
Universally Convertible Directed Signatures

Fabien Laguillaumie13, Pascal Paillier2, and Damien Vergnaud1

1 Laboratoire de Mathématiques Nicolas Oresme
Université de Caen, Campus II, B.P. 5186,

14032 Caen Cedex, France,
{laguillaumie,vergnaud}@math.unicaen.fr

2 Gemplus Card International, Cryptography Group
34, rue Guynemer, 92447 Issy-les-Moulineaux Cedex, France

pascal.paillier@gemplus.com
3 Projet TANC - INRIA Futurs
Laboratoire d’informatique (LIX)

École polytechnique, 91128 Palaiseau cedex, France

Abstract. Many variants of Chaum and van Antwerpen’s undeniable
signatures have been proposed to achieve specific properties desired in
real-world applications of cryptography. Among them, directed signatures
were introduced by Lim and Lee in 1993. Directed signatures differ from
the well-known confirmer signatures in that the signer has the simultane-
ous abilities to confirm, deny and individually convert a signature. The
universal conversion of these signatures has remained an open problem
since their introduction in 1993. This paper provides a positive answer
to this quest by showing a very efficient design for universally convertible
directed signatures (UCDS) both in terms of computational complexity
and signature size. Our construction relies on the so-called xyz-trick ap-
plicable to bilinear map groups. We define proper security notions for
UCDS schemes and show that our construction is secure in the random
oracle model, under computational assumptions close to the CDH and
DDH assumptions. Finally, we introduce and realize traceable universally
convertible directed signatures where a master tracing key allows to link
signatures to their direction.

1 Introduction

Digital signatures were introduced to identify the source of digital data. In par-
ticular they are non-repudiable and universally verifiable. For centuries, seals
and handwritten signatures were attached to documents to indicate the issuer’s
identity. To determinate the authenticity of this identity, the original scripts
have to be validated in some sense. In the electronic world, however, the ease
of recopy and thereby distribution of digital signatures associated to the self-
authenticating property may pose a serious threat to the signer’s privacy. The
concept of undeniable signature was first addressed at Crypto’89 by Chaum and
van Antwerpen [12]. These signatures have the appealing property that a pur-
ported signature cannot be checked without the cooperation of the signer and
cannot be denied if the latter has indeed generated the signature. They have

found numerous applications in applied cryptography, but the obvious prob-
lem with this idea is that in any setting where the signer becomes unavailable,
nothing can be determined. Hence, Boyar, Chaum, Damg̊ard and Pedersen [7]
proposed convertible undeniable signatures which provide the additional feature
of converting (individually or universally) the undeniable signatures to ordinary
signatures. Another approach has produced various flavors of undeniable signa-
tures which may also be verified by interacting with an entity which has been
designated by the signer. Directed signatures introduced in 1993 by Lim and
Lee [21], (designated) confirmer signatures [11], or limited verifier signatures [1]
are among the best known examples. All of them, which we gather under the
generic name of delegated undeniable signatures, guarantee to the recipient of a
signature the ability to verify it, even when the signer cannot (or refuses to) do
so. Directed signatures find a prominent application in the realization of com-
plete peer-to-peer secure messaging systems and are a powerful tool to devise
protocols for contract signing [2] or verifiable signature sharing [15]. They pro-
pose an individual conversion operation, but up to now none of them provides
a mechanism for universal conversion1.

¿From a formal point of view, directed signatures and confirmer signatures
are quite similar, the only notable difference, apart from the signer’s ability to
convert signatures, being the real-world applications the authors had in mind.
In brief, a universally convertible directed signature scheme enjoys the following
properties. Assuming a signer A and a confirmer B, seen as registered users of
the system, A produces signatures that only B (and A her/himself) can verify.
Signatures of that type are called (A,B)-directed signatures. Now both A and
B have the ability to

– prove in a non-transferable way the validity or invalidity of an (A,B)-directed
signature to any other party.

– convert a given (A,B)-directed signature into a regular, universally verifiable
signature. This operation does not affect other (A,B)-directed signatures
and is carried out independently of the signed message.

– publish a universal trapdoor T by the means of which all (A,B)-directed
signatures become universally verifiable. The trapdoor has no impact what-
soever on (A′, B′)-directed signatures for (A′, B′) 6= (A,B).

These operations are independent and performed concurrently, meaning that A
and B do not have to interact with each other to achieve either one of these
operations.

The literature on confirmer signatures is inconsistent on whether the signer is
able to confirm and/or deny signatures. In the recent formalization of confirmer
signatures [9, 17], in order to protect the signer from a coercer, this ability is
delegated only to the designated confirmer. However, the signer’s ability to con-
firm, deny and sometimes convert signatures is requested or strongly desirable in
1 The limited verifier signature scheme, introduced in 1999 by Araki et al [1], provides

the universal conversion operation. However, this protocol was broken by Zhang and
Kim [23].

many contexts, and this is supported by a number of schemes (e.g. [11, 12, 21])
including directed signatures. Again, none of these supports universal conversion
of signatures.

Contributions of the paper. The main contribution of this paper is an effi-
cient and secure directed signature scheme featuring for the first time the uni-
versal conversion property. Our design relies on a simple observation known as
the xyz-trick [20] which applies to bilinear map groups and allows to realize new
cryptographic protocols achieving tradeoffs between authenticity and privacy.

We propose a security model for universally convertible directed signatures
that captures and extends the strongest notions of unforgeability and signa-
ture invisibility. We prove that our signatures are existentially unforgeable, in
the random oracle model, under chosen-message attacks with respect to a new
computational assumption closely related to the Diffie-Hellman assumption.

