N

N

Symbolic Determinisation of Extended Automata
Thierry Jéron, Hervé Marchand, Vlad Rusu

» To cite this version:

Thierry Jéron, Hervé Marchand, Vlad Rusu. Symbolic Determinisation of Extended Automata. [Re-
search Report] PI 1776, 2006. inria-00001073

HAL Id: inria-00001073
https://inria.hal.science/inria-00001073
Submitted on 31 Jan 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00001073
https://hal.archives-ouvertes.fr

ISSN 1166-8687

PUBLICATION
INTERNE
N° 1776

OQ{O
&
e
@)
&
Q/Q'
Q

5
S
2)

<

SYMBOLIC DETERMINISATION OF EXTENDED AUTOMATA

THIERRY JERON , HERVE MARCHAND , VLAD RUSU

 |RISA

CAMPUS UNIVERSITAIRE DE BEAULIEU - 35042 RENNES CEDEX - FRANCE

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALEATOIRES
» Campus de Beaulieu — 35042 Rennes Cedex — France

C I R I S A Tél. : (33) 02 99 84 71 00 — Fax : (33) 02 99 84 71 71

http://www.irisa.fr

Symbolic Determinisation of Extended Automata

Thierry Jéron , Hervé Marchand , Vlad Rusu

Systémes communicants
Projet VerTeCs

Publication interne n1776 — January 2006 — 24 pages

Abstract: We define a symbolic determinisation procedure for a class of infinite-state systems,
which consists of automata extended with symbolic variables that may be infinite-state. The subclass
of extended automata for which the procedure terminates is characterised as bounded lookahead extended
automata. 1t corresponds to automata for which, in any location, the observation of a bounded-length
trace is enough to infer the first transition actually taken. We discuss applications of the algorithm to
the verification, testing, and diagnosis of infinite-state systems.

Key-words: symbolic automata, determinisation

(Résumé : tsup)

ks Tl

Centre National de la Recherche Scientifique Institut National de Recherche en Informatique
(umr 6074) Université de Rennes 1 — Insa de Rennes et en Automatique — unité de recherche de Rennes

Déterminisation symboliques d’automates étendus

Résumé : Nous introduisons une procédure de déterminisation symbolique pour une classe de sys-
témes infinis. Il s’agit d’automates étendus avec des variables, qui communiquent avec I’environnement
au moyen d’actions de synchronisation. Nous caractérisons précisément la sous-classe pour laquelle la
procédure termine, et donnons des conditions suffisantes décidables pour la terminaison. Nous discu-
tons les applications de cette procédure au test de conformité et au diagnostic de systémes infinis.

Mots clés : automates symboliques, déterminisation

Symbolic Determinisation of Extended Automata 3

1 Introduction

Most existing models of computation are nondeterministic, but they include restricted, deterministic
versions as subclasses. A natural question is comparing the expressiveness of the general, nondeter-
ministic class with that of the corresponding restricted, deterministic subclass. For example, it is
well known that nondeterministic and deterministic finite automata on finite words are equivalent,
but for finite automata on infinite words, the equivalence depends on the acceptance condition (e.g.,
Miiller versus Biichi acceptance); and for pushdown and timed automata, the nondeterministic version
is strictly more expressive than the deterministic one [3, 1].

Besides this theoretical interest, the distinction between nondeterministic and deterministic models
has practical consequences. For example, verification consists in checking whether an implementation
of a system satisfies a specification; both views of the system are modeled by automata of some
kind. This problem can be seen as a language inclusion problem, which in turn can be encoded
into a language emptyness problem (i.e., checking the emptyness of the language recognised by a
product between the implementation and the complement of the specification). The complement of the
specification is an automaton that accepts exactly the words that are rejected by the specification, and
is easily computed if the specification is deterministic (by complementing the specification’s acceptance
condition). Otherwise, if the specification is nondeterministic, it has to be determinised, i.e., turned
into an equivalent deterministic machine.

Hence, determinisation is an important operation in formal verification. It is also important in other
fields such as conformance testing and fault diagnosis where deterministic testers (resp. diagnosers) have
to be derived from specifications that are, in general nondeterministic due to, e.g., partial observation.

In this paper we define a determinisation operation for a class of infinite-state systems, which con-
sists of extended automata operating on symbolic variables and communicating with the environment
via synchronising actions. Variants of this model are often encountered in the literature and can be
used, e.g., for the formal specification of reactive systems. The determinisation procedure consists in
iterating a sequence of local determinisation steps, which postpone operations on the variables until
it becomes clear which exact operations should have been performed. The subclass of extended au-
tomata on which the procedure terminates is characterised as bounded-lookahead automata, for which
the observation of a bounded-length trace is enough to infer the first transition actually taken.

The result is nontrivial because the order in which local determinisation steps are iterated has
a strong influence on termination. The main difficulty was to find an order for which the bounded
lookahead decreases at each iteration, thus ensuring termination of the procedure.

The rest of the paper is organised as follows. We first introduce extended automata and the
determinisation operation by means of examples. Then, in Section 2 we formally define the syntax and
semantics of extended automata, and in Section 3 the determinisation operation is formally defined.
The operation may not terminate in general, and in Section 4 the subclass for which the procedure does
terminate is precisely characterised via necessary and sufficient conditions. However, these conditions
are undecidable, hence, we also provide sufficient, decidable conditions for termination. In Section 5
we discuss applications of our procedure to the verification, testing, and diagnosis of reactive systems,
and conclude in Section 6. The Appendix contains detailed proofs of the results.

Example 1 (extended automata, determinisation) Figure 1 (left) depicts an extended automa-
ton S. In location ly, the action a occurs. If z > 0 then the control goes to location Iy and the variable
x s decreased by 1, and if x < 0 then the control goes to location ly and x s increased by 2. Clearly,
if £ = 0 then the next control location and the next value of © are not uniquely defined: the system is
nondeterministic.

The right-hand side of Figure 1 depicts the automaton det(S) obtained after determinising S. Intu-
itively, the locations 11 and lo, which could be nondeterministically chosen as the next control location
after an action a, are merged into one new location denoted by (lo, (l1,l2)). A new transition labeled
by a goes from ly to (lo,(l1,12)). This transition is taken if a occurs, and if x satisfies the disjunction
PI n1776

4 Thierry Jéron , Hervé Marchand , Viad Rusu

Figure 1: Left: extended automaton S Right: extended automaton de#(S)

x> 0Vz <0 (which actually simplifies to true). This condition is the disjunction of the guards of the
two transitions involved in the nondeterministic choice in S.

Note, however, that those transitions perform different assignments to variables: x := x — 1 for
one, and x := x + 2 for the other. Hence, the new transition from ly to (ly, (l1,12)) of det(S) does not
“know” which assignment to perform. To solve this problem, the idea is to postpone assignments until
it becomes clear which one of the transitions of the nondeterministic choice was actually taken, and
then to “catch up” with the assignments in order to preserve the semantics.

Hence, if b occurs after a, then the transition from ly to Iy was taken (hence, x := x — 1 sould
have been performed), but if ¢ occurs after a, the transition from ly to lo was taken (hence © := x + 2
should have been performed). Note how the assignments are simulated in det(S): the transition labeled
by b (resp. by ¢) has x — 1 (resp. x + 2) substituted for x in its guard and assignments. To match the
behaviour of S, in which the transition labeled by b (resp. ¢) are fireable only after a transition labeled
a has been fired with © > 0 (resp. © < 0) holding, the guard of the transition labeled by b (resp. ¢) in
det(S) is strengthened by x < 0 (resp. x > 0).

2 Extended automata

Extended automata consist of a finite control structure and a finite set of typed variables V. Each
variable z € V takes values in some domain dom,. A wvaluation v of the variables V is a function that
associates to each variable z € V' a value v(z) € dom,. The set of valuations of the variables V is
denoted by V. In the sequel, a predicate P over variables V' is often identified with its set of “solutions”,
i.e., the set of valuations V' C V of the variables V for which P is true.

Definition 1 (extended automaton) An extended automaton (sometimes refered to simply as an
automaton) is a tuple S = (V,0, L,1°, %, T):

e V is a finite set of typed variables
e O is the initial condition, a predicate on V, assumed to have a unique solution vy € V
e L is a nonempty, finite set of locations and [° € L is the initial location,

e X is a nonempty, finite alphabet of actions,

Irisa,

Symbolic Determinisation of Extended Automata 5

e 7 is a set of transitions. Fach transition t € T is associated with a tuple (o, Gy, ay, Ay, dy), where

— o € L is called the origin of the transition,
— Gy is a Boolean expression over variables V', called the guard,
— ay € X is called the action of the transition,

— Ay is the assignment of the transition: a set of expressions of the form (x := A%) ey where,
for each © € V, the right-hand side A™ of the assignment x := A" is an expression on V,

— dy € L is called the destination of the transition.

We sometimes write ¢ : (0,G,a, A,d) to emphasise the tuple associated to ¢. By slight abuse of
notation, we shall denote by o an operation of syntactical substitution: a guard G (or an assignment
A) is composed with another assignment A’ by replacing in G (resp. in the right-hand side of A) all the
variables by their corresponding right-hands sides from A’. Examples of such substitutions in guards
and assignments have been given in Example 1 above.

The semantics of extended automata is described by labelled transitions systems.

Definition 2 (Labelled Transition System (LTS)) A Labelled Transition System is a tuple S =
(Q,Q° A, —) where Q is a set of states, Q° C Q is the set of initial states, A is a set of labels, and
—C Q x A x Q is the transition relation.

