation maximization to finally decouple the rotation
and the translation motions between the successive camera
poses in an urban scene.

Otherwise, the geometrical and photometrical properties
of roads allow some specific methods to segment them in
the image plane. Some authors detect the road frontier
edges assuming non-occluded parallel road lane markers.
They generally track them in a video sequence with the
introduction of a region of interest. Wang et al. [8] detect
and track the natural edges of a uniform textured road.
Sotelo et al. [9] succeed in isolating the ground plane
in the image assuming a model of the road and a HSV
decomposition.

On the other hand, Okutomi et al. [10] locate the
ground plane by computing the image projective invariants
using a calibrated stereovision system. Hu and Uchimura
[11] propose a new model of multi-lane structured road,
assuming road boundaries can be modeled by clothoids in
order to simplify the matching between the 3D scene and
the projective image.

The next section gives an overview of the proposed
method highlighting the underlying assumptions on the
scene and on the camera model. Section 3 describes how
to estimate a camera displacement between two views of
an urban scene and section 4 shows some experimental re-
sults. The last section concludes this article and introduces
our future work.

II. APPROACH

A. Problem statement

Assuming the urban scene contains planar structures,
it becomes possible to fully characterizes the camera
displacement in the projective space by computing the
homographies between two consecutive images of the
scene. In this paper, we focus on the computation of the
homography from the points and lines lying on the road.

Let us assume that:

• the urban road scene images contain sets of 3D ortho-
parallel segments,

• the road is locally planar with parallel boundaries,
• the camera model used is a pinhole camera model,
• the video sequence is recorded at a high frame rate,

which means that the DVP coordinates move slowly
between two consecutive images.

Nevertheless, all these restrictive assumptions can not
be verified in an urban environment. The video sequences
contain such an amount of dynamic objects (cars, pedestri-
ans) occluding a significative part of the road. Fortunately,
the urban environment contains an abundance of 3D
lines. These lines are primarily the edges of the build-
ing frontages, the limits between two depth planes and
the boundaries between two different chromatic regions.
Roughly, the model of an urban street can hence be
regarded as a hallway. We then particularly focus on all

the left, bottom and right image foreground lines due to
their high probability to belong to a VL.

Although the discrimination between the static and the
dynamic part of an urban scene is difficult due to the
complexity of the environment, the ground plane appears
as the object of the static scene that has a fixed location
in the image. We can use the assumption that the image
contains a road plane bounded by two 3D curbs to
constrain both the static environment and the road plane
projection on the image.

The road generally appears as a large area whose bor-
ders are highlighted either by a kerb or by road markers,
sometimes both. These limits are easily detected by their
color variations (see Figure 1). Whatever the type of road
(straight or curved), at the foreground of the image, the
edge limits can be modeled by some segments. These
segments are located in the image at each bottom corner
with two opposite orientations and they converge to the
DVP located in an area in the center of image.
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Fig. 1. Edges classification. We represent in blue (nearly) horizontal
and in green (nearly) vertical segments which naturally intersect all other
segments in yellow. The highlighted red segments are close enough to
the precedent DVP location (orange ’+’) to be considered as potentially
belonging to a future VL. The fixed confidence area, limited by the
dashed magenta lines, represent the image foreground.

However, dynamic objects like cars and pedestrians oc-
clude most of the static scene. Furthermore, they generally
possess many edges which could potentially confuse a
DVP detection program. We thus try to detect not only the
road boundaries, but all the sets of 3D parallel lines which
converge to the DVP in the image in order to robustify the
DVP estimation process. We do not also address (nearly)
horizontal segments because they rarely represent parts of
horizon VL, but they naturally intersect the other image
lines and could therefore induce DVP misdetections. Two
cases are distinguished with the (nearly) vertical segments.
If they are located outside the two road boundaries, they
represent a 3D vertical direction, which can be used in
a further reconstruction process. Otherwise, they could
represent either a road lane marker or a vertical edge of
an obstacle.



III. TRACKING AND MATCHING FEATURES IN AN

URBAN SCENE IMAGE

A. Identifying vanishing lines

Classicaly, a Canny operator is used to detect the edges
and after polygonal approximation, to obtain the segments
of lines. Due to the bad quality of the images, the edge
detection data are particularly inaccurate. According to our
experiments, the midpoint location seems to be the only
reliable characteristic of each segment. The length and the
orientation of extracted segments are noisy. However, we
note that the longer the segment is, the more correctly
located it is.

We thus come to the conclusion that it is better to
reconstruct partially occluded VLs rather than trying to
obtain an estimation of the DVP using corrupted segments.
We first fit each segment to a line parameterized by an
angle θ and a distance ρ from the origin:

ρ = cosθ.u + sinθ.v

where (u, v) are an image pixel coordinates.
The DVP tracking method assumes that the distance

between two camera poses remains small. The DVP
location in the (n − 1) image can hence be considered
as a prediction of the current estimation at time (n). In
the same way, the VL motions in image are minor.