We also show that our signatures are invisible, in the random oracle model, in
a weak sense assuming the Decisional Tripartite Diffie-Hellman (DTDH) prob-
lem is intractable, and in a strong sense under a non-standard yet well-defined
assumption. The scheme supports many variations, and it is easy to achieve
invisibility under the DTDH assumption.

In addition to that, we introduce traceable universally convertible directed
signatures by which a (master) tracing key enables a Tracing Authority (TA)
to link signatures to their direction i.e. their issuer and confirmer (we also use
the term receiver). We realize the concept using an efficient variation of our
basic scheme. We show that the obtained signature scheme inherits the security
properties of the basic scheme and that the power conferred to the TA by the
tracing key is computationally limited to the tracing procedure.

2 Preliminaries

2.1 Bilinear group systems

Recently, bilinear maps have allowed the opening of a new territory in cryptogra-
phy, making possible the realization of protocols that were previously unknown
or impractical. We now recall the definition of bilinear group systems. In the
sequel, we make use of a bilinear group pair (G1,G2) for which there is an effi-
ciently computable isomorphism ρ from G2 to G1.

Definition 1 (Bilinear group system). A bilinear group system is a tu-
ple (q, P1, P2, gt,G1,G2,Gt, 〈·, ·〉, ρ) where q is a prime number, G1,G2,Gt are
groups of order q with efficiently computable inner laws, 〈P1〉 = G1, 〈P2〉 = G2,
〈gt〉 = Gt, 〈·, ·〉 : G1 × G2 → Gt is an efficiently computable map such that for
all (x, y) ∈ Z2, 〈xP1, yP2〉 = 〈P1, P2〉xy holds and 〈P1, P2〉 6= 1 and ρ : G2 → G1

is an efficiently computable isomorphism with ρ(P2) = P1.

Definition 2 (Bilinear group system generator). A bilinear group system
generator is a probabilistic algorithm Setup that takes as input a security param-
eter k and outputs a bilinear group system (q, P1, P2, gt,G1,G2,Gt, 〈·, ·〉, ρ)

$←−
Setup(k) such that q is a k-bit prime number.

2.2 Computational Problems in Bilinear Group Systems

Depending on its practical embodiment, a bilinear group system may or may not
provide an efficiently computable isomorphism from G1 to G2. In particular, ρ
may not be efficiently invertible. In this case, there is a computational separation
between problems defined over G1 and G2. For instance, the Decisional Diffie-
Hellman problem DDH [G2] on G2 is trivial since 〈ρ(xP2), yP2〉 = 〈P1, xyP2〉 for
any x, y ∈ Z∗q , but the same problem defined over G1 may remain somewhat
intractable. Several new computational problems of various flavors have recently
been defined over bilinear groups. We now give the definition of the complexity
assumptions we will be using in this paper.

Tripartite Diffie-Hellman (TDH): Let (q, P1, P2, gt,G1,G2,Gt, 〈·, ·〉, ρ) be a bilin-
ear group system. Given group elements (xP1, yP1, zP2)

$←− G2
1 × G2, compute

xyzP1 ∈ G1.

This computational problem is at least as difficult as the computational bilin-
ear Diffie-Hellman problem [6]. Similarly, Decisional Tripartite Diffie-Hellman is
defined as the problem of distinguishing the distribution of (co-)Diffie-Hellman
tuples {(xP1, yP1, zP2, uP1) | x, y, z

$←− Z∗q} from the uniform distribution over
G2

1 ×G2 ×G1:

Decisional Tripartite Diffie-Hellman (DTDH): Let (q, P1, P2, gt,G1,G2,Gt, 〈·, ·〉, ρ)
be a bilinear group system. Given group elements (xP1, yP1, zP2, uP1) ∈ G2

1 ×
G2 ×G1, decide whether u ≡ xyz (mod q).

The security of our signatures also relies on the following new computational
problem:

Flexible Square Diffie-Hellman (FSDH): Let (q, P1, P2, gt,G1,G2,Gt, 〈·, ·〉, ρ) be a
bilinear group system. Given xP2 ∈ G2, output a tuple (Q, xQ, x2Q) ∈ G3

1 for
some freely chosen Q ∈ G1.

Remark 1. Even though not really considered as classical, the KEA1 assump-
tion2 was introduced in 1991 by Damg̊ard [14]. Roughly speaking, KEA1 cap-
tures the intuition that any algorithm which, given a pair (P, xP) ∈ G2, computes
a pair (Q, xQ) ∈ G2 must “know” logP2

Q. It is easily seen that under KEA1,
the FSDH assumption is equivalent to a co-Diffie-Hellman assumption defined
over G1 and G2.

2 This assumption and some variants are formally analyzed in [3] and have been used
to prove that 3-round protocols were zero-knowledge.

2.3 Designated-Verifier Proofs of equality of two discrete logarithms

To make our security reductions complete, the executions of the confirm-
ing/denying protocols have to be simulated in the random oracle model. There-
fore we rely in the design of our scheme on a procedure allowing to prove in a
non-transferable way the equality (or the inequality) of two discrete logarithms
without revealing information on their value. We make use of non-interactive
designated-verifier zero-knowledge proofs [18] of equality of discrete logarithms
logα β = logg y. The notation is dvpk [x : β = αx ∧ y = gx], where α and g are
two elements of same prime order in their respective groups. We use the notation
dvpk [x : β 6= αx ∧ y = gx] for the dual proof of inequality. Designated-verifier
proofs form the basis of denying and confirmation protocols in many undeniable
and confirmer signature schemes in the literature. We refer the reader to [18] for
further details.