The LTS semantics of an extended automaton enumerates the valuations V of its variables V. For
an expression E involving (a subset of) V', and for v € V, we denote by F(v) the value obtained by
substituting in E each variable x by its value v(z).

Definition 3 (Semantics of extended automata) The semantics of an extended automaton S =
(V,0,L,1° %, T) is an LTS [S] = (Q,Q°, A, =), where

the set of states is Q = L XV,

the initial state is ¢° = (lo, vo), where vy is the unique valuation satisfying ©,

the set of labels is A =T,

— 18 the smallest relation in Q X A X Q defined by the following rule:

v),I",vye® t:{,G,a,Al"YeT G)=true v =A(v)
(L) = ()

The rule says that the transition ¢ : (I, G,a, A,l') is fireable in a state (I,v) if the guard G evaluates
to true when the variables evaluate according to v; then the transition takes the system to the state
(I',v') where the assignment A of the transition maps the valuation v to v/'.

We extend this notion to sequences of transitions o =ty - to---t, € T*, saying that o is fireable in
a state ¢ € @ if there exists states g1 = ¢,q2,...qn € @ such that Vi=1...n—1, ¢; LN ¢i+1. We then
write ¢ = to say that o is fireable in ¢. The transition sequence o is initially fireable if it is fireable
in the initial state gg. A state ¢ is reachable if there exists an initially fireable transition sequence o
leading to it, i.e., Jo € T*,qy = g. We denote by Reach(S) the set of reachable states. For a sequence
o=ty-t, €T™ (n>1), we let first(o) = t;.

Definition 4 (trace) The trace of a transition sequence o =ty -ty - - t, is the projection trace(o) =
at, - Qg -+ -y, of 0 on the set ¥ of actions. The set of traces of an extended automaton S is the set of
traces of initially fireable transition sequences and is denoted by Traces(S).

PI n1776

6 Thierry Jéron , Hervé Marchand , Viad Rusu

3 Local Determinisation

Intuitively, an extended automaton is deterministic if in each location, the guards of the transitions
labeled by the same action are mutually exclusive. Determinising an extended automaton S means
computing a deterministic extended automaton det(S) with the same traces as S.

Definition 5 (deterministic extended automaton) An estended automaton (V,0,L,1°, %, T) is
deterministic in a location | € L if for all actions a € X and each pair t1 : {l,G1,a,A1,l1) and
to : (I, Go,a, Ag,lo) of transitions with origin [and labeled by a, the conjunction of the guards G A Gy
1s unsatisfiable. The automaton is deterministic if it 1s deterministic in oll locations | € L.

It is assumed that the guards are written in a theory where satisfiability is decidable, such as, e.g.,
combinations of quantifier-free Presurger arithmetic formulas, arrays, and lists. Such formulas are
expressive enough to encode the most common data structures, and their satisfiability is decidable
using, e.g., the classical Nelson-Oppen combination of decision procedures [6]. Note that determinism
does not take reachability of states into account. However, since extended automata have a unique
initial state, the definition of determinism is equivalent to the fact that the semantics of a deterministic
extended automaton is a deterministic LTS in the usual sense.

Exemple 1 shows that determinising two transitions consists in merging the two transitions into
a new one, and propagating guards and assignments onto transitions following them (cf. Figure 1).
Formally, follow(t) £ {t' € Tloy = d;}. We also denote by Idy the identity assignments over variables
V,ie., z:=x for each x € V.

Definition 6 (determinising two transitions) Let S be an extended automaton, and let t1,to € T
be two transitions with same origin o = oy, = 04, and same action a = a;, = ay,. The automaton
deto(S,t1,ta) is defined as follows. If Gy, A Gy, is unsatisfiable then deta(S,t1,t2) = S, otherwise,

L4 %e@(s,t) = Vs

L4 @dEtQ(s,t) = O

® Liys.y = Ls U{(o,(d¢,,ds,))}, where (o, (ds,,ds,)) is a new location
® lget2(8,t) = lg‘

L4 Edet2(5,t) =Xs

Taetsis, oy = Ts \ {t1,t2} U{t12} UT1 UTy, where

- t1,2 = <Oa th \ Gt2, Q, IdVa <0a <dt1adt2>>>:

= for i = 1,2, T; = Upconoun, imodify;(t')}, where modify(t') : ((o,(ds,,dz,)), Gt; A Gy o
Atiaat’aAt’ © Atiadt’>'

The transitions ¢; and ¢; in S are replaced in dety(S, t1,t2) by the set of transitions {¢;2} UT; UTh.
The transition ¢; o leads from the common origin o of #;, %2 to the new location (o, (d¢,,dy,)); its guard
is the disjunction of those of t1, t2; hence, t; 2 can be fired whenever ¢; or ¢ can. However, ¢; » does
not perform any of the assignments of ¢, to because it does not “know” which ones to perform. The
assignments are postponed onto copies of the transitions ¢ € follow(t;) (i = 1,2), modified in order to
“catch up” with the effect of transition ;:

e the guard G,..4yp,) equals Gy A Gy o Ay, Intuitively, this amounts to firing the transition
modify;(t') in dety(S,t1,t2), under exactly the same conditions as the transition ¢’ in S: the
conjunct Gy, “recalls” that ¢; should have been fired before ¢', and by composing Gy with A, the
effect of ¢; on the variables is simulated before the guard of ¢’ is evaluated.

Irisa,

Symbolic Determinisation of Extended Automata 7

0
0
t
t1 t2 1,2
AN /"‘ \
4 d) (31 <01 <dt17 dt2>> d 2
t”j t”]
. . tl_] 1 2 tl]
t7 ty i 2
& & i &
t? e follow(t;) 7 = modi fy;(t7)
Figure 2: Determinising 2 transitions: (left) before (right) after.

® A,uf) Performs the assignments of Ay composed with the assignments A;,. In this way, the
cumulated effect on the variables of firing in sequence t; then #' in S is simulated.

Then, local determinisation consists in determinising transitions involved into nondeterminism:

Definition 7 (Local determinisation in location) The local determinisation in location [of an
extended automaton S = (V,0,L,1°, 3, T), where | € L and a € %, is defined as follows. Let T, C T
be the set of all transitions with origin [, then:

o det(S,1) = S if for every pair of same-labeled distinct transitions t1, to € T;, the formula Gy, A Gy,
15 unsatisfiable;

e otherwise, choose two distinct transitions t1,ta € T; such that a;, = ay,, Gy, A Gy, is satisfiable,
and let det(S,1) = det(detz(S,t1,12),1).

The operation terminates: the set of pairs of nondeterministic transitions decreases.

4 Bounded-Lookahead Extended Automata

We now know how to eliminate nondeterminism from a location [€ Lg. Then, to eliminate the nonde-
terminism globally from S, one should iterate de#(S,[) for all | € Ls. However, local determinisation
creates new locations, which may themselves be nondeterministic and have to be determinised, which
may give rise to yet another set of nondeterministic locations, etc. This raises the question of whether
the global determinisation process ever terminates. In this section we define a global determinisation
procedure that we show to terminate exactly for the class of bounded lookahead extended automata.
Intuitively, an automaton is deterministic with lookahead n if any nondeterministic choice can be
resolved by looking n actions ahead.

Definition 8 (bounded lookahead) An extended automaton S = (V,0,L,q°, %, T) has lookahead
n € N in a state ¢ € Qusy if Vo1, 00 € T" . ¢ B Ng B Atrace(o1) = trace(on) = first(o1) = first(os).
The automaton has lookahead n in a set Q' C Qsy of states if it has lookahead n in every q¢ € Q'.
Finally, S has bounded lookahead if, for some n € N, & has lookahead n in the whole set QQpsy.

We shall find it convenient to define the lookahead of a location of an automaton.

PI n1776

8 Thierry Jéron , Hervé Marchand , Viad Rusu

Figure 3: Inherited nondeterminism may not decrease global lookahead.

Definition 9 ((smallest) lookahead in location) An automaton S has lookahead n in location | €
L if S has lookahead n in the set {{l,v)|v € V}. S has smallest lookahead n € N in a given location
[if it has lookahead n in [, and does not have lookahead n — 1 in [. We denote by look(l,S) € N the
smallest lookahead of location | in S (if it exists), otherwise, look(l,S) £ oc.

For example, the automaton depicted in the left-hand side of Figure 3 has look = 1 in [y, because,
when e occurs, the left-hand side a-labeled transition must have been fired, but when b occurs, the
right-hand side a-labeled transition has been fired.

On the other hand, the automaton depicted in the left-hand side of Figure 4 does not have look =1
in [y, because the occurence of b does not reveal which of the a-labeled transitions was fired. However,
the following action (either ¢ or d) reveals all the past trace, hence, look = 2 in [y for the given
automaton.

Definition 10 (global lookahead of automaton) look(S) £ maziec g {look(l,S)}.

Clearly, a location [is deterministic in an automaton S iff look(l,S) = 0; and the automaton S itself
is deterministic iff look(S) = 0.

The following proposition says that the lookahead of an automaton does not increase by local
determinisation (all proofs can be found in the Appendix).

Proposition 1 (Global lookahead does not increase) look(det(S,1)) < look(S).

The following examples show that look(S) may or may not decrease with local determinisation.
Consider the automaton on the left-hand side of Figure 3, which has global lookahead 1. Determinising
in Iy leaves the automaton in the right-hand side, which still has the same global lookahead! The
determinisation in [y in Figure 4, however, decreases the global lookahead of the automaton from 2
to 1.

