N

N

Complexity of Master-slave Tasking on Heterogeneous
Trees

Pierre-Francois Dutot

» To cite this version:

Pierre-Francois Dutot. Complexity of Master-slave Tasking on Heterogeneous Trees. European Jour-
nal of Operational Research, 2005, 164 (3), pp.690-695. inria-00001076

HAL Id: inria-00001076
https://inria.hal.science/inria-00001076
Submitted on 1 Feb 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00001076
https://hal.archives-ouvertes.fr

Complexity of Master-slave Tasking on
Heterogeneous Trees

Pierre-Francois Dutot
ID-IMAG, 51 avenue Jean Kuntzmann
38330 Montbonnot Saint Martin, France
Pierre-Francois.Dutot@imag.fr

November 14, 2003

Abstract

In this paper, we consider the problem of scheduling independent iden-
tical tasks on heterogeneous processors and network, where processing
times and communications times are different. We assume that communi-
cation-computation overlap is possible for every processor, but only allow
one send and one receive at a time. In this model, we prove that schedul-
ing on a tree network is NP-hard in the strong sense, reducing the problem
to the well-known 3-partition problem.

1 Introduction

Parallel computation on heterogeneous platform is one of the most important
issue in high performance computing nowadays. Famous parallel applications
such as SETI@home [9] or the Mersenne prime search [8] are using a wide variety
of commodity computing resources to extend as much as possible the pool of
volunteers they depend on.

In this paper we deal with the problem of scheduling independent unit ex-
ecution time (UET) tasks, as used in the previously cited applications, on a
sub-class of “grid” computing platform where communication links and compu-
tation nodes may be of any kind, and therefore have different speeds.

This work is also related to divisible tasks as first introduced by [5]. Rober-
tazzi et al studied many variations around this topic for divisible tasks. In [1]
they first studied the homogeneous tree problem. Then in [10] they looked at
the bus problem which is identical to a fork graph with homogeneous communi-
cations and heterogeneous computations times. They also recently worked [4] on
star graph with heterogeneous communications and computations times. The
main difference is that we are working with quanta of workload whereas a di-
visible task can be split in fractions of any size.

This problem has already been adressed in [2] for the special case of fork
graphs. The steady state for trees is also studied in the same paper. Some
of the authors of [2] also wrote a research report [3] with a good bibliography
covering many similar problems. In some previous work I also adressed other
subclasses of trees, such as chains or spiders giving polynomial algorithms [6].

Up to now, the limit between hard problems and polynomial problems has only
been looked at from the side of the polynomial problems. This paper is the
result of an attempt to look at the limit from the other side. We prove that the
problem of scheduling independent identical tasks in the one-port master-slave
paradigm is NP-hard in the strong sense on trees.

In the next section we present the model and the definitions used in the
proofs. Section 3 recalls the well known 3-Partition problem used in the reduc-
tion. The reduction itself is presented in section 4. Some possible future work
on this problem is given in the conclusion.

2 Modeling of the platform

The problem studied here is the scheduling of identical independent tasks on
a heterogeneous platform where the network and the processors have different
speeds. The interconnection graph of the processors here will be a tree. There-
fore each processors may have one or more descendant, but only one parent.

The one-port assumption forbids any processors to send two tasks at the
same time (even on different communication links) or to receive two tasks at
the same time. However a processor can at the same time receive one task while
sending another one to one of its children.

The example provided in figure 1 shows how a schedule can be written. In
this example, four tasks are scheduled on a simple tree made of three processors.

The tree is shown on the left of the figure. The numbers in the circles are the
computation times associated with the nodes. It is the time it takes for a task
to be executed on the node. The numbers on the edges are the communication
times. They represent the time needed to send one task using the labeled link.
The master node is the node without number as it cannot compute.

01 2 3 456 7 89

Figure 1: A tree (left) and a schedule (right)

On the diagram, vertical dotted lines are time units, horizontal dashed lines
are related to nodes. The horizontal arrows are the execution of the tasks, and
the oblique ones are the communications. This kind of settings will be used in
the diagrams describing the scheduling in the following sections. Representing

arbitrary trees with such diagrams can be painful, hopefully the trees that will
be used in the reduction have readable diagrams.

In this example, one can see that the “one-port” constraint is respected since
each communication leaving the master node is not started before the previous
one ended.