3 Universally Convertible Directed Signatures

3.1 Definition

Given an integer k, a universally convertible directed signature scheme DS with
security parameter k is formally defined by the following:

– generation of public parameters: DS.Setup is a probabilistic algorithm which
takes as input k and outputs public parameters (which include a description
of the signature space);

– key generation for signer A and confirmer B: DS.Signer.KeyGen is a proba-
bilistic algorithm which takes as input the public parameters and outputs a
signing key pair (pkA, skA). DS.Confirmer.KeyGen is a probabilistic algorithm
which takes as input the public parameters and outputs a confirmer key pair
(pkB , skB);

– key-registration: DS.Register is a protocol between a user and a “Key Regis-
tration Authority” which takes as input the public parameters and the user’s
public key pk, and outputs a pair (pk, notif) where notif ∈ {accept, reject}
is the registration authorization decision. The fact that a given public key
has been properly registered with the authority, is guaranteed by a signature
of it by the authority.

– signature generation: DS.Sign is a probabilistic algorithm which takes as
input a bitstring m ∈ {0, 1}?, the signer’s private key skA, the confirmer’s
public key pkB and the public parameters. The output bitstring σ is called
an (A,B)-directed signature on m;

– signature verification by confirmer B (resp. signer A): DS.Confirmer.Verify

(resp. DS.Signer.Verify) is a deterministic algorithm which takes as input two
bitstrings m and σ, the signer’s public key pkA, the confirmer’s private key
skB (resp. the signer’s private key skA, the confirmer’s public key pkB)
and the public parameters and checks whether σ is a valid (A,B)-directed
signature on m;

– confirming/denying protocols with confirmer B (resp. signer A):
DS.Confirmer.{Confirm,Deny} (resp. DS.Signer.{Confirm,Deny}) are protocols
between a confirmer (resp. a signer) and a third party which takes as input
two bitstrings m and σ, the signer’s public key pkA, the confirmer’s private
key skB (resp. the signer’s private key skA, the confirmer’s public key pkB)
and the public parameters. The output is a non-transferable proof that σ is
a valid or an invalid (A,B)-directed signature on m;

– individual conversion by confirmer B (resp. signer A): DS.Confirmer.Convert

(resp. DS.Signer.Convert) is a deterministic algorithm which takes as input a
bitstring σ, the signer’s public key pkA, the confirmer’s private key skB (resp.
the signer’s private key skA, the confirmer’s public key pkB) and the public
parameters, and outputs a bitstring σ̃B called a B-converted signature (resp.
σ̃A called an A-converted signature);

– verification of a B-(resp. A-)converted signature: DS.User.VerifyConfirmer

(resp. DS.User.VerifySigner) is a deterministic algorithm which takes as input
two bitstrings m and σ̃B (resp. σ̃A), the signer’s public key pkA, the con-
firmer’s public key pkB and the public parameters and checks whether σ̃B

(resp. σ̃A) is a valid B-converted (resp. A-converted) signature on m;
– generation of a universal trapdoor by confirmer B (resp. signer A):

DS.Confirmer.Trapdoor (resp. DS.Signer.Trapdoor) is a deterministic algorithm
which takes as input the signer’s public key pkA, the confirmer’s private key
skB (resp. the signer’s private key skA, the confirmer’s public key pkB), the
public parameters and outputs a universal trapdoor TA,B which makes it
possible to universally verify all (A,B)-directed signatures;

– universal signature verification: DS.User.Verify. is a deterministic algorithm
which takes as input three bitstrings m, σ and T , the signer’s public key
pkA, the confirmer’s public key pkB and the public parameters, and tells
whether σ is a valid (A,B)-directed signature on m.

Moreover, a universally convertible directed signature scheme must satisfy the
following (informally defined, precisely detailed in the next section) properties:
1. correctness: properly formed (A,B)-directed, A-converted and B-converted

signatures must be accepted by the verification algorithms;
2. unforgeability: it is computationally infeasible, without the knowledge of the

signer’s private key, to produce a directed signature that is accepted by the
verification algorithms or by the confirming protocols;

3. completeness and soundness: the verification protocols are complete and
sound, where completeness means that valid (invalid) signatures can always
be proven valid (invalid) and soundness means that no valid (invalid) signa-
ture can be proven invalid (valid).

4. invisibility: given a message m and a purported (A,B)-directed signature σ
on m, it is computationally infeasible, without the knowledge of the con-
firmer’s or the signer’s private key, to ascertain that σ is a valid (A,B)-
directed signature of m.

5. non-transferability: a user participating in an execution of the confirm-
ing/denying protocols does not obtain information that could be used to
convince a third party about the validity/invalidity of a signature.

3.2 Security Notions for Universally Convertible Directed
Signatures

Unforgeability against adaptive chosen message attacks. The de facto
standard notion of security for digital signatures was formalized by Goldwasser,
Micali and Rivest [16] as existential unforgeability under adaptive chosen
message attacks (EF-CMA). For universally convertible directed signatures,
the unforgeability security is defined along the same lines, with the notable
difference that the adversary can be any of the confirmers chosen by the signer.
Therefore, in the attack scenario, the forger A is allowed to request signatures
directed to any registered user of her choice (whose secret key might be known
to her). Besides, signer individual/universal conversion algorithms might also
leak information to the adversary. We therefore suppose that the adversary
knows the confirmers’ private keys, the associated signer-generated universal
trapdoors, and we allow her to request the individual conversion of any signature
of her choice. As usual, the forger has the natural restriction that the returned
forgery (including a message, a directed signature and a confirmer’s identity)
has not been returned by the signing oracle during the game.