The difference between these situations is the following: in Figure 3, the determinisation step
has merged the nondeterministic location Iy into the new location (ly,(l1,l3)), hence, the resulting
automaton has inherited (in a sense that will be made precise below) the nondeterminism that I, had;
because of that nondeterminism, the global lookahead has not decreased. On the other hand, the
determinisation step in Fig. 4 does not have this problem: both [y, [o are deterministic, and, even
though the new location (ly, (I1,[2)) is nondeterministic, the nondeterminism is created by the fact that
l1, lo bring one b-labeled transition each.

Definition 11 (created/inherited nondeterminism) Let S be an extended automaton and ty,to
be two transitions of S involved into a nondeterminism in oy, = 0y, = 0. Let (0, (ds,,dy,)) be the new
location resulting from the determinisation dety(S,t1,t2), and assume that (o, (ds,,ds,)) is nondeter-
ministic in deta(S,t1,t2). We say that this nondeterminism is created if both dy,, dy, are deterministic
i S, otherwise, the nondeterminism is inherited.

Irisa,

Symbolic Determinisation of Extended Automata 9

Figure 5: Depth-first determinisation may not terminate.

Now, consider a global determinisation procedure that performs local determinisation steps in a breadth-
first order: the first iteration determinises the nondeterministic locations of the original automaton,
and each subsequent iteration determinises the new nondeterministic locations, generated during the
iteration that preceded it.

Figure 3 also illustrates the first iteration of such a breadth-first procedure on the automaton in the
left-hand side. The resulting automaton is depicted on the right-hand side. Both automata have the
same global lookahead =1. Hence, the lookahead cannot be used as a decreasing measure to ensure
the termination of the procedure.

Even worse, applying local determinisations in a depth-first order (i.e., determinising new nonde-
terministic locations as soon as they are created) may not terminate, even when the automaton has
bounded lookahead. An example is shown in Figure 5: the automaton in the left-hand side has global
lookahead 1, and, by determinising in [y, one obtains the automaton depicted in the right-hand side
of the figure, which contains a sub-automaton isomorphic the automaton in the left-hand side, with
global lookahead still 1. After determinising in the newly created location, the sub-automaton is still
there, and remains present all through the process of depth-first determinisation, which, in this case,
clearly does not terminate.

Hence, applying local determinisation steps in depth-first or in breadth-first order does not lead,
in general, to a terminating global determinisation procedure.

However, Proposition 2 below (whose proof can be found in the Appendix) shows that if an iteration
of a breadth-first procedure only gives rise to created nondeterminism, the global lookahead does
decrease.

Proposition 2 (Global lookahead decreases if all new nondeterminism is created) LetS' be
an automaton obtained by determinising all nondeterministic locations {l1,...lx} of an automaton S

PI n1776

10 Thierry Jéron , Hervé Marchand , Viad Rusu

in an arbitrary order, (i.e., So =8, Vi < k—1,8;11 = det(S;,1;), and 8" = Sy). If none of these local
determinisation steps gave rise to inherited nondeterminism, then look(S') < look(S).

To ensure that all new nondeterminism is created, one must determinise locations whose direct suc-
cessors are deterministic. But now we are faced with another difficulty: if the automaton has cycles
in which every location is nondeterministic, it is impossible to choose a location on the cycle to start
determinising with! This will lead us to “breaking” such cycles by determinising one location on each
of them.

Definition 12 A location ' is a direct successor of a location | in S if there exists t € Ts such that
o =1 andd;, =1'. Acycle is a sequence ¢ =1ty -ty---t, € T" such that Vi =1,...n —1,d;, = o4,
and dy, = oy, . The cycle is elementary if moreover Vi,j =1,...n—1,i < j = di; # oy, holds. We say
lecifdie{l,...n}.l =dy;, denote by C(S) the set of cycles of S, and by C(S,1) = {c € C(S)|l € c}.

Definition 13 (nondeterministic cycle) A cycle ¢ is nondeterministic if VI € ¢, [is nondetermin-
istic. We denote by N'(S) the set of nondetermnistic cycles of S.

Lemma 1 For S an automaton and all locations | € Lg, C(det(S,1),1) N N (det(S,1)) = 0, and
V' eC(S).d ¢ C(S,I) N ¢ N(S) = ¢ € C(det(S,1)) \ N (det(S,1)).

Proof : For the first statement, note that [is deterministic in de#(S,[), hence, by definition, a cycle
¢ € C(det(S,1),1) cannot be nondeterministic in det(S,I), i.e., it cannot be in N (det(S,l)). For the
second statement, the left-hand side of the implication means that the cycle ¢ € C(S) does not visit [,
but visits some other location I’ which is deterministic in S. Determinisation in [leaves ¢’ unchanged,
thus, ¢’ € C(det(S,1)), and I’ is still deterministic in det(S,1), hence, ¢ ¢ N (det(S,1)).0

Lemma 1 says that cycles visiting [in det(S,[) are not nondeterministic, and cycles ¢ that do not
visit [and that are not nondeterministic in S are still not nondeterministic cycles of det(S,l). The
consequences are that determinising one location per elementary mondeterministic cycle generates an
automaton without any nondeterministic cycles, and determinisation does not add new nondetermin-
istic cycles.

We now introduce our global determinisation procedure (Figure 6), which starts by “breaking” all
elementary nondeterministic cycles, by determinising one location on each.

Theorem 1 (termination, sufficient condition) det(S) terminates if look(S)<oco.

Proof : By Lemma 1 and Proposition 1, the elimination of nondeterministic cycles (first while loop
in Figure 6) terminates and does not increase look(S). Consider the sets L” C L' computed at each
new iteration of the inner (third) while loop.

Note that L' # () and L” = () implies that there exists a nondeterministic cycle in S,. Indeed,
assume [; € L', then L” = () implies [; ¢ L”, which implies that [has a direct successor Iy € Ls, where
S! is also nondeterministic, which implies again Iy € L’. The process continues, and we eventually build
a nondeterministic cycle in &), which is impossible since all nondeterministic cycles were eliminated.

Inside the inner while loop, L' #), and by the above reasoning, L” # (). Hence, the choose [
operation (from L") inside the loop is always possible, and then determinising in location [decreases
the cardinal of L' by one. Since L' is finite (L' C Lg,) and its cardinal decreases, eventually L' = ()
and the inner while loop terminates. L' = () also means that at the end of the inner while loop, S,
is deterministic in all locations L, , hence, nondeterministic locations in S/, are new.

For termination of the outer while loop, we prove l00k(Sp+1) < look(S,). We know that after
the inner loop, the nondeterministic locations in S}, are new (in Lg: \ Lg,) and cannot have inherited

Irisa,

Symbolic Determinisation of Extended Automata 11

Procedure det(S)
while C := {c € N(S)|c elementary} # 0 do
choose ¢ € C; choose | € ¢; S := det(S,1)

endwhile

n:=0;8,=§

while S, is nondeterministic do
S =8,

while L':={l € Ls,|S!, is nondeterministic in [} #) do

L" :={l' e L'|S!, isdeterministicin all direct successors of I'})

choose [€ L"
S := det(S),,1)

endwhile
Sp=8; ni=n+1
endwhile

return S,.

Figure 6: Global determinisation procedure det()

nondeterminism, because they were generated by determinising locations in L”, whose direct successors
are, by construction, deterministic. Finally, by Proposition 2, look(S]) < look(S,), and S,11 becomes
S! after n is incremented, and the proof is done. O

The fact that bounded lookahead is necessary for termination is based on:
Proposition 3 (look() decreases by at most 1) look(deta(S,t1,t2))>look(S)—1.
Then, a finite sequence of detz() operations cannot decrease lookahead from oo to 0:
Theorem 2 (necessary condition) If det(S) terminates then look(S) < oco.

This concludes the study of the procedure’s termination. It also preserves traces:
Theorem 3 If det(S) terminates then Traces(det(S)) = Traces(S).

All proofs can be found in the Appendix.

The determinisation procedure can be improved using approximate reachability analysis. Assume
that an over-approximation Reach® O Reach(S) of the reachable set of states is known (e.g., by abstract
interpretation [2]). Moreover, assume that this set is described using a formula in the same logic as the
autoamaton’s guards, which we have assumed to be decidable for satisfiability (cf. Section 2). Then,
Definition 5 of a deterministic extended automaton can be weakened, by requiring that Reach® AGy, AGy,
be unsatisfiable (instead of G, A Gy, unsatisfiable).

This new definition of determinism increases the suclass of extended automata on which the deter-
minisation procedure terminates. The procedure now terminates for automata satisfying a modified
definition of bounded lookahead, which, intuitively, requires only states in the set Reach® (instead of
Qs7) to have bounded lookahead.