Between time instant 2 and 3 one can see that processor P; receives a task,
computes another task and sends a third one. We can also see that the com-
putation of the second task on processor P; has been delayed to allow for the
completion of the first task.

In this model, it is usually assumed that every node has an unlimited buffer
capacity. However the proof is still valid if all the nodes have a buffer of size
one.

3 The problems

3.1 3-Partition

The proof in this paper is based on a reduction from the well known problem of
3-partition [7]. In this section we will briefly recall the 3-partition problem and
present the modified version that will be used in the rest of the paper.

Definition 1 3-partition
Let S and n be integers, and let (y;)
and for all i, % <y < g
The question is “Can the set of y; be partitioned into m disjoint sets S1, Sa,
.., S such that for 1 <1< m, ZyESi y=.95 2.

ic1..3n be 3n integers such that Zf’zl yi = nS

Theorem 1 The 3-partition problem is NP-complete in the strong sense.

In all the following we will use the numbers z; = $S+% where the (y;);c; 3,
are from an instance of the 3-partition problem. One can easily prove that a
solution of the search problem associated with the 3-partition problem for the
(Yi);e1..3, vields a partition of the (2;);c; 4, where the sum of every triplets is
exactly %S . And conversely a partition of the (x;) in triplets of sum %S
gives a solution to the 3-partition search problem.

The reason behind this transformation is that now for all ¢+ we have 3%8 <

z; < %S . This property will be very useful in the reduction.

1€1..3n

3.2 MSTHT

Here is the formal presentation of the Master-Slave Tasking on Heterogeneous
Trees (MSTHT) problem.

Definition 2 MSTHT
Let T=(V,E) be a tree. Let vy in V be a special vertex called “Master node”.
For all the other vertices v; in V, let w; be the computation cost. For all edges
e; i E, let ¢; be the communication cost. Finally let n be a number of tasks and
D be a deadline.

The decision problem MSTHT answers the question “Is it possible to schedule
n tasks before the deadline D 27.

4 Reduction

The tree used for this reduction is presented in figure 2. The MSTHT problem is
to schedule 4n tasks with a makespan smaller or equal to D = E4+nS+ %, where
E stands for “enormous”, typically something greater or equal to (n+1)S. The
master node of the tree is linked to a distribution node by a link which sends a
task in % units of time. The distribution node is too slow to compute (2E > D)
and therefore has to distribute the tasks either to one of the p; processors with a
communication time x; and a computation time F or to one of the processors Q);
with a communication time % and processing time E + iS. Another interesting
property is that no processor can compute two tasks sequentially as all the

computation times are greater or equal to E (and again as 2E > D).

Master

Distribution & 2E

E E E E E E+(@©n1)S E+S E
Pl P2 Pl P3n— 1 P3n Qn—l Ql QO

Figure 2: Tree used in the reduction

Here is an introductory explanation of the motivations behind this structure.
To use the 3-partition problem in scheduling, usually one needs to create (iden-
tical) slots of a resource to be filled with three independent tasks. As the tasks
are identical here, the 3n different numbers cannot be replaced by tasks with
different execution time. However, the time resource is shared by the different
communication links. The goal of the reduction was therefore to create a struc-
ture where several time slots of the same size were shared among the possible
communications. The communication links to the processors @); are designed to
be the hedges between the time slots.

4.1 From 3-partition to a schedule

Let us first show that if we have a solution to the 3-partition problem, we have
a valid scheduling of 4n tasks within % +n* S+ E time units.

For convenience, the x; will be ordered as in the 3-partition solution (i.e.
T3j41 + T3j42 + T3j43 = %S for j € 0..(n — 1)). Here is how the scheduling is
made :

1. Fully load the first link from the master. Sending one task every % units
of time, the 4n tasks are sent in n.S units of time.

2. From the distribution node send in order of arrival as soon as possible :

e Task 45 + 1 on the link x3;41 for j € 0..(n — 1)
e Task 45 + 2 on the link x3;42 for j € 0..(n — 1)
e Task 45 + 3 on the link x3;43 for j € 0..(n — 1)

e Task 47 + 4 on the link g going to processor @), _; of execution time
E+(n—j)Sforje0.(n—1)

The corresponding diagram is given in figure 3 for the example case where
n=2,8=15, (x1,x2, 3,24, T5,26) = (4,4,7,4,5,6)

As we supposed that each triplet (x3j41, 3542, Z35+3) is exactly of sum gS,
the total communication cost from the distribution node for the tasks 45 + 1 to
47+ 4 is exactly S. Therefore if there is no idle time on the communication link
from the distribution node, all 4n tasks can be emitted before time % +n=x*S.