Invisibility of signatures. The strongest security notion for undeniable and
confirmer signatures is the one of invisibility introduced by Chaum, van Heijst
and Pfitzmann in [13]. We precisely define the notion of signature invisibility
under adaptive chosen message attacks in our context, introducing two flavors
of invisibility, weak-Inv-CMA and Inv-CMA.

We consider an adversary A that runs in two stages: in the find stage, A
takes as input the public keys pkA and pk?

B , and outputs a message m? together
with some state information I?. In the guess stage, A gets as input I? and a
challenge signature σ? either formed by signing the message m? or chosen at
random in the signature space. Then A returns her guess as to whether σ? is a
valid (A,B)-directed signature on m? or not.

In the weak-Inv-CMA-model, the adversary has access in both stages to the
signing oracle Sign and to the confirming/denying oracle Confirm and Deny. In
the Inv-CMA-model, A is also given access to the individual conversion oracle
Convert, and to the universal trapdoor generation oracle Trapdoor. In both
cases, she is allowed to invoke these oracles on any message and any confirmer
of her choice with the restriction of not sending (m?, σ?, pk?

B) to the oracles
Confirm, Deny and Convert in the second stage and not sending pk?

B to the
oracle Trapdoor at any stage.

Let t ∈ NN, q = (qSign, qConfirm, qDeny, qConv, qTrap, qReg) ∈ [NN]6 and ε ∈
[0, 1]N. An algorithm A is a (k, t, q, ε)-forger (resp. a (k, t, q, ε)-distinguisher)
against DS if for all integer k, it runs in time at most t(k), makes at most
qSign(k), qConfirm(k), qDeny(k), qConv(k), qTrap(k), qReg(k) queries to the given or-
acles, and has forgery success (resp. distinguishing advantage) ≥ ε(k) against
DS with security parameter k.

4 Efficient Universally Convertible Directed Signatures

We now describe our first universally convertible directed signature scheme which
for readability is denoted again by DS.

Generation of public parameters
DS.Setup: Given a security parameter k, the public parameters are
(q, P1, P2, gt,G1,G2,Gt, 〈·, ·〉, ρ)

$←− Setup(k) as well as a hash function H map-
ping arbitrary bit strings to Z∗q .

Key generation
DS.Signer.KeyGen: Signer A picks random x1, x2

$←− Z∗q and computes X1 = x1P1

and X2 = x2P2. A’s public key is (X1, X2) ∈ G1×G2. A’s private key is (x1, x2).

DS.Confirmer.KeyGen: Confirmer B picks a random y
$←− Z∗q and computes Y =

yP1. B’s public key is Y ∈ G1. B’s private key is y.
DS.{Signer,Confirmer}.Register: A confirmer public key pkB = Y = yP1 is reg-
istered by letting B prove (possibly non interactively) the knowledge of y to
the registration authority by engaging in dvpk [y : Y = yP1]. Similarly, a user
registers his signing public key pkA = (X1, X2) = (x1P1, x2P2) by proving in
zero-knowledge her/his knowledge of x1 and x2. The fact that a given public key
has been properly registered with the authority, is guaranteed by a signature of
the it by the authority.

Signature generation
DS.Sign: Given a message m ∈ {0, 1}∗ and the public key Y of a confirmer,
A picks a random r

$←− Z∗q , and computes U = rP2 and V = (rx1)(x2 +
H(m,U, Y))−1Y . In case x2 + H(m,U, Y) ≡ 0 (mod q), A restarts the sign-
ing procedure with a new value for r. The signature is σ = (U, V).

Verification by confirmer/signer
DS.Confirmer.Verify: Given a message m ∈ {0, 1}∗ and a signature σ = (U, V), B
checks whether σ ∈ G2 ×G1 and 〈V,X2 +H(m,U, Y)P2〉 = 〈X1, U〉y.
DS.Signer.Verify: Given a message m ∈ {0, 1}∗ and a signature σ = (U, V), A
checks whether σ ∈ G2 ×G1 and 〈V,X2 +H(m,U, Y)P2〉 = 〈Y,U〉x1 .

Confirmation and disavowal protocols
DS.Signer.{Confirm,Deny}: Given a message m ∈ {0, 1}∗ and a signature σ =
(U, V), A proves to any third party that

dvpk [x1 : 〈V,X2 +H(m,U, Y)P2〉 = 〈Y,U〉x1 ∧X1 = x1P1]

or dvpk [x1 : 〈V,X2 +H(m,U, Y)P2〉 6= 〈Y,U〉x1 ∧X1 = x1P1] .

DS.Confirmer.{Confirm,Deny}: Given a message m ∈ {0, 1}∗ and a signature σ =
(U, V), B proves to any third party that

dvpk [y : 〈V,X2 +H(m,U, Y)P2〉 = 〈X1, U〉y ∧ Y = yP1]

or dvpk [y : 〈V,X2 +H(m,U, Y)P2〉 6= 〈X1, U〉y ∧ Y = yP1] .