We compute the distance between each segment line
and the DVP position estimated on the previous image.
We consider only the segments which have a distance
smaller than a threshold dmax that we experimentally
fix at 20 pixels. We then clusterize the selected segment
lines in VL candidates by grouping them according to
common characteristics. Besides, the segment lines are
rated by their single segment length order. The longest is
considered as a reference. We also search other segment
lines that verify the following criteria in order, until they
all belong to a VL candidate:

1) the contrast direction across the edge,
2) the segment orientation θ,
3) the image location under or above the horizon line,
4) the compatibility criterion. We expect that the seg-

ments which formed the same VL have endpoints
location whose coordinates respect the appearance
order (refer to Figure 2),

5) the distance between the segments and the reference
segment midpoint is reduced.

The result of the grouping process is a list of K candi-
dates of VLs. The DVP estimate (uX , vX) is then obtained
by solving iteratively the following linear weighted least
squares minimization problem: minX

∑K

k=1
(wk.lt

k
.X)2

where wk is the sum of the segment lengths, lt
k

=
[cos(θk), sin(θk),−ρk] and Xt = [uX , vX , 1].

The distance between the (n − 1) and the (n) DVP
position has to be smaller than the dmax threshold. We
compute for each VL candidate the distance to the DVP
and the angle difference with a ”true” VL which is the
line defined by the DVP and the most remote segment
midpoint. Only the best candidates are selected to perform
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Fig. 2. Constraints on segments colinearity. The 3 segments
(Sα, Sβ , Sγ ) have similar (ρk, θk) characteristics under a polar repre-
sentation and the same contrast direction. They can belong to the same
VL only if the segments Sα and Sβ do not have any common u-ordinate.
The two possible candidates are then the segment lines la and lb.

another computation loop. The algorithm stops when all
the remaining candidates are selected.

B. Tracking and matching pencil of vanishing 2D lines

Let us assume two images I1 and I2 corresponding to
two different positions of the camera. We detect in the
two images two sets of VLs, converging to their respective
DVP.

We can detect some VL mismatches by respecting an
order constraint. For a positive θ, when θ increases, ρ has
to decrease. It is the opposite behavior with negative θ.
Hence, we can slightly modify an incorrect characteristic
by assuming that the DVP estimation is correct.

The information on VL length can also be used to
identify a new edge detection, in the particular case of two
VLs which have close characteristics. We first consider
that the sum of the segment lengths, which form a VL,
does not swing in a large scale between two images.
Second, a VL whose single segment length is smaller than
50 pixels is certainly an outlier.

Consider now that we succeed in matching two pencils
of VLs from image I1 and image I2. The cross-ratio and
the incidence are actually the only properties left invariant
by a projective transformation. Hence, the projections of
the 3D lines lying on the road plane onto I1 and I2 are
related by a projective transformation characterized by
the unicity of the cross-ratio (see Figure 3). We use this
property for eliminating the VLs which do not belong to
the road plane by checking the consistency of the cross
ratio :

CR(la, lb, lc, ld) =
sin(α1)

sin(α2)
/
sin(α3)

sin(α4)

where αi with i∈[1,2,3,4] are oriented, signed angles.
The VLs lying on the ground plane project in the camera

retinal plane with a particular transformation, called planar
homography (induced by a plane). A homography is
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Fig. 3. Cross-ratio of 4 vanishing lines (la, lb, lc, ld) lying on the road
plane and converging to the DVP.

described by a 3*3 matrix H, which has 8 entries: 9-1
of scale factor. Therefore, H is determined uniquely by
solving a linear system of equations containing at least 4
correspondences. The homography contains the translation
and rotation motions, up to a scale factor, between the
two camera frames C1 and C2. We can also compute
the displacement between I1 and I2 by introducing their
respective planar homography H1 and H2:

l ∝ Ht

1
.l1, l ∝ Ht

2
.l2 ⇒ l1 ∝ [H−t

1
.Ht

2
].l2

l1 ∝ Ht.l2 with H ∝ H2.H−1

1

However, the computation of the homography is not
possible using only a pencil of lines due to the linear
dependency between the lines. All lines of the pencil can
in fact be parameterized by only a couple of them: e.g.
lλ = la + λ.lb. We have to match and track two new
features which belong to the ground plane. That can be
done by using a Harris detector to extract the points of
interest p which belong to the road plane. These points
also verify the previous homographies (see Figure 4):

p1 ∝ H1.p,p2 ∝ H2.p ⇒ p2 ∝ [H2.H−1

1
].p1

p2 ∝ H.p1

Presently, The VL matching is manually initialized by
an operator who selects 4 matched VLs lying on the
ground plane, in the first two images. The cross-ratio
computed from these 4 VLs is considered as principal.
All the remaining VLs of the two images are computed by
keeping 3 of 4 principal VLs. The selected VL replaces the
closest principal VL. Hence, the cross-ratio computation
respects the order constraint. We next match remaining
VLs of the two images by comparing their location
between the two nearest principal VLs and their cross-
ratio result.