Checking for Bounded Lookahead. The bounded lookahead condition is clearly undecidable for
extended automata. We now give a sufficient criterion for this condition. We need a notion of product
of extended automata:

PI n1776

12 Thierry Jéron , Hervé Marchand , Viad Rusu

Definition 14 (Synchronous Product) Two automata S; = (Vj,@j,Lj,l?,Ej,Tj> (7 = 1,2) are
compatible if Vi N Vo = 0 and X1 = Xo. The synchronous product S = S1||S2 of two compatible
automata S1,Sy is the automaton (VO,L,1°, 3, T) with: V = ViUV, © = ©1 AOy, L = L1 X Lo,
1= (%19), ¥ = %y = %9, and the set T of transitions of the composed system is the smallest set

defined by the rule:

t1:(l,a,G1,A1,¢1)) €Ti to:(la,a,Ga, As,l5) €T
t: <<l1,l2>,a,G1 A\ GQ,AI UA2,< Il,l,2>> eT

Then, the bounded lookahead condition for an extended automaton can be equivalently formulated
as follows. Consider an extended automaton S = (V,0,L,I1°, %, T), and let the primed copy S’ of
S be the automaton obtained by “priming” all the components of S except the alphabet ¥, i.e.,
S'=W"0 L% T, where V! = {v'|v € V}, L' = {I'|l € L}, and for states ¢’ = ((I,v))" = (I', ')
where ¢/ is the same valuation as v, but for variables V', i.e., Vo' € V', V/(2) £ v(z).

Proposition 4 (checking for bounded lookahead) An extended automaton S has bounded looka-

head iff, for all q,q1,q2 € Qs1 and distinct transitions t1,ty € Ts with a;, = ay,, if q _t;s aNq ifs Q2
then there exists no infinite execution in S||S' starting from (q1,¢h), where S’ denotes the primed copy

of S.

The conditions of Proposition 4 are decidable if S is finite-state but are not decidable in general.
For infinite-state extended automata S, we can build finite-state abstractions S that simulate the

transition sequences o of S (i.e., whenever ¢ = ¢ holds in S, a(q) a(_a)) a(q') holds in §). The
bounded lookahead conditions of Proposition 4 can be then automatically checked on &%, and, if they
hold, the simulation property guarantees that they also hold on §. This gives a sufficient criterion for
bounded lookahead, which is, in general, not necessary (S® may contain cycles not present in S), and

whose precision can be improved by taking more precise abstractions S¢.

5 Applications of Determinisation

Verification. A standard verification problem is that of trace (or language) inclusion: given two
systems Z (the implementation) and S (the specification), decide whether Traces(Z) C Traces(S). When
7, S are extended automata and § is deterministic, the problem reduces to a reachability problem in
the extended automaton Z||S, where S is obtained from S by adding a new location fail ¢ L, and for
each [€ L and a € X, a new transition with origin [, destination fa:l, action «a, identity assignments,
and guard A, (La,Ge, A L) ET —~G;. The new transitions allow actions in S whenever they are not allowed
in S. Hence, when § is deterministic, Traces(Z) C Traces(S) iff no location in the set {(I, fail|l € L;)}
is reachable in Z||S.

When § is not deterministic, the above statement is incorrect. Let S be the nondeterministic
automaton in the left-hand side of Figure 3. A naive application of the completion operation on S
builds a transition labeled b from [y to fail, suggesting that a - b is not a trace of S, which is obviously
false. In particular, verification would wrongly declare erroneous an implementation that exhibits the
trace a - b. Hence, to be adequate for verification, S has to be determinised before being completed.

Conformance Testing is a functional testing that consists in comparing a black-box implementa-
tion Z to a formal specification S according a conformance relation. The implementation is a black
box, i.e., only its interface (input and output alphabet) is known. In [7] we show that conformance of
an implementation S to a specification according to the standard ioco relation [9] is equivalent to the
fact that running a canonical tester in parallel with the implementation never reaches a certain set of
locations. The tester can be automatically computed from the specification using operations similar

Irisa,

Symbolic Determinisation of Extended Automata 13

to the completion operation, defined above, and, of course, determinisation. Without determinisation,
the tester might wrongly declare non-conformant an implementation that is conformant to the speci-
fication (a phenomenon similar to that exhibited by the trace a - b, noted in the previous paragraph).

Diagnosis. The determinisation problem for extended automata also has a close relationship with
diagnosis for discrete event systems [8]. For instance, an extended automaton with bounded lookahead
can be seen as an automaton in which nondeterministic choices are diagnosable; and checking mem-
bership to the class of bounded lookahead automata can be reduced to a diagnosability problem in
this model. Also, the sufficient criterion for bounded lookahead (around Proposition 4) was inspired
by the algorithm used to check diagnosability [5], based on the search of specific cycles in a product of
the specification with itself.

Conversely, it could be profitable to re-define diagnosability in terms of our bounded lookahead
condition, in order to capture a notion of diagnosability for richer, infinite-state models. Finally,
the construction of a diagnoser from an automaton specifying a plant and a fault model is based on
determinisation: one has to determinise the plant “decorated” with past occurrences of (unobservable)
faults. Our determinisation procedure then constitutes a basic block for the construction of diagnosers
from plants specified as extended automata, thus extending the works on diagnosis to more expressive,
infinite-state models.

6 Conclusion and Future Work

In this paper we present a determinisation procedure for extended automata and prove that the pro-
cedure terminates exactly for the class of extended automata with bounded lookahead. The intuition
behind this class is that in any location, for any trace, there exists a bounded number of steps after
which the first transition taken is uniquely identified. Technical difficulties for proving termination
arise from the fact that the order in which elementary determinisation steps are applied has a strong
influence on termination. The main dificulty was to find an adequate order, for which the bounded
lookahead provides a decreasing measure.

The models of extended automata considered in this paper only have observable actions. One can
also consider models with internal (unobservable) actions. In this case, determinisation first consists
in an extended e-closure generalising that of finite automata. The extended e-closure algorithm is
then based on the propagation of guards and actions onto the next transitons labeled by observable
actions [10], and terminates iff there are no cycles of transitions labeled by internal actions.

The present work was initially motivated by conformance testing, more specifically, model-based
testing based on the ioco theory [9]. In this framework, off-line test generation (computation of test
cases from specifications) involves determinising the specification in order to compute the next possible
observable actions after each trace, and, therefore, to obtain deterministic test cases [4]. In that work,
we consider an extension of the model presented here (actions are either inputs or outputs and may
carry communication parameters), which can be handled by a small modification of our determinisation
procedure. The procedure also has potentially interesting application in the verification and diagnosis
of infinite-state systems.

References

[1] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183-235, 1994.

[2] Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In Jth POPL, Los Angeles,
CA, pages 238-252, January 1977.
PI n1776

14

Thierry Jéron , Hervé Marchand , Viad Rusu

3]

[4]

[5]

[6]

[7]

8]

9]

[10]

John E. Hopcroft, Rajeev Motwani, Rotwani, and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages and Computability. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2000.

B. Jeannet, T. Jéron, V. Rusu, and E. Zinovieva. Symbolic test selection based on approximate
analysis. In 11th Int. Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’05), Edinburgh (Scottland), volume 3440 of LNCS, April 2005.

S. Jiang, Z. Huang, V. Chandra, and R. Kumar. A polynomial time algorithm for diagnosability
of discrete event systems. IEEFE Transactions on Automatic Control, 46(8):1318-1321, August
2001.

Greg Nelson and Derek C. Oppen. Simplification by cooperating decision procedures. ACM Trans.
Program. Lang. Syst., 1(2):245-257, 1979.

Vlad Rusu, Hervé Marchand, and Thierry Jéron. Automatic verification and conformance testing
for validating safety properties of reactive systems. In John Fitzgerald, Andrzej Tarlecki, and Ian
Hayes, editors, Formal Methods 2005 (FM05), LNCS. Springer, July 2005.

M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis. Failure diag-
nosis using discrete event models. Proceedings of the IEEE Transactions on Automatic Control,
4(2):105-124, 1996.

Jan Tretmans. Test generation with inputs, outputs and repetitive quiescence. Software - Concepts
and Tools, 17(3):103-120, 1996.

E. Zinovieva. Meéthodes symboliques pour la génération de tests de systémes réactifs comportant
des données,. PhD thesis, Univ. of Rennes, Nov. 2004.

Irisa,

Symbolic Determinisation of Extended Automata 15

7 Appendix

We prove the partial correctness and termination of the global determinisation procedure. Most results
in this Appendix are based on defining and proving properties of functions between sequences of
transitions in the original and the determinised automaton. We shall use the following notations: for
a sequence o, first(o), snd(o), and last(o) respectively define the first, second, and last element of o,
if they exist, otherwise, by convention, they return the empty sequence e.

7.1 Partial Correctness

The local determinisation operation dets(S,t1,%2) (cf. Definition 6) adds a transition ¢; 2 to the tran-
sitions of § and modifies the guards and assignments of transitions that follow #1,%2 in S.

The following lemma states some basic properties of the dets(S,t1,t2) operation. Essentialy, the
first item says that the new transition ¢; o is fireable in dety(S,t1,t2) whenever ¢; or ty are fireable in
S, but it does not necesarilly lead to the same state as some assignments to variables are postponed.
The second item says that the sequence of transitions 15 - modify;(t;) (where modify;(t}) is a copy
of a transition ¢ following ¢; (i = 1,2), adequately modified to include the previously postponed
assignments) performs a faithful simulation of ¢; - ¢,.