Individual conversion and verification algorithms
DS.Signer.Convert: Given a purported (A,B)-directed signature σ = (U, V), A
computes W = x1U ∈ G2 and outputs σ̃A = (U, V,W) ∈ G2 × G1 × G2 as an
A-converted signature on m.
DS.User.VerifySigner: Given a message m ∈ {0, 1}∗ and a converted signa-
ture σ̃A = (U, V,W), any user checks whether 〈X1, U〉 = 〈P1,W 〉 and
〈V,X2 +H(m,U, Y)P2〉 = 〈Y,W 〉.
DS.Confirmer.Convert: Given a purported (A,B)-directed signature σ = (U, V),
B computes W = yU ∈ G2 and outputs σ̃B = (U, V,W) ∈ G2 × G1 × G2 as a
B-converted signature on m.
DS.User.VerifyConfirmer: Given a message m ∈ {0, 1}∗ and a converted sig-
nature σ̃B = (U, V,W), any user checks whether 〈Y,U〉 = 〈P1,W 〉 and
〈V,X2 +H(m,U, Y)P2〉 = 〈X1,W 〉.

Universal trapdoor generation and verification algorithms
DS.{Signer,Confirmer}.Trapdoor: A or B computes T = yX1 = x1Y = x1yP1 and
makes T public.
DS.User.Verify: Given a message m ∈ {0, 1}∗ and a signature σ = (U, V), any
user uses the trapdoor T to check whether 〈V,X2 +H(m,U, Y)P2〉 = 〈T , U〉.

The correctness of DS is obvious, and the completeness and soundness of all
protocols are classical results [10]. We now discuss a few facts about our scheme.

Efficiency. An (A,B)-directed signature σ is a pair of elements in G2 × G1,
being in that comparable to Boneh and Boyen’s recent signature scheme [5].
Signature generation requires an inversion modulo q followed by one exponen-
tiation in G1 and one exponentiation in G2. Therefore no pairing is required.
Signature verification by the confirmer is a bit more demanding as a couple of
pairings have to be computed. We note that conversion procedures, as well as
the generation of a universal trapdoor require a single exponentiation in G1 or
G2 and are therefore pairing-free.

Verifiability Properties. We note that our scheme is fully verifiable in the
sense that all private operations are independently verifiable by third parties.
These properties are desirable even though not requested in our definitions. If
our system serves as a basic primitive in a cryptographic protocol typically, full
verifiability may allow early detection of cheating behaviors and localization of
malicious parties.

Security. We note first that the property of non-transferability is fulfilled by
our scheme as a direct consequence of the use of designated-verifier proofs in
confirmation/disavowal protocols. Further, we state that our scheme resists exis-
tential forgeries and that signatures are invisible. Both security reductions stand
in the random oracle model.

Theorem 1 (Unforgeability of DS). Let t, qH ∈ NN, q =
(qSign, qConfirm, qDeny, qConv, qTrap, qReg) ∈ [NN]6 and ε ∈ [0, 1]N. Assume
there exists a (k, t, q, ε)-forger A against DS, in the random oracle model.

Further assume that A is limited to qH executions of H. Then there is an
algorithm that solves the FSDH problem in the bilinear group system generator
Setup with probability ε′(k) ≥ 1− 1/2k within time

t′ ≤ t · (qH + qConfirm + qDeny + qConvert + 2)
ε

+ (‖q‖+ qH) · p1,

where p1 is a explicit polynomial and ‖q‖ = qSign + qConfirm + qDeny + qConv +
qTrap + qReg.

Proof. The proof relies on the Forking Lemma [22] and is in spirit rather simi-
lar to the security proof of known discrete-log-based signature schemes such as
Schnorr. Assume A is a forger that (k, t, q, ε)-breaks DS. Here, qH stands for the
number of queries submitted by A toH sinceH is viewed as a random oracle. We
construct a reduction algorithm B that, by interacting with A, solves the FSDH
problem with time bound and success probability as claimed in Theorem 1.
Algorithm B is given bilinear map parameters (q, P1, P2, gt,G1,G2,Gt, 〈·, ·〉, ρ)
generated by Setup(k) and an instance xP2 of the FSDH problem. B’s goal is
to produce a tuple (Q, xQ, x2Q) for some Q ∈ G1. B does so by interacting with
the forger A as follows. First, B picks a random x1

$←− Z∗q and sets X1 = x1P1

and X2 = xP2. The knowledge of x1 in the simulation will be used intensively
in the simulation of DS.Signer.Confirm and DS.Signer.Deny}
Find Stage. We define a probabilistic subroutine B0($) of B. Given
an arbitrary input $, B0($) runs A with random tape $, transmits
(q, P1, P2, gt,G1,G2,Gt, 〈·, ·〉, ρ) as public parameters to A, as well as the public
key pkA = (X1, X2). Then B0($) simulates the scheme’s oracles H, DS.Sign,
DS.Signer.{Confirm,Deny}, DS.Signer.Convert and DS.Signer.Trapdoor as follows.
Simulation of H. Given m ∈ {0, 1}∗ and (U, Y) ∈ G2 × G1, if H(m,U, Y) is
defined, output its value. Otherwise, pick a random h

$←− Z∗q , defineH(m,U, Y) =
h and output h.
Simulation of DS.Sign. Given m ∈ {0, 1}∗ and a confirmer’s public key pkB =
Y , pick a random r, h

$←− Z∗q . Set V = rx1Y and U = rX2 + rhP2. If H(m,U, Y)
is defined and is 6= h, B0($) aborts. Otherwise B0($) defines H(m,U, Y) = h
and outputs σ = (U, V).
Simulation of DS.Signer.{Confirm,Deny}. Since B0($) knows
x1, B0($) is able to verify any given directed signature and
consequently, to engage successfully in one of the two proto-
cols dvpk [x1 : 〈V,X2 +H(m,U, Y)P2〉 = 〈Y,U〉x1 ∧X1 = x1P1] or
dvpk [x1 : 〈V,X2 +H(m,U, Y)P2〉 6= 〈Y, U〉x1 ∧X1 = x1P1] for any given
m ∈ {0, 1}∗, σ = (U, V) ∈ G2 ×G1 and Y ∈ G1. Note that a simulation of H is
required in either case.
Simulation of DS.Signer.Convert. Given σ = (U, V), output σ̃A = (U, V, x1U).
Simulation of DS.Signer.Trapdoor. Given Y ∈ G1, output T = x1Y .