As x; = % + % at the end of all the x; communication, the following task is
ready to be sent. The communications going to the processors @); end exactly
when the following task is ready. Therefore the scheduling described earlier has
no idle time on the communication link leaving from the distribution node.

Every processor Q; receives its task at time £ + (n — 1) * S and starting its

1
computation immediately, finishes just in time.

4.2 From a schedule to 3-Partition

In this section we will show that any schedule of 4n tasks within % +nS+FE
units of time is related to a 3-partition and has an execution diagram similar to
figure 3.

As stated earlier, the computation times of all the processors only allow one
task to be done on each processor (since 2E > D). So all processors have to be
used. Moreover, the communication cost below the distribution node imply that
there is no idle time between the % time instant and the % + nS time instant,
as the sum of all the values of the links is exactly n.S, the smallest computation
time is £ and the first task is only available after going through the link % from
the master.

Let us now focus on the processor (J,,—1 and prove some properties of the
task assigned to this processor.

Lemma 1 The task assigned to processor Q,—_1 is one of first four task sent by
the master.

As the computation time of Q,_1 is E + (n — 1), if a task is scheduled on
this processor, it has to arrive at most at time gS on the processor. The ith
task cannot arrive before the time instant i% + %, hence the task scheduled on

Q—1 has to be one of the first four tasks. O
Lemma 2 The first three tasks are alloted to three of the P; processors.

As stated before, the communication link going out of the distribution node
has to be fully occupied in order to schedule 4n tasks within the given time
bound. We first show that this is possible with the first three tasks alloted to
three of the P; processors. The communication costs x; are all greater than ?%S .

Figure 3: Scheduling 8 tasks using 3-partition

Therefore when a task is sent to a P; processor, the time needed to send it is
bigger than the time needed to get the next one from the master (as ?%S > 19).
Thus there may be no idle time in the communication link if we send the first
three tasks to three P; processors.

However if we send at least one of the first three to one of the Q; processors,
one communication will be of length %S . The other two communications are
strictly smaller than %S . The communication time of the three tasks is then
strictly smaller than 2 (5 S)+ S = 3.5 which means that either there is some
idle time before or between the first three communications, or that the fourth
task is not ready when the third communication is completed. U

The combination of these two lemmas states that the task alloted on pro-
cessor (Q,_1 is the fourth emitted from the distribution node.

Lemma 3 The communication time used by the first three tasks is exactly gS.

The execution time of processor Q,—; imply that the fourth task arrived
before the time instant gS , which means that the communication time used by
the first three tasks is at most gS units of time. As the fifth task arrives on the
distribution node no sooner than the time instant %S , and as there is no idle
time on the communication link of the distribution node, the first four tasks
have a total communication time of at least S. As the communication cost of
the link going to @, -1 is %, the communication time of the first three task is
at least %S . O

Theorem 2 Scheduling 4n tasks within % +nS + E units of time on the tree

gives a solution to the associated 3-Partition problem

We just proved that the first three tasks were associated with a triplet of
sum exactly %S . This property can be recursively proved for rest of the sched-
ule, associating tasks 45 + 1, 45 + 2 and 45 + 3 to three P; processors with
communication times of sum %S, and task 4j + 4 to processor Q,—1—;. Hence
a schedule of 4n tasks within % + nS + E time units on such tree network of
processors is made with n triplets of sum %S . Those n triplets are the solution

to the modified 3-Partition problem. O

5 Conclusion

As we said in the introduction, the sub-problems of the fork-graphs, the chains
and the spiders are all polynomial. Proving the general tree structure to be NP
difficult closes the complexity study for the problem of identical tasks in the
master /slave one-port computation model. We can also note the fact that what
makes the problem difficult here is that there is a fork node which is not the
master node. The only trees where only the master is allowed to be a fork node
are spider graphs. Therefore there is no other subclasses of trees left to consider
between the problems known to be polynomial and those known to be NP hard
in the strong sense.

Further complexity studies can be done on the special case where the degree
of the tree is fixed, as this case is not covered by this proof. Practical problems

of binary trees for example might be polynomial. Another approach related to
complexity is the study of inapproximability.

