A. Agashe, K. Lauter, and R. Venkatesan, Constructing elliptic curves with a known number of points over a prime field, High Primes and Misdemeanours: Lectures in Honour of the 60th Birthday of, Fields Institute Communications, 2004.

A. O. Atkin and D. J. Bernstein, Prime sieves using binary quadratic forms, Mathematics of Computation, vol.73, issue.246, pp.1023-1030, 2004.
DOI : 10.1090/S0025-5718-03-01501-1

A. O. Atkin and F. Morain, Elliptic curves and primality proving, Mathematics of Computation, vol.61, issue.203, pp.29-68, 1993.
DOI : 10.1090/S0025-5718-1993-1199989-X

URL : https://hal.archives-ouvertes.fr/inria-00075302

E. Bach, Explicit bounds for primality testing and related problems, Mathematics of Computation, vol.55, issue.191, pp.355-380, 1990.
DOI : 10.1090/S0025-5718-1990-1023756-8

S. L. Paulo, B. Barreto, M. Lynn, and . Scott, Constructing elliptic curves with prescribed embedding degrees, Security in Communication Networks ? Third International Conference, pp.257-267, 2002.

R. P. Brent, Fast Multiple-Precision Evaluation of Elementary Functions, Journal of the ACM, vol.23, issue.2, pp.242-251, 1976.
DOI : 10.1145/321941.321944

F. Brezing and A. Weng, Elliptic curves suitable for pairing based cryptography, Designs, Codes and Cryptography, pp.133-141, 2005.

N. Brisebarre and G. Philibert, Effective lower and upper bounds for the Fourier coefficients of powers of the modular invariant j, Journal of the Ramanujan Mathematical Society, vol.20, pp.255-282, 2005.

R. Bröker, Constructing elliptic curves of prescribed order, Proefschrift, 2006.

R. Bröker and P. Stevenhagen, Elliptic Curves with a Given Number of Points, Lecture Notes in Computer Science, vol.3076, pp.117-131, 2004.
DOI : 10.1007/978-3-540-24847-7_8

M. Cipolla, Un metodo per la risoluzione della congruenza di secondo grado, pp.153-163, 1903.

H. Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, vol.138, 1993.
DOI : 10.1007/978-3-662-02945-9

J. Couveignes and T. Henocq, Action of Modular Correspondences around CM Points, Lecture Notes in Computer Science, vol.2369, pp.234-243, 2002.
DOI : 10.1007/3-540-45455-1_19

A. David and . Cox, Primes of the form x 2 + ny 2 ? Fermat, class field theory, and complex multiplication, 1989.

R. Dedekind, Erläuterungen zu den vorstehenden Fragmenten, Bernhard Riemann's gesammelte mathematische Werke und wissenschaftlicher Nachlaß, pp.1876-438

M. Deuring and D. Typen-der-multiplikatorenringe-elliptischer-funktionenkörper, Die Typen der Multiplikatorenringe elliptischer Funktionenk??rper, Die Klassenkörper der komplexen Multiplikation, pp.197-272, 1941.
DOI : 10.1007/BF02940746

R. Dupont, Fast evaluation of modular functions using Newton iterations and the AGM, To appear in Mathematics of Computation, 2007.

R. Dupont, A. Enge, and F. Morain, Building Curves with Arbitrary Small MOV Degree over Finite Prime Fields, Journal of Cryptology, vol.18, issue.2, pp.79-89, 2005.
DOI : 10.1007/s00145-004-0219-7

URL : https://hal.archives-ouvertes.fr/inria-00386299

A. Enge, mpfrcx ? a library for univariate polynomials over arbitrary precision real or complex numbers, Version 0

A. Enge and F. Morain, Comparing Invariants for Class Fields of Imaginary Quadratic Fields, Lecture Notes in Computer Science Further investigations of the generalised Weber functions, pp.252-266, 2002.
DOI : 10.1007/3-540-45455-1_21

A. Enge and R. Schertz, Constructing elliptic curves over finite fields using double eta-quotients, Journal de Th??orie des Nombres de Bordeaux, vol.16, issue.3, pp.555-568, 2004.
DOI : 10.5802/jtnb.460

URL : http://archive.numdam.org/article/JTNB_2004__16_3_555_0.pdf

A. Enge and P. Zimmermann, mpc ? a library for multiprecision complex arithmetic with exact rounding, Version 0.4

L. Euler, Evolutio producti infiniti (1?x)(1?xx)(1?x 3 )(1?x 4 )(1?x 5 )(1?x 6 ) etc. in seriem simplicem, Acta academiae scientiarum Petropolitanae 1780:I (1783), Opera Omnia I, vol.3, pp.125-169472

M. Fürer, Faster integer multiplication, Proceedings of the 39th Annual ACM Symposium on Theory of Computing ? STOC'07, pp.57-66, 2007.

J. Von, Z. Gathen, and J. Gerhard, Modern computer algebra, 1999.

J. Von, Z. Gathen, and V. Shoup, Computing Frobenius maps and factoring polynomials, Computational Complexity, vol.2, pp.187-224, 1992.

A. Gee, Class invariants by Shimura's reciprocity law, Journal de Th??orie des Nombres de Bordeaux, vol.11, issue.1, pp.45-72, 1999.
DOI : 10.5802/jtnb.238

A. Gee and P. Stevenhagen, Generating class fields using Shimura reciprocity, Lecture Notes in Computer Science, vol.1423, pp.441-453, 1998.
DOI : 10.1007/BFb0054883

T. Granlund, gmp ? GNU multiprecision library

G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann, mpfr ? a library for multiple-precision floating-point computations with exact rounding

A. K. Lenstra and H. W. Lenstra-jr, Algorithms in Number Theory, Handbook of Theoretical Computer Science, pp.673-715, 1990.
DOI : 10.1016/B978-0-444-88071-0.50017-5

R. Lercier and E. Riboulet-deyris, Elliptic curves with complex multiplication, Communication sur la Number Theory List, 2004.

A. Miyaji, M. Nakabayashi, and S. Takano, New explicit conditions of elliptic curve traces for FR-reduction, IEICE Trans. Fundamentals E84-A, issue.5, pp.1234-1243, 2001.

R. Schertz, Die singulären Werte der Weberschen Funktionen f, f 1 Journal für die reine und angewandte 38. , Weber's class invariants revisited, Mathematik Journal de Théorie des Nombres de Bordeaux, vol.3287, issue.14 1, pp.46-74, 1976.

A. Schönhage and V. Strassen, Fast multiplication of large numbers, Computing, vol.150, issue.3-4, pp.281-292, 1971.
DOI : 10.1007/BF02242355

A. Schönhage, Fast reduction and composition of binary quadratic forms, Proceedings of the 1991 international symposium on Symbolic and algebraic computation , ISSAC '91, pp.128-133, 1991.
DOI : 10.1145/120694.120711

R. Schoof, The exponents of the groups of points on the reductions of an elliptic curve, Arithmetic Algebraic Geometry, Birkhäuser, pp.325-335, 1991.