If A returns a forgery (Y,m, σ = (U, V)), B0($) simulates H once again to
get h = H(m,U, Y) and checks whether 〈V,X2 +H(m,U, Y)P2〉 = 〈Y, U〉x1 . If

the equality holds, and if σ does not appear in the transcript of DS.Sign, B0($)
is said to succeed.

Algorithm B restarts B0($) for random values of $ $←− {0, 1}∗ until B0($)
succeeds. Let (Y,m, σ = (U, V)) be the last output of A. Then B memorizes $,
the index j of (m,U, Y) 7→ h in H’s transcript (sorted in chronological order),
and the first j outputs of H noted h1, . . . , hj . If ` denotes the index in the
transcript of DS.Sign of the last signature output before H returns hj , B also
memorizes `, σ1, . . . , σ`.

Replay Stage. As is classical with forking-based reductions, we define a second
probabilistic subroutine B1($) of B which role is essentially to replay the last
and successful execution of B0($) until the moment when H is about to output
hj , and then simulate all oracles with fresh random values from that moment
on. The tape $ being given by the find stage, B1($) runs A with random tape
$, transmits the same public parameters (q, P1, P2, gt,G1,G2,Gt, 〈·, ·〉, ρ) to A,
as well as pkA = (X1, X2). Then B1($) simulates the oracles as follows, using
its own random tape π.
Simulation of H. If the query index is i < j, output hi. Otherwise, simulate
as in the find stage with fresh random values.
Simulation of DS.Sign. If the query index is i′ ≤ `, output σi′ . Otherwise,
simulate as in the find stage with fresh random values.

All other oracles are simulated exactly as in the find stage. If A returns a
forgery (Y ′,m′, σ′ = (U ′, V ′)), B1($) queries its own simulation of H to verify
σ′ the same way B0($) verified σ. If σ′ is invalid or was output by the simulation
of DS.Sign or if the index of (m′, U ′, Y ′) 7→ h′ in the transcript of H is j′ 6= j,
then B1($) is said to fail.

Algorithm B restarts B1($) with random values for π until B1($) succeeds.
Let then (Y ′,m′, σ′ = (U ′, V ′)) be the last output of A.

Key Retrieval Stage. We perform a specific stage that allows B to retrieve
the confirmer private key y′ associated to the find-stage forgery (Y ′,m′, σ′), i.e.
such that Y ′ = y′P1. To this end, B replays B1 once with a slightly modified
random tape π′ ≈ π such that replaying the registration stage of Y ′ by A allows
to extract y′. As registration is performed via a non-interactive dvpk of a discrete
log, modifying the ’challenge’ value returned by the internal hash function of the
protocol yields y′ by knowledge extraction3. B then stops A and memorizes y′.

Final Outcome. B disposes of two valid forgeries (Y,m, σ = (U, V)) and
(Y ′,m′, σ′ = (U ′, V ′)). Since (m′, U ′, Y ′) 7→ h′ and (m,U, Y) 7→ h have the same
index in the transcript of H, we must have (m′, U ′, Y ′) = (m,U, Y) by a causal-
ity argument. In particular, B knows y = y′. B then computes ∆ = x−1

1 y−1V
and ∆′ = x−1

1 y−1V ′. ¿From the simulation, there exists r ∈ Z∗q−1 (unknown
to B) such that ∆ = r(x+ h)−1P1 and ∆′ = r(x+ h′)−1P1. B poses R = rP1

and Q = (h′ − h)−1 (∆−∆′) = r[(x+ h)(x+ h′)]−1P1 = [(x+ h)(x+ h′)]−1R,
or aborts if h′ − h ≡ 0 (mod q). Finally, one has ∆ = (x+ h′)Q so that

3 This technique is classical and we therefore do not enter into more details here.

∆−h′Q = xQ. Since R = (x+h)(x+h′)Q, we get R− (h+h′)xQ−hh′Q = x2Q
and B outputs (Q, xQ, x2Q) to its own challenger.

Reduction cost. We start with a preliminary observation. The transcript of
H contains exactly qtot(k) hash definitions, where qtot = qH + qSign + qConfirm +
qDeny +1, since the simulation of H is invoked by the simulation of other oracles
(the constant term 1 comes from the verification of the forgery). Among these
hash values, exactly qSign(k) were defined by the simulation of DS.Sign and by
construction, the j-th hash definition H(m,U, Y) cannot be one of these.