Lemma 2 With the notations of Definition 6, for all states q,q" € Qysy,

t1,2 t t
(z) G —Pdets (S, t1, ts) iff q és or q is

t1,2 - modify; (t;)

(ii) Vt. € follow(t;), i = 1,2, q 45 q iff q R

t
Proof : For statement (i): let ¢ = (I, v}, then ¢ igm(s,tl,m iff (a) o, , =1 and (b) v |= Gy, ,. Since

04, = 04, = 04, , and Gy, , = Gy, V Gy, the conjunction of (a) and (b) is equivalent to (g % or q t#s),
which proves statement (i).

tit; . .
For statement (ii): let ¢, € follow(t;). We have ¢ —%s ¢’ iff there exists a state ¢” such that («)

q N q" and (38) ¢ —i> q. Now (@) is equivalent to ¢ = (o4, v), ¢" = (dy;, ") for some valuations
v,v"" such that v = Gy, and v" = Ay, (v); and (B) si equivalent to ¢" = (o4, V"), ¢ = (dy,v') with
A= Gy and V= Atr("). Since oy = dy; we obtain overall that (a A f3) is equivalent to g = (o4,),
qJ = (dt/ V') such that v = Gy, and Ay (v) | Gy and v/ = (Ay o Ay)(v). Now, since Ay, (v) | Gy
is equivalent to v = Gy o Ay, we further obtain that (v A B) can be equivalently rewritten into (§):
vE G and (7): v = Gt A (Gy o Ayy) and (n): V' = (Ay o Ay)(v).
Now, consider Definition 6 of the dety(S,t1,t2) operation - specifically, the construction of the
transitions ¢ 2 and modify;(t;). We have

b t1,2 : (07 th \% Gtza a, IdVa (Oa (dt17dt2>>>;
o mOdeyz(t;,) : <<0’ <dt17dtz>>a Gti A Gt; ° Atiaat’iaAt; ° Atiadt’i>'

From this, we obtain that (0 AyAn) is equivalent to g ﬂ)detZ(S trite) G ot)detZ(S t.10) @, for some state

t1,2 - modify; (t})

g (here, ¢ = ({0, (dy,,dy,)),v), which is equivalent to ¢ — " Vdeta(s.t1.t0) @ 1€, to the right-hand
side of (ii).

We have obtained that the left-hand side of (ii) is equivalent to (a A), which is equivalent to
(0 Ay Am), which is equivalent to the right-hand side of (ii), which concludes our proof. O

The following definition will allow, in particular, to re-formulate the definition of bounded lookahead
(Definition 8) in a manner sometimes more convenient in subsequent proofs.

PI n1776

16 Thierry Jéron , Hervé Marchand , Viad Rusu

Definition 15 (executable sequence with given trace) For an extended automaton S, a state
q € Qusp, and a word w € ¥, we denote by seq,(S,w) the set {o € T"|q 25 Atrace(o) = w} of
executable sequences starting from q and whose trace is w.

Then, Definition 8 is equivalently reformulated as follows: a state ¢ € Q57 has lookahead n if, for all
words in w € X2T! every pair of sequences oy, 09 € seq,(S,w) satisfies first(oy) = first(o2). In the
rest of this section we define two functions between sequences of transitions, which will serve as a basic
tool for proving both partial correctness and termination.

Definition 16 (direct function) With the notations of Definition 6 we define a function h : TS —
Tiein(s. tr.10), Obtained by applying the following rules in the given order:

1. h(e) =€

2. h(t-o)=t-h(o) for all transitions t ¢ {t1,t2}

3. h(O’ . tl) == h(O’ . tg) == h(O’) . t1’2 lf last(a) ¢ {tl,tg}

4. Vt; € follow(t;) (1 =1,2), h(o-t;-t;-0') = h(o) - ti2 - modify;(t;) - h(c") if last(o) & {t1,t2}.
The second rule maps each transition not involved into the considered nondeterminism to itself. The
third rule deals with sequences ending with transitions ¢; or ¢z, which are mapped to ¢, except if
they are preceded by one of tq, to, in which case the fourth rule may apply. The fourth rule replaces

patterns of the form ¢; - ¢}, with ¢} € follow(t1), by patterns ¢ - modify, (t]) (and similarly for ¢).
The constraint last(c) ¢ {t1,t2} ensures that the replacement is done as early as possible.

Lemma 3 With the notations of Definitions 6 and 16, for each w € ¥ and state ¢ € Qsy, the function
h defines a mapping between seq,(S,w) and seq,(det2(S,t1,t2), w).

Proof : We have to prove h(seq,(S,w)) C seq,(deta(S,t1,t2),w). We prove the following slightly
stronger statements by well-founded induction over o:

. . . h
(i) Vg, ¢ € Qs 0 €T3, q %s ' and last(o) ¢ {t1,t2} implies ¢ g)dgtﬂs,tl,t2) q

. T h(a)
(i) Vg€ Qs 0 € TS, q % and last(o) € {t1,t2} implies ¢ —gery (5.1 1o)-

For statement (i): if o = e it is trivial, otherwise, let last(o) =t € Ts \ {t1,t2}. Let then o1 be the
longest prefix of o not containing any of ¢1,to. Then, h(o1) = o1. If 07 = o then (i) is proved, because
. . o . . h(o) ..

in this case ¢ =5 ¢ is equivalent t0 ¢ —yern(s. 1,10y ¢ - the sequence o = o1 = h(o) = h(o) visits a
part of the system outside of 1, t5, on which determinisation of #1, ¢ has no influence. Otherwise, o =
o1 -ti-th-o9-t with ¢} € follow(t;), 1 = 1,2. By the definition of h, h(o) = h(o1)-t1 2- modify;(t})-h(og)-t.

t1-t] ‘
Let then ¢, ¢s, g3 be the states such that ¢ D5 ¢ 1—55 g Bs qs —t>5 ¢'. By induction hypothesis,
.. h(O’l) t1,2 « modif l(t;) h,(a'2) t
definition of A, and Lemma 2, ¢ — deta (S, t1,t2) 41 ner ey deto(S,t1,to) 42 ~7 deta(S, t1,to) A3 ~deto(S, t1, t2)

. h(o .
q, ie., q (—>)det2(5,t1,t2) ¢’ and the proof is done.

For statement (ii): if 0 = € it is trivial, otherwise, let o2 be the longest suffix of o that consists
only of transitions in {t1,t3}. Then, o = 01 - 09 and last(o1) & {t1,t2}. There are two cases:

e if the length of o9 is even, then oy can be decomposed as 09 = g4 -02--- 0% (n > 1) where each O'%

is of the form ¢; - | with t; € follow(t;), i = 1,2. By the definition of h, h(c) = h(01) - ot ol
where each o is of the form #; 5 - modify(t.), i = 1,2. By item (i) above and Lemma 2, whenever
/1

o o3 oy, h(o1) 03 oy’ !
q _1>S g1 43 g2 - q4n 48 q hOldS, Q —deto(S, t1,t2) A1 ~Pdeta(S,t1,t2) 42" " An ~Vdets (S, t1,t2) 4 holds

. . . h . . .
as well, which implies that ¢ ﬂdems,tl,@) and the proof is done in this case.

Irisa,

Symbolic Determinisation of Extended Automata 17

e if the length of oy is odd, then oy can be decomposed as oy = oy -02---0% -t (n > 1) where
each o3 is of the form ¢; - t| with ¢, € follow(t;), i = 1,2, and t € {t1,{2}. By the definition of h,
h(o) = h(oq) - ot -+~ o - 11 5 where, again, each o§ is of the form t; 5 - modify(t.), i = 1,2. By

1 on h
item (i) above, and Lemma 2, whenever ¢ 25 ¢; 25 g2 qn 43 An+1 —>S holds, ¢ E))detz(s tr t2)

11 ln
t1,2
q1 —>det2(5 t1,t2) 42" " qn —>det2(5 t1,t2) An+1 _>det2(5 t1,t2) holds as well, hence, ¢ _;detQ(S,tl,tz) and

the proof of this case and of (ii) are done.
Finally, let o € seq,(S,w).
e if 0 = ¢ then clearly h(o) € seq,(deta(S,t1,t2),w).
e otherwise, if last(o) & {t1,%2}, then item (i) above implies h(o) € seq,(deta(S, t1,t2), w).
e otherwise, if last(o) € {t1,%2}, then item (ii) above implies h(o) € seq, (deta(S,t1,t2), w).

Overall, h(seq,(S,w)) C seq,(detz(S,t1,t2),w). O

We now define an inverse function, between sequences of dety(S,t1,t2) and sequences of S. This new
function is not the inverse of h, because h is not injective as it maps both 1, t5 to ¢ ».

Definition 17 (inverse function) With the notations of Definition 6, we define a function ¢ :
d:tg(S,tl,tQ) - Ts* by:

p(t12) = p(e) =€

o(modify;(t)) = t; - t, Vi, € follow(t;), i = 1,2
o(t) =t for all other transitions in T s, iy 1)
p(o-0') = (o) - p(a').

Lemma 4 With the notations of Definitions 6 and 17, for each w € Z:‘S. and state ¢ € Qsy, the
function ¢ defines a mapping between seq,(dety(S,t1,t2),w) and seq,(S,w).

Proof : First, note that the lemma deals with the states Qs of the original automaton, not with
the states of the determinised automaton. The determinised automaton has one more location (and
corresponding states) which are dealt with by a subsequent lemma.

We have to prove ¢(seq,(detz(S,t1,t2), w)) C (seq,(S,w)). We prove the following slightly stronger
statements by well-founded induction over o:

. . v(a)
(a) Vg, q, € Ql[S]Ia OIS 7;:t2(8,t1,t2)7 q £>det2(s,t1,t2) q, and laSt(U) 7é t1,2 implies ¢ =5 q,

. . w(o)
(B) Vg € Qsy, 0 € 7;;2(5,%@), q ﬁzmg(s,tl,m and last(o) = t; 2 implies ¢ —'s.

To prove (a): let o1 be the longest prefix of o not contaning t; 2. Hence, o1 does not contain any
transition in modify;(follow(t;)), because otherwise it would also contain their prececessor t1 o.!