On the practical side the next step is to define efficient heuristics on trees
and more general heterogeneous platforms. Some heuristics have already been
published as in [2]. With the results on the spider graphs, those heuristics can
now be compared to the optimal for the spider structure. This comparison gives
an idea of the performance ratio on other structures (at least it gives a lower
bound on the ratio).

Finally the model can be modified to be closer to real computation platforms.
Two usual modifications are latencies between communication and strictness
of the one port model. In the “strictly one port” model a node cannot send
and receive at the same time. For both of these modifications, the complexity
remains NP-hard in the strong sense (see the proofs in appendix A).

References

[1] Sameer Bataineh, Te-Yu Hsiung, and Thomas G. Robertazzi. Closed form
solutions for bus and tree networks of processors load sharing a divisible
job. IEEE Transactions on computers, 43(10):1184-1196, October 1994.

[2] O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Y. Robert.
Bandwidth-centric allocation of independent tasks on heterogeneous plat-
forms. In International Parallel and Distributed Processing Symposium,
2002. Technical report avalaible at http://www.ens-1lyon.fr/~yrobert.

[3] O. Beaumont, A. Legrand, and Y. Robert. Static schedul-
ing strategies for heterogeneous systems. Technical Report 2002-
29, Ecole Normale Supérieure de Lyon, July 2002. Avalaible at
http://www.ens-1lyon.fr/~yrobert.

[4] Saravut Charcranoon, Thomas G. Robertazzi, and Serge Luryi. Optimiz-
ing computing costs using divisible load analysis. IEEE Transactions on
computers, 49(9):987-991, September 2000.

[5] Y.C. Cheng and T.G. Robertazzi. Distributed computation for a tree net-
work with communication delays, volume 24, pages 700-712. 1988.

[6] P.F. Dutot. Master-slave tasking on heterogeneous processors. In Inter-
national Parallel and Distributed Processing Symposium. IEEE Computer
Society Press, April 2003.

[7] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-completeness. W.H. Freeman and Company, San Fran-
cisco, 1979.

[8] Mersenne Prime Search.
URL: http://www.mersenne.org.

[9] SETT at home.
URL: http://setiathome.ssl.berkeley.edu.

[10] Jeeho Sohn, Thomas G. Robertazzi, and Serge Luryi. Optimizing comput-
ing costs using divisible load analysis. IEEFE Transactions on parallel and
distributed systems, 9(3):225-234, March 1998.

A Extending the model

The model presented in this article can be refined in many ways to come closer
to a real execution platform. Two usual modifications involves communication
latencies and the impossibility to receive and send at the same time (one-port
strict). Hopefully the NP-hardness proof can be extended to these two modi-
fication to the model. A short summary of the changes needed is given in the
two following sections.

A.1 With latencies

In a model where there is a latency between two communications on the same
link, it can be interesting to group several communications to pay the latency
cost only once.

Let [be the latency before starting a communication. First, we will consider
only small latencies (I < %) We can change the tree presented in figure 2 by
removing this value [to all communication costs. This small change makes the
scheduling represented in the diagram 3 feasible with latencies (the time needed
by the latency plus the communication is the same).

What we need to look at in details is if this scheduling is still the only one
possible, i.e. if a solution to MSTHT is still necessarily related to a solution of
3-partition.

Let us prove that grouping communications is not interesting in our prob-
lem. First we can remark that after the distribution node, the tasks cannot
be grouped as at most one can be done on any node. Therefore the grouping
problem arises only for the communications from the master to the distribution
node. As before the total communication time needed from the distribution
node to the execution nodes is nS if all the 4n tasks are scheduled. With the
chosen deadline D = E + nS + S/4, this is only possible if the first task is
available at time instant S/4 as the smallest execution time is E. Which proves
that the first task is sent alone.

The second task has to be available when the first reemission from the dis-
tribution node is over. However this reemission cannot exceed %, as the z; are
bounded by this value. Let j be the number of tasks sent with the second one,
we have :

S 55
. Qo < 22
LHix(g-D=15
and
.S .S , .S , S .35 S

which yields:
16 55 S 4

1<35"96 " 16 73
Which means that the second task is also emitted alone.

For the third task, the reemission of the first and second tasks takes at most

105 o4 this time we have:

16

S L4 S I < 10S

R ke
Which leads to j < 5/3 and proves that the third task is emitted alone. Again,
for the fourth task, the reemission of the first three is no longer than %, leading
to j < 6/3 = 2, proving that the fourth one was also emitted alone.