Let us denote by Hj the set of vectors (h1, . . . , hqtot(k)) leading to a forgery
of index j and εj = Pr

[
(h1, . . . , hqtot(k)) ∈ Hj

]
, the probability being taken over

all the values of h1, . . . , hqtot(k) over Z∗q . Note that the εi’s may depend on A and
w but in any case

∑
j εj = ε(k) must hold. Following our remark above, there

must be at least qSign(k) values of j for which εj = 0. We now invoke the

Lemma 1 (Splitting Lemma [22]). Noting Xj the set of vectors
(h1, . . . , hj−1) such that

Pr
[
(h1, . . . , hj−1, h

′
j , . . . , h

′
qtot(k)) ∈ Hj

]
≥ εj

2
,

where the probability is taken over h′j , . . . , h
′
qtot(k)

$←− Z∗q , one has

Pr
[
(h1, . . . , hj−1) ∈ Xj | (h1, . . . , hqtot(k)) ∈ Hj

]
≥ 1

2
.

where the probability is taken over h1, . . . , hj−1
$←− Z∗q .

We expect the find and key retrieval stages to require at most ε(k)−1 + 1
executions of A. Suppose that the transcript of H when B0($) succeeds is
(h1, . . . , hqtot(k)) ∈ Hj for some j. This event occurs with non-zero probabil-
ity εj/ε(k) as soon as εj 6= 0. Further assume that (h1, . . . , hj−1) ∈ Xj ; the
probability that this occurs is at least 1/2. Then the expected number of exe-
cutions of B1($) is 2/εj . Putting it all together, and taking into account the
abortion case h′ ≡ h (mod q), B succeeds with probability ≥ 1− 1/2−k after

1
ε(k)

+ 1 +
∑

1≤j≤qtot(k),εj 6=0

εj

ε(k)
· 1
2
· 2
εj
≤ qtot(k)− qSign(k) + ε(k)

ε(k)

executions of A, i.e. in time at most [t ·(qH +qConfirm+qDeny+qConvert+2)/ε](k).
The term (‖q‖+ qH) p1 comes from the time needed to simulate all oracles. ut

Remark 2. The simulation of the dvpks imposes the random oracle model and
we therefore must allow the adversary to query the internal oracles used to
compute proofs. The simulation cost induced by these queries are included into
qH .

We also state that DS is weakly invisible under the assumption that the
Decisional Tripartite Diffie-Hellman problem is intractable:

Theorem 2 (Weak Invisibility of DS). Let t, qH ∈ NN, q =
(qSign, qConfirm, qDeny, 0, 0, qReg) ∈ [NN]6 and ε ∈ [0, 1]N. Assume there exists
a (k, t, q, ε)-distinguisher A against DS, in the random oracle model. Then
there exists an algorithm that solves the DTDH problem in the bilinear group
system generator Setup with probability ε′ = ε/2 − o(1) within time t′ ≤
qReg · t+ (‖q‖+ qH) · p2, where p2 is an explicit polynomial.

Proof. We show that, assuming the hardness of the Decisional Tripartite Diffie-
Hellman DTDH, DS is weakly invisible under an adaptive chosen-message attack.
Our reduction is in essence similar to previously known reductions in the stan-
dard model, and we therefore skip minor details. Note that H needs not be seen
as a random oracle. The fact that we require the random oracle model only stems
from the need to simulate zero-knowledge proofs.

Assume A is an attacker that (k, t, q, ε)-breaks the weak invisibility of DS
as defined earlier. We construct a reduction algorithm B that, by interacting
with A, solves a DTDH instance with time bound and advantage as claimed in
Theorem 2. The outline of the reduction is as follows. Algorithm B is given an
bilinear group system (q, P1, P2, gt,G1,G2,Gt, 〈·, ·〉, ρ) generated by Setup(k)
and an instance (αP1, βP1, γP2, δP1) ∈ G2

1 × G2 × G1. B’s goal is to decide
whether δ ≡ αβγ (mod q). B does so by interacting with the forger A as follows.
First, B picks a random x2

$←− Z∗q and sets X1 = αP1 and X2 = x2P2. Then B
sends the public parameters to A as well as the signer public key (X1, X2) and
the challenge confirmer public key Y ? = βP1. B attempts to simulate all oracles
throughout the find stage, as shown later. A then returns a challenge message
m?. B then picks a random bit b ∈ {0, 1} and sets U = γP2. If b = 0, B sets
h? = H(m?, U, Y) and V = (x2 + h?)−1 (δP1). If b = 1, B initializes V $←− G1.
Then B defines σ? = (U, V) and σ? is returned to A as the signature challenge.
Throughout the guess stage, B simulates the oracles the same way it did in the
find stage. A finally outputs a guess b′ ∈ {0, 1} and B returns 1 to its own
challenger if b′ = b or 0 otherwise.

When δ ≡ αβγ (mod q), signature simulations will all be correct and the
advantage of A in guessing b is at least ε(k). In the case δ 6≡ αβγ (mod q), the
signatures output by B are simply invalid and A may then behave arbitrarily.
Overall, B correctly guesses its own challenge with probability negligibly close
to ε(k)/2.

Key Retrieval for Y 6= Y ?. When Y 6= Y ?, A must have registered the public
key Y = yP1 prior to requesting any signature of type (m,Y), so that B recovers
y via registration replay as in the proof of unforgeability. This requires to reboot
and replay A with the same random tape up to the point in executing the dvpk
when bringing fresh randomness in the ’challenge’ hash value allows to extract
the discrete log y. Knowing y, B continues the second execution of A until a
new confirmer key Y ′ is registered, and so forth. This strategy ensures that
B can actually recover all the confirmer private keys matching the public keys
registered by A. The price to pay is a factor qReg(k) in the number of times
A has to be executed. Note that, since we make use of non-interactive dvpk

of a discrete logarithm, there is no concurrent interleving of registrations and
therefore the “reboot and replay” technique applies readily.
Simulation of Signatures for Y 6= Y ?. Signatures are simulated in the fol-
lowing way. Given (m,Y), B first recovers y = logP Y in its transcript. Then
B picks a random r