Hence, by the definition of ¢, ¢(o1) = o1. If o0y = o, whenever ¢ Zu...(s.4,.4,) ¢ holds, g wg)s q

holds as well - because in this case o visits a portion of the automaton dety(S, t1,t2) where determini-
sation had no influence - and («) is proved in this case.

Otherwise, o} is a strict prefix of 0. Since last(c) # t1 2, we have 0 = oy - t1 2 - modify;(t.) - o2, for
some t; € follow(t;) and ¢ = 1,2, and last(o2) # t12. Then, p(o) = o1 - t; - t; - p(02). By Lemma 2

'Here, the fact that ¢ € Q[sy is important, because this means in particular that o does not start in the “new”
location of detz(S,t1,t2), hence, it cannot start with a transition in modify; (follow(t;)) and contradict the statement that
all transitions in modify, (follow(t;)) are preceded by t1 »

PI n1776

18 Thierry Jéron , Hervé Marchand , Viad Rusu

and the induction hypothesis of (@), if ¢ Zeys. 1.t @1 t1’2'yl>difyi(ti)det2(s,tl,t2) @2 Bicns. iyt ¢ holds,
03 q “Se g @(#)Q)s ¢’ holds as well, and () is proved.

To prove (f): in this case we can decompose o as o = o' - ti12, and last(c’) # 1,2, because
by construction t;o is not a self-loop - its origin is a location of & but its destination is the new

location (o, (d¢,,ds,)) which is not a location of S. Hence, we can apply (a) that we have proved

t1,2 o .
Pdeto(S, t1, t2)) by (O() we have q tp(_))s q’, and since

p(0) = 00" - 112) = 9(0") - p(t1,2) = p(0"), we have also ¢ “F ¢/, and (8) is proved.

Finally, let o € seqq(detg(S,t1,t2),w)-

above. Let then ¢/ be such that ¢ i>det2(s,t1,t2) q

e if 0 = € then trivially ¢(0) € seq, (S, w)
e otherwise, if last(o) # t1,2 then, by (a), ¢(o) € seq, (S, w)
e otherwise, if last(c) = t12 then, by (8), p(0) € seq (S, w).

Overall, we obtain ¢(seq, (det2(S,t1,12),w)) C (seq, (S, w)). O

Corollary 1 (dety() preserves traces) Traces(dets(S,t1,t2)) = Traces(S).

Proof : C: let w € Traces(detz(S,t1,t2)). Then, by Definitions 4, 15, there exists a sequence o' €
seqo(dety (S, t1,t2), w), where q" is the initial state of dety(S,t1,t2), which by Definition 6 of the dety()
operation is also the initial state of S. By Lemma 4, the sequence ¢(o') is in seg,o(S,w); hence,
w € Traces(S).

D: let w € Traces(S). By Definitions 4, 15, there exists a sequence o’ € seq,o(S) for w, and q° is initial
for both S and dety(S,11,12). By Lemma 3, o' = h(0) € seq,o(deta(S t1,12),w) is a sequence of trace
w in dety(S, t1,t2); hence, w € Traces(deta (S, t1,t2)). O

Our global determinisation procedure det(S) is just an iteration of local determininisation steps in
some particular order. Hence, we immediately have

Theorem 3 (Partial correctness) If det(S) terminates then Traces(det(S)) = Traces(S).

7.2 Lemmas for Termination: Sufficient Condition

In this section we assume an extended automaton S with bounded lookahead, i.e., look(S) < co.

We study the lookaheads of locations in dets(S,t1,t2) and compare them with those of S. Sec-
tion 7.2.1 deals with the locations I € Lg of S, and Section 7.2.2 deals with the new location (o, (d;,, ds,))
of dety(S,t1,t2), where o is the common origin of t1,t9 and dy,,d;, are their respective destinations.
We use the direct function i and inverse function ¢ (Definitions 16, 17).

7.2.1 Lookahead in common locations of S and dety(S,t1,t2)
We distinguish two cases, depending on whether [= o (o is the origin of ¢1,¢2) or [€ Lg \ {o}.
Lemma 5 For each state ¢ = (I,v) € Qpsy with | € Ls \ {o}, each word w € ¥, and each pair of

sequences 01,03 € seq,(S,w): first(oy) # first(oz) = first(h(o1)) # first(h(o2)).

Proof : Since I € Ls \ {o}, first(o1), first(oz2) are not in {t1,t2}. Thus, first(h(o1)) = first(oy) and
first(h(o2)) = first(oz2), which immediately proves the result. O

A similar lemma holds for the inverse function ¢:

Lemma 6 For each state ¢ = (I,v) € Qusy with | € Ls \ {o}, each word w € X, and each pair of
sequences 01,03 € seq,(dety(S,t1,t2),w): first(o1) # first(o2) = first(p(o1)) # first(¢(o2)).

Irisa,

Symbolic Determinisation of Extended Automata 19

Proof : Since | € Ls\ {o}, first(o1), first(o2) are not in {t1,2} UU,: ¢ joiowieny. i = 1. .1m0dify;(£;) . Thus,
first(p(o1)) = first(o1) and first(p(o2)) = first(oz), which immediately proves the result. O

Lemmas 5, 6 together with h(seq,(S,w)) C seq,(deta(S,t1,t2),w) and @(seq, (deta(S,t1,t2),w)) C

seq,(S,w) from Lemmas 3, 4 allow to prove

Lemma 7 Vi € L \ {o}, look(l,S) = look(l, deta(S, t1,t2)).

Proof : (<) We first prove the following fact
(i) Vn € N, deta(S,t1,1t2) does not have lookahead n in [= S does not have lookahead n in [.

Indeed, if dets(S, t1,t2) does not have lookahead n in [then there exists a state ¢ = (I,v), a word
w of length n + 1, and two sequences 1,02 € seq,(deta(S,11,t2), w) such that first(o1) # first(oz). By
Lemma 6, their images by ¢, which are in seq,(S,w), also differ on the same transition, which means
that S does not have lookahead n in [, and (i) is proved.

The statement (i) can be rephrased as Vn € N, S has lookahead n in [= dety (S, t1, t2) has lookahead
n in . In particular, for ng = look(l,S) € N (we have assumed bounded lookahead in this section) §
does have lookahead ng, which by (i) implies that dety(S,t1,12) has lookahead ng as well, hence, the
smallest lookahead look(l, deta(S,t1,t2)) satisfies look(l, deto(S,t1,t2)) < ng = look(l,S).

(>) The proof is almost symmetrical to the one for the (<) inequality. We start by proving
(ii) Vn € N, § does not have lookahead n in [= dety(S, t1,t2) does not have lookahead n in [.

Indeed, if S does not have lookahead n in [then there exists a state ¢ = (l,v), a word w of
length n + 1, and two sequences o1, 02 € seq, (S, w) such that first(o1) # first(o2). By Lemma 5, their
images by h, which are in seq,(deta(S,t1,12), w), also differ on the same transition, which means that
dets(S, t1,t2) does not have lookahead n in [, and (ii) is proved.

The statement (ii) can be rephrased as Vn € N, defs(S,%1,t2) has lookahead n in [= § has
lookahead n in [. In particular, let ny = look(l, deto(S,t1,t2)). Then, ny € N, as ny < ng € N, which
we know from the (<) inequality. Hence, dets(S,t1,t2) does have lookahead nq, which by (ii) implies
that S has lookahead n; as well, hence, the smallest lookahead look(l,S) satisfies look(l,S) < n; =
lOOk(l, detg(s,tl,tg)). O

We now turn to the case [= o. The next lemma says that Lemma 6 also “holds” for [= o:

Lemma 8 For cach ¢ = (0,v) € Qus, w € %%, and 01,09 € seq,(deta(S,t1,t2),w), first(oy) #
first(o2) = first(p(o1)) # first(p(o2)).

Proof : We first note that in the location o, o1, o2 may only start either with ¢ », or with a transition
t € Ts\{ti2,t1,t2} - as t1,t2 are not transitions of dety(S,t1,t2).
Let us now enumerate the possible values of first(¢(c1)) (and similarly for first(p(o2))):

1. ifoy = ¢- 0”1 with ¢t € T4 \ {tl’g,tl,tg}, then (p(O'l) =t- (p(U’l)

2. if oy starts with 2, then either oy = #;2, in which case p(01) = € and by convention
first(p(o1)) = €, or oy is of the form o1 = t12 - modify;(t) - o, for some ¢, € follow(t;) and
i =1,2. Then, p(01) =t;-t.-p(o]), and then first(p(o1)) =t; € {t1,12}.

Then, for two sequences o1, o2 as in the hypothesis of our lemma, we have the following possibilities:

e 0 starts with ¢; 9 and o9 starts with ¢ € Ts \ {¢12,t1,t2}. Then, first(p(o1)) € {€,t1,t2} and
first(p(og)) =t € Ts \ {t1,2,t1,t2}: clearly, the two cannot be equal;

e a symmetrical situation obtained by switching the roles of o1, g9, with similar outcome that

first(@(o1)) # first(p(o2));

e 01, 0y start with two different transitions, respectively, ¢',¢" in T \ {t12,t1,%2}, in which case

first(p(o1)) = ¢! # ¢ = firstp(a2)). 0
PI nl1776

20 Thierry Jéron , Hervé Marchand , Viad Rusu

This and the inclusion ¢(seq,(det2(S,11,t2),w)) C seq, (S, w) from Lemma 4 allows us to prove, by
complete analogy with the (<) part of the proof of Lemma 7

Lemma 9 look(o, deta(S,t1,12)) < look(o,S).