If the algorithm detects some principal VL misdetec-
tions in a new frame, it replaces them by setting a second
group matched VL to the principal group. This is clearly
possible only if there are enough VLs in the second group
to compensate the loss of some principal VL(s).
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Fig. 4. The planar homography H between two views is obtained by
composition of single view homographies H1 and H2. The lines l1,
l2 and the points p1, p2 respectively represent the projections of the
line l and the point p, lying on the ground plane onto the camera retinal
planes whose center are C1 and C2.

C. Tracking and matching ground plane feature points

Considering that we succeed in determining the road
boundaries, we can segment the region of the image
corresponding to the ground plane. We use the same image
derivative operations of the Canny edge detection to com-
pute a Harris feature point detection, according to [12].
Only the points which have an Harris score higher than
90% of the best score are considered correctly detected.
The matching method we use is based on singular value
decomposition of an appropriate correspondence strength
matrix [13].

The image search area is reduced with the road bound-
aries. We select the correct matching points lying on the
ground plane by introducing two image location criteria.
We first keep count of the feature points which are very
close to or on a VL lying on the ground plane. As we
experimented, very few points per image verify this strict
condition. Secondly, we eliminate all the detected points
located less than 4*dmax from the DVP because these
points have a high probability of appearing close to a VL
without lying on the ground plane.

The resulting points are generally corners of road lane
markers. To be considered as ground plane feature de-
tections, the point coordinates have to be very close to
a segment endpoint which belongs to a VL. Furthermore,
the VLs have to be matched between the two images. This
allows us to detect some mismatching points.

Hence, as soon as the homography computation is
validated, we can project all the feature points of the first
image into the second one. We then highlight some new
feature points lying on the ground plane by computing the
distance between the projected and matched coordinates of
points. The non-colinearity condition of 3 coplanar points
implies that the feature points have to be sufficiently far
from each other to improve the homography constraints.

IV. EXPERIMENTS

We validated our approach using video sequences
recorded in the streets of the old city of Antibes and in



the harbor neighborhood. We use an uncalibrated stereo
vision system. The speed was about 10 m/s and the frame
rate was 25 Hz. The sequences contain more than 1000
black and white images of size 728*410 pixels.

Figure 5 shows a single road video sequence with a
large curvature radius which leads to a fork intersection
before the end of the curve. The DVP location (orange
cross) is tracked with a selection of the best edges (red
segments) which are clusterized into VL candidates (red
dashed lines). Many outliers, like non-parallel road mark-
ers, are detected, but they introduce minor corruptions in
the estimation.

Figure 6 presents the DVP(ux, vx) positions estimated
along the sequence of images. We first note that the
trajectories present only two sudden changes of level. The
first one corresponds to the lack of kerb in the field of
view. The second one is quite unavoidable, it corresponds
to the road lane changing. The v-ordinate of the DVP
seems stationary; this is expected due to the fixed horizon
line in the image.
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Fig. 6. Chronogram of the estimated DVP coordinates (uX at the top,
vX at the bottom), along a video sequence recorded on a curving road.
The discontinuity in frame 2036 comes from the algorithm detecting a
new DVP when the vehicle leaves the main road.

Figure 7 presents the result of a homography estimation
between the two images I1 and I2. We solve the linear
system which has as entries the VLs and the feature points
matched on the road plane. As expected, the projection of
the VLs can be considered less efficient than the projection
of feature points. This is in fact a vision representation
bias. A comparison between the characteristics of the
features proves that the distance between points is more
significant than the distance between lines.

We emphasize that a satisfying homography estimation
essentially depends on the conditioning of the system
matrix. We first improve the quality of the result by
normalizing the two subsystems related to VL and feature
point solutions. According to this, we modify the system
to obtain normalized singular values.
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Fig. 7. Re-projection of the features of image I1 into image I2, resulting
from the estimation of the homography. The original image contains red
VL and orange ’+’ features. Their correspondent projections are green
dashed VL and magenta ’o’, respectively.

V. CONCLUSION AND FUTURE WORK

We presented preliminary results for the estimation
of the vehicle motion in an urban environment where
a DGPS-based localization is unreliable. We proposed
a robust method to detect and track the DVD along a
sequence using realistic scene assumptions and projective
geometry. Experimental results validate the robustness of
the approach.

In the work currently in progress, we try to detect
automatically the 4 principal VLs at the start of the
sequence. In the same way, we want to improve the image
feature detection by introducing dynamic selection criteria
to take into account the DVP pose in the image. If need
be, we will reduce the jittering of the DVP location with
a filtering process.
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