This is obviously the last task for which this technique can be extended.
However, as we proved that the first four tasks were emitted alone, the proofs
of the lemmas still hold. Processor @,,—1 has to compute the fourth task and
the first three are distributed to three P; processors such that the total commu-
nication time is exactly %.

As in the proof of Theorem 2, a recursion proves that every communication
time x; belongs to a triplet of sum %.

For larger latencies, the trick is to force the grouping of communications
in a way which will lead us back to long communications with small latencies.
Every computing node can be transformed into a fork with k nodes, and the
communications values can be changed, such that all tasks to be computed on
one sub fork have to arrive at the same time (to avoid paying twice the latency
at the distribution level). Therefore the grouping of size k is imposed and the
latency can be made arbitrary small compared to k times the communication

time.

A.2 Without communication parallelism

In this modified model, a processor may only send or receive a task. This
is often considered a more realistic model as most computers have only one
communication card. However this modification does not make our problem
easier, as we can also prove the NP-hardness of scheduling on trees.

This proof is very close to the main proof of the paper, but requires a mod-
ification of the tree used in the reduction. To replace the communication par-
allelism we have to introduce some nodes between the master node and the
distribution node. These nodes have fast communication links, in order to re-
duce the impact of their presence on the communications of the master node
and of the distribution node.

Master Distribution

N @o@o@<

Figure 4: Tree with communications of length zero

el

Ideally if we can have communications of length zero units of time, the
inserted nodes are as shown in figure 4. There is two inserted nodes, as the first
link of length zero can only be used between two receptions from the master and
the second one can only be used between two emissions from the distribution
node. The diagram 3 clearly shows that on the distribution node, the end of a

10

reception is not always at the same instant as the end of an emission from the
distribution node to one of the computing nodes.

This transformation using links with cost zero can be generalized to any node
to change the graph representation of a platform where communication paral-
lelism is allowed into a graph representation where communication parallelism
is forbidden. This transformation is illustrated in figure 5.

Cin
()
Cin
0
w —_— (0.}

Cout

0

Cout

=

Figure 5: Changing a node into its equivalent in the strict model.

However one could argue that a communication of time zero is in conflict with
the assumption of one port communication, as several of those communications
could be done one after another and therefore give the impression that several
tasks are sent at the same time.

This is also the reason why there is no communications of time zero in the
reduction presented in section 4. Hopefully very small communication times
are sufficient provided that the communication links from the master node and
from the ditribution node are changed accordingly. The new tree is given in
figure 6. In this figure the z; are equal to z; — 3% for all 4.

The modifications on the communication links are the same than in the
latency model. In the figure 7, we provided the diagram of a schedule for the
example used in the figure 3.

The proof is also very similar, the main difference here is that we need to
prove that there are no conflicts between communications arriving to and leaving
from the second node inserted after the master.

The communications arriving to this node occupies the node communication
capacities during the time instants ¢ x % — 3% to 4 * % for all ¢ between 1 and 4n.
The communications leaving from this node are from (for all j between 1 and
n):

oj*%toj*%—i-g%fortaskélj—?)
oj*%—f—mkj>j*%+g—gtoj*%+xkj+3%<j*%—|—131—23f0rtask4j—2

c. S _ .S - .S 78S 108 _
© GG TRy F Tk = TG A (T F Tk F k) Tk, > R Y =

11

Master

s _ s
4 32

2E

32
2E

32
Distribution & 2E

E E E E E E+(@©n1)S E+S E
Pl P2 Pl P3n— 1 P3n Qn—l Ql (QO

Figure 6: Tree with non zero communications

s S 18S - S S _ ;.8
j*z—i—g_?toj*ztgkj —gsxkjﬂ+3_2_3*Z+(xkj+xkj+1+xkj+2)_

xkj+2+3%<j*§+?—3—2+3%:j*§+2§—25fortask4j—1
* j*%+$kj+$kj+1+$kj+2 :j*%""%toj*%+xk1+mk1+1+xk1+2+3% =
j*%+2§—25fortask4j

Let us define the projection in interval [0; S/4] of the real number r as p =
r+k=S/4 where k is a (possibly negative) integer. Looking at the projections of
the bounds we just gave, we have the receptions between 22 and % the emissions

32
between 0 and g—g, which proves that there is no overlap.

12

W]

]

I9)SeIN

Figure 7: Scheduling 8 tasks using 3-partition with the modified tree.

13