This concludes the study of the relations between smallest lookaheads of locations in Lg before an after
the dety operation.

7.2.2 Lookahead in the new location created by local determinisation

We still have to consider the lookahead of the new location (o, (ds,,dy,)) created by the determinisation
of two transitions ¢1,%e with common origin o, common action a, and destinations dy, ,d;, (cf. Defini-
tion 6).

First, we prove that if a transition can be fired from a state of the form ((o, (ds,,ds,)),v) (where
v €V is a valuation of the variables), then two transitions can be fired in sequence from o:

modify; (t%)

Lemma 10 Vit € follow(t;),i = 1,2, ({0, (d¢;,dey))s V) —ainis, i, e0) @ tmplies (o, v) t—t>8 q.

Proof : By Definition 6 of the dety(S,t1,12) the transitions ¢ 2 and modify;(t;) are defined as follows:
b t1,2 : <07 th \% Gt27 a, IdVa (Oa (dt17dt2>>>a
® mOdifyi(t;) : ((07 (dt17dt2>>7 Gti N Gt; ° Ativat’iaAt; ° Ati? dt;)
modify; (t})
Let now ((o, (dy,,ds,)), v) ijm(s,tl,m q'- Then, v | Goouipy,ip) = Gt; AGyr oAy, and ¢' = (dyr, (Ay o
Ay;)(v)). Let then v = Ay, (v) and ¢" = (dy;,v"). From v |= Gy oAy, we obtain 1" = Ay, (v) [= Gy, and
th .
since dy; = oy we have q" =5 ¢'. Also, we have v |= Gy, and since v"" = Ay, (v) we also get (o, v) E>S q".
) t
Overall, (o, v) Ly q" =s ¢, and the proof is done. |
Lemma 11 With the notations of Definitions 6, 17, for each trace w € £F and valuation v € V, the

function ¢ defines a mapping from seq ., (a4, 4.y, (det2(S,t1,t2),w) to seq, ,,(S,a-w), where a is the
common action of t1, to.

Proof : We prove that for all v € V, 0 € seq, (a4, 4,1, (det2(S, 11, 12), w), and q' € Qracty(s, 1y 1) the
two statements hold:

(i) if ({0, (ds,,de,)), V) gdetz(s,tl,tQ) ¢ and o # € and last(o) # t1,2 then (o,v) Wg)

(ii) if ({0, (ds,,de,)), 1) i>det2(3,t1,t2) and o # € and last(o) = t1 2 then (o,v) (p(—g>)5.

sq,

To prove (i), we first note that since o starts in the location ((o, (d¢,,ds,)), it can be decomposed as
o = modify;(t;) - o' for some t; € follow(t;) and i = 1,2. We now proceed by well-founded induction on
o. Let o the longest suffix of o that does not contain #; .

o If o9 = o then their subsequence o’ does not contain ¢ 2, hence, it does not contain any of
the transitions in modify; (follow(t;)), i = 1,2 (otherwise it would contain their predecessor
t1,2 as well). Hence, o' visits only a part of dets(S,t1,t2) where determinisation had no ef-
fect, and p(o) = t; -t - o'. Now, using these observations and Lemma 10, we obtain that if

modify; (t}) o' , ti -t} a , N .
({0, (d¢y,diy))sv) = detn(S, b1, t2) A1 ~Heta(S, 61, 1) ¢ DoldS, (o,v) ='s q1 —s ¢ holds, and (i) is
proved in this case.

Irisa,

Symbolic Determinisation of Extended Automata 21

e otherwise, o9 is a strict prefix of o, and we have the decomposition o = modify;(t}) - o1 - o2,
with last(o1) = ti2, and o9 is nonempty (otherwise the whole sequence would terminate by
t1,2, prohibited in (i)). Hence, we also have first(o2) = modify;(t;) for some ¢ € follow(t;) and
j = 1,2, because 1 2 may only be followed by such transitions. Overall, o = modify;(t;)- o} - t1 2
modify;(t;) - 03, hence, (o) = t; -ty - p(a]) - t; - t; - p(03).

modify; (t;) o

o ;-
Assume now ((O, (dtladt2>>, V> _>det2(8,t1,t2) q,1.e., <<O, <dt13dt2>>’ V> — deta(S,t1,ts) q1 4cietg(zs‘,tl,tg)
t1,2 - modify]-(t;-) i ,
q2 = deto(S, t1,tz) 43 Tdets(S, t1,t2) 4 for some states qd1,492,43-

— by induction hypothesis, (o, v) Ly qi (p(—[f)l)s g2. Note that the conditions for applying the
induction hypothesis hold: as o = modify;(;) -0} -t1,2-modify;(t;) 05, we have last(0]) # t1,2
(otherwise o would contain the subsequence ¢; 2 -1 2, impossible since ¢; 2 is not a self loop),
and o (modify;(t;) - 01) = ti - ;- (7).

’

tj -t
— by Lemma 2 item (i), g2 —’s g3,

— and by statement («) established in the proof of Lemma 4, g3 @(;)'2)3 q'. Note that the

conditions for applying the statement hold: as o = modify;(t;) - o} - t1,2 - modify;(t;) - 05, we
have last(o)) = last(o) # t12 and ¢3,¢" € Qpsy (as the locations of g3, ¢' cannot be the new
location (o, (d,,dt,)), because the target of modify;(t;) cannot be this new location - ¢ 5 is
the only transition with destination (o, (d¢,,ds,)), and last(c}) # t12).

Overall, from ({0, {ds,,ds,)),) Zietn(s. by,) @5 that is, from

! !

modify; () o t1,2 - modify; (t}) a '
((07 (dtlvdt2>>7 V) — dets (S, t1,t2) q1 %efz(S,tl,tz) q2 — deta(S, t1,t2) 43 %EtZ(SatlatZ)q)
we have obtained
vl ele) e el
(o,v) ='sqn = 'sq@ s =~ s,

that is,
(o,v) Wg)s q’, and (i) is proved.

We now prove (ii). If last(o) = t12 then 0 = o' - t1 2 and last(o’) # t1 2, because the new transition

t1,2 is not a self-loop: its origin is in Ls and its destination is the new location (o, (d;,,ds,)) ¢ Ls.
;12

Now, let ¢’ be the state such that ({0, (ds,,ds,)),v) i>det2(s,t1,t2) 0 ey, 0y, As last(o’) # 19,

we can apply the result (i), proved above, and obtain (o,v) (p(—i)5 q', which can be also written as

(o, v) (p(—g>)5 q W(EFQ)S ¢, because ¢(t;2) = e. Hence, (o,) Wg)s, which concludes the proof of (ii).

Finally, we note again that, for all o € T, s.,..,) Starting in the location (o, (d,,dy,)), first(o) =
modify;(t}) for some t; € follow(t;), i = 1,2, and therefore first(p(o)) € {t1,t2}. Using (i), (ii), and the
above observation, we conclude p(seqq, 4, 4.,y 0 (det2(S, 1, t2), w)) C seqq, (S, a-w), where a is the
common action of #1, 3, and the proof is done. O

Lemma 12 For allv € V,w € ¢ (m > 1), and 01,02 € seq (o (a,, 4,1, 0y (det2(S, t1, 2),)

first(ov) # first(oz) = (first(p(o1)) # first(p(o2)) V snd(p(01)) # snd(p(02)))

Proof : As they start in (o, (d¢,,dy,)), the first transitions of o1, oy are one of the modified transitions
following the new transition £, 2. We then have the following cases:

L. first(o1) = modify, (t)) and first(o2) = modify, (t]) for some t},t] € follow(t;). By hypothesis,
first(o1) # first(oz), hence, t| # . Then, p(o1) = t1 -t} - p(rest(o1)), and @(o2) = t1 -t -
p(rest(o2)), and we have snd(p(o1)) = t) # t] = snd(p(02)).

PI nl1776

22 Thierry Jéron , Hervé Marchand , Viad Rusu

2. first(o1) = modify,(th) and first(oo) = modify,(ty) for some t},t5 € follow(tz): this case is similar
to the previous one.

3. first(o1) = modify, (t}) and first(o2) = modify,(th) for some #| € follow(t1), t}, € follow(tz). Then,
(o) = t1 -t - p(rest(o1)), and @(og) = ta - th - p(rest(oz)), and we have first(p(o1)) = t1 # ta =
first(p(02)).

4. first(oy) = modify3(th) and first(oo) = modifys(th) for some t}, € follow(ts), t} € follow(t1): this
case is similar to the previous one, and the proof is done. a

Corollary 2 Vn € N ((o,(d,,ds,)) has lookahead n in dety(S,t1,t2)) <= ((o has lookahead n + 1 in
S) A (dy, has lookahead n in S) A (dy, has lookahead n in S)).

Proof : The property has the form A < (B A C A D); we prove A = (=B V =C V —D) using
Lemmas 11, 12. For this assume (—=A): (o, (d,ds,)) does not have lookahead n in dety(S,11,12)).
Then, by Definition 9, there exists a valuation v € V such that the state ¢ = ({0, (d¢,,dy,)),) does
not have lookahead n in dety(S,t1,t2)). By Definition 8, there exist 01,09 € 7:,2?;(13,,&1,,&2) such that
trace(oy) = trace(oy) = w for some w € 2T ¢ B st @ Bieras.tr.ee), and yet first(oy) #
first(o3).

By Lemmas 11, 12, there exist 0] = ¢(01),05 = @(02) € seq, ,,(S,a - w) with first(c}) # first(c)
or snd(0y) # snd(ah). 05,0y € seq, ,,(S,a-w) also implies that trace(o}) = trace(oy) = a-w, and the
length of of, 0} is n + 2.

o if first(o)) # first(ch), o}, ol are witnesses for o does not have lookahead n+ 1 in S (i.e., =B)

e otherwise, if first(o}) = first(oh) but snd(o}) # snd(ol), then either first(o}) = first(ol) = ¢, or
first(o)) = first(o) = to. Then, snd(c) # snd(c)) means that rest(c!), rest(o}) are witnesses
for the property d;, or dy, do not have lookahead n in S, i.e., (=C'V —=D). a

Corollary 3 look({o, (d¢,,ds,)), deta(S, t1,t2)) < max{(look(o,S) — 1), look(ds,, S), look(ds,,S))}.

Proof : Let n; = maxz{(look(o,S) — 1), look(dy,,S), look(d,,S)}. Corollary 2 has the form Vn. B(n) A
C(n) AD(n) = A(n). By Definition 9, B(ny),C(n1), and D(n;) all hold, hence, by Corollary 2, A(n)
holds, and using Definition 9 again, look((o, (d¢,,dy,)), deta(S, t1,t2)) < n;. O

Corollary 4 look((o, (d¢,,ds,)), deta(S, t1,t2)) < look(S) , and look({(o, (d¢,,d,)), deta(S, t1,t2)) < look(S)
holds if (o, (d,,dy,)) does not have inherited nondeterminism.

Proof : The first inequality is trivial using Definition 10 and Corollary 3. For the second one,
(0,(d¢,,ds,)) does not have inherited nondeterminism means by Definition 11 that look(d:,,S) =
look(d,,S) = 0. Then, Corollary 4 becomes look({o, (d¢,,dy,)), deta(S, t1,t2)) < look(o,S) — 1 which,
by Definition 10 is < look(S). O

Corollary 5 look(dety(S,t1,t2)) < look(S).

Proof : After determinisation, the new location (o, (ds,,ds,)) has smallest lookahead < look(S) by
Corollary 4, and the smallest lookaheads of all other locations are also < look(S) before determinisation
and did not grow afterwards (Lemmas 7, 9). Hence, for the mazimum look(detz(S,t1,12)) of all those
values, look(dets(S,t1,t2)) < look(S) holds. O

Irisa,

Symbolic Determinisation of Extended Automata 23

The last two propositions in this section are stated in the paper, where they were directly used for
proving termination of the global determinisation procedure. We prove them below:

Proposition 1 (look() does not grow with determinisation) look(det(S,1)) < look(S).

Proof : Direct consequence of Corollary 5.

Proposition 2 (look() decreases if all new nondeterminism is created) Let S’ be an automaton
obtained by determinising all nondeterministic locations {l1,...lx} of an automaton S in an arbitrary
order, (i.e., So =8, Vi < k—1,8;11 = det(S;,1;), and 8" = S};). If none of these local determinisation
steps gave rise to inherited nondeterminism, then look(S') < look(S).

Proof : After determinisation, the set Lg. of locations is partitioned into three sets:
e the original nondeterministic locations {li, ...}, now deterministic, with look =0
e the original deterministic locations Ls \ {l1,...lx}, with look =0

e the locations in Lg \ Ls generated in the determinisation process, which are either deterministic
(with look = 0) or have created nondeterminism, and hence, using Corollary 4, have smallest
lookahead strictly smaller that look(S).

Overall, the maximum look(S’) of these values satisfies look(S') < look(S). O

This concludes the proof of the fact that bounded lookahead is a sufficient condition for termination
of our determinisation procedure.

7.3 Lemmas for the necessary condition

We now turn to proving the fact that bounded lookahead is also a necessary condition for termination
of our determinisation procedure. The main result in this section is Proposition 3, which is used in the
paper to prove the necessary condition. We first prove two technical lemmas.

Lemma 13 Consider two distinct transitions t1,ta € Ts with common origin o, a state (0,v) € Qsy, @
word w € XY (n > 2), and two sequences 01,09 € seq, (S, w) such that first(o) = t1, first(os) = ta.
Let o) £ rest(h(o1)),0h = rest(h(02)), where h is the function from Definition 16. Then, o}, 0b €

seq“o,(dtl,dw)’U>(det2(8,tl,tg), rest(w)), and first(o}) # first(c}).

Proof : As 01,09 have length > 2, we have o1 = t1 - t] - o] and o1 = t9 - t}, - 0, for some transitions
ty € follow(ty), ta € follow(t2), and sequences of transitions o, of. By definition of h, h(oy) =
t1,2-modify, (t)) -h(oh) and h(o2) = t1 2 modify,(t,) - h(cl) Then, as o} £ rest(h(a1)), 0l = rest(h(03)),
we have first(c]) = modify, (t}) and first(ol) = modify,(t,), which are distinct identifiers whenever 1, to
are distinct. This proves the second part of the lemma.

t1-t) ol ,
Also, from oy € seq,, ,,(S,w) we obtain that (o, v) SN ¢ —s ¢} for some states ¢}, q]. Using
- mods ! h(a"

Lemma 2 and the definition of h, we have (o, v) e —d>fy1(;iz2(s,t1,t2) q; (£>12,et2(3,t1,t2) ¢y, which can be
rewritten as (o,) tl—'éetz(s,tl,m q %etz(s,tl,t2) ¢!, where o = modify, (t}) - h(o}) and, since ¢; » performs
identity assignments, the state ¢ = ({0, (d¢,, ds,)), v).

This implies 0] € seq((,, 4,, 4,1y, (d€t2(S, 1, t2), rest(w)). The same reasoning can be used to prove
Th € S€q (o, (4, dry 1y, vy (dEE2(S, 11, 12), rest(w)). O

Lemma 14 Consider two distinct transitions t1,ta € Ts with common origin o, a state (0,v) € Qsy,
a word w € X% (n > 2), and two sequences 01,02 € seq, (S, w) such that first(o1) # first(o2), and
at least one of first(o1), first(oa) does not belong to {t1,t2}. Then, first(h(o1)) # first(h(o2)).

PI nl1776

24 Thierry Jéron , Hervé Marchand , Viad Rusu

Proof : Assume first(oy) & {t1,t2}. Then, first(h(o1)) = first(o1) ¢ {t1,t2}. Then, either first(oy) ¢
{t1,t2} and then first(h(o2)) = first(og) # first(o1) = first(h(o1)) and in this case the lemma is proved,
or first(og) € {t1,t2}, in which case first(h(o2)) = t12, which is also different from first(h(oy)) =
first(o1) as t12 ¢ Ts but first(h(o1)) = first(o1) € Ts. O

Proposition 3 look(deta(S,t1,t2)) > look(S) — 1.

Proof (Sketch). We base the proof on the following Claim: Vn € N U {oo}, if dety(S,t1,%2) has
lookahead n then S has lookahead n+1. For assume the Claim holds, and let ng = look(det2(S, t1,t2)),
then, dets(S, t1,t2) has lookahead ng, hence, by the Claim, S has lookahead ng+1, and then look(S) <
no + 1 = look(det2(S, t1,t2)) + 1, and our Proposition is proved.

We now establish the Claim. It turns out that it is easier to prove the equivalent statement:

Vm € NU {oo}, if S does not have lookahead m + 1 then dets(S,t1,t2) does not have lookahead m.

We first consider the case m = oo. The statement then says that if S has finite lookahead then so does
dets(S,t1,t2), and this is a consequence of Proposition 1 above.

The remaining case is m € N. Assume then the left-hand side of the implication in our statement
holds. Then, 3¢ = (I,v) € Q5. Jw € Y72 351,09 € seq,(S,w). first(o1) # first(oz).

Using the direct function h (cf. Definition 16), we obtain the sequences o] = h(o1), o = h(o2)
which, by Lemma 3, are in seq,(detz(S,t1,12),w). We distinguish several cases, depending on the
location [in the state (I, v):

e if | # o (where o is the common origin of transitions #¢1,%2) then, by Lemma 5, first(c]) #
first(oy), which, together with 07,05 € seq,(det2(S,t1,12), w) implies that ¢ = (I,) does not
have lookahead m + 1 in dety(S, t1,t2), hence, ¢ does not have lookahead m either, which implies
that dety(S,t1,t2) does not have lookahead m, and the statement is proved in this case.

e if [= o, then we have again two subcases:

— if {first(o1), first(o2)} = {t1,t2}, then consider the sequences of = rest(h(o1)), of =
rest(h(o2)). By Lemma 13, 0,05 € seq, (, 4,y »(det2(S,t1,12),w') and first(o]) #
first(ch), where w' = rest(w). Hence, we have two executable sequences of length m + 1
starting from a state of dety(S,t1,t2) with same trace w’. This implies that dety(S,t1,t2)
does not have lookahead m, which proves our statement in this case.

— if {first(oy), first(o2)} # {t1,t2}, then, by Lemma 14, first(h(o1)) # first(h(o2)). Hence, we
have two executable sequences h(oy), h(oz), which differ on their first transition, starting
from (o, v), of same trace w, and length m + 2. This means that dety(S,t1,%2) does not have
lookahead m + 1 and then it does not have lookahead m either - the statement is proved in
this case as well and concludes the proof. O

Irisa,