$←− Z∗q and sets U = rP2 and V = ry(x2 + h)−1 (αP1),
where h = H(m,U, Y). B memorizes (σ,m, Y, r) in its transcript and returns
σ = (U, V).
Simulation of Other Operations Involving B 6= B?. As y = logP Y is
known to B whenever Y 6= Y ?, B can individually convert any (A,B)-directed
signature σ = (U, V) given by B to A by simply computing W = rX1 where
r is the randomness used to construct σ. Similarly, B can generate universal
trapdoors T = yX1.
Simulation of Confirmation/Denial Protocols. B simulates the dvpk of
x1 = logP1

X1 (that B does not know) or y = logP1
Y (that B knows from the

key retrieval stage). This requires to simulate the internal random oracle of dvpk
in the first case. The proof is then returned to (the user corrupted by) A.

Simulation of Signatures for Y = Y ?. Given m, B picks a random r
$←− Z∗q ,

sets U = r (γP2) and V = r
x2+h (δP1) where h = H(m,U, Y ?). B returns σ =

(U, V).

Reduction Cost. As discussed above, B’s own challenge is solved with proba-
bility ε′(k) ≥ ε(k)/2−Pr [dvpk fails] within time bound qReg(k) · t(k)+ ‖q‖(k) ·
p2(k) where p2 is an explicit polynomiaml and the second term comes from the
simulations of all oracles. This is as claimed in Theorem 2. ut

Invisible Universally Convertible Directed Signatures. We refer the
reader to Appendix A for a proof that DS is invisible under a non-standard
complexity assumption referred to as the qs-Tripartite-DCAA problem.

Because of its simplicity, however, our scheme admits many variations. A
possible direction to reach invisibility under a weaker assumption consists in
replacing the individual conversion algorithms by standard non-interactive zero-
knowledge (nizk) proofs of knowledge of equality/inequality of discrete loga-
rithms. The nizk proof is then appended to the directed signature as a replace-
ment of the third signature part W . It is then possible to obtain invisibility
under the Decisional Tripartite Diffie-Hellman assumption. The proof is very
similar to the one of Theorem 2 except that signature conversions are provided
to the adversary by simulating the corresponding nizk proofs for signatures is-
sued by the reduction. The other cases are upper bounded in probability by the
unforgeability property of our scheme.

5 Universally Convertible Directed Signatures with
Traceability

Directed signatures find a prominent application in the realization of complete
peer-to-peer secure messaging systems. In such a system, users have a unique

key pair {pk = (X1, X2), sk = (x1, x2)} where X1 = x1P1, X2 = x2P2 and x1

plays simultaneously the role of a signing and of a confirming key. By misuse
of language, we sometimes call x1 the anonymity key and x2 the signing key
for reasons that will appear clearly in what follows. We view a confirmer more
like a regular receiver of a signed message and preferably adopt this term in the
sequel. In authenticated messaging systems, putting a restriction on the ability to
verify signatures is of a certain interest towards the users’ privacy. The property
of invisibility guarantees this privacy until one of the two parties wishes to end
it.

There are real-life contexts, however, in which conferring this ability to a
trusted authority acting in extreme circumstances is desirable. One may think
of private contract signing for instance, where criminals make use of the system
to sign illegal contracts that are not publicly verifiable. What is really desired is a
traceability mechanism4 enabling a tracing authority (TA) to link upon request
directed signatures to their direction i.e. the identities of their signer and receiver.
We now introduce an extension of our scheme that supports signature tracing.

5.1 Description of the Scheme DST

Setup and Key generation
The generation of public parameters and keys in the system is essentially the

same as above, except that we include Z = zP2 ∈ G2 into the system public
parameters. The tracing key is z ∈ Z∗q . Moreover, we require users to (securely)
submit their anonymity keys x1 to the Key Registration Authority (KRA). A
receipt is returned to the registering user after that, under the form of a nizk
proof ψ(X1) that the KRA knows x1.

Signature generation
Now, given a message m ∈ {0, 1}∗ and the public key Y of the receiver, signer

A picks random r, s
$←− Z∗q , and computes U = rP2, W = rZ + sP2, T = s−1Y ,

and V = rx1(x2 +H(m,U,W, T, Y))−1Y . Again, when x2 +H(m,U,W, T, Y) ≡
0 (mod q), A restarts the signing procedure with new values for r, s. Next, signer
A computes a nizk proof of consistency π = nizk[(r, s, h,X1, X2, Y) : ψ(X1) ∧
ψ(Y)∧ 〈P1,W 〉〈ψ(Z), U〉−1 = gs

t ∧ Y = sT ∧ 〈ψ(V), X2 + hP2〉 = 〈ψ(X1), T 〉rs].
The signature is σ = (U,W, T, V, π).

Other operations
The verification procedure and the confirming/denying protocols are un-

changed, except that the non-interactive proof π is verified. Signature conver-
sions are done the same way i.e. by appending x1U or yU , or a nizk proof of
knowledge of x1 or y to the signature. The generation of trapdoors is unchanged.
Universal verification requires the additional check that π is correct.

4 In [19], Kiayias, Tsiounis and Yung propose a similar traceability mechanism in the
context of group signatures.

Signature Tracing
A prerequisite for signature tracing is the recovery of the anonymity key x1 of

the suspected user. This is done by the Key Registration Authority upon judicial
request. Now the TA is given a signature σ = (U,W, T, V, π) of some message
m and is asked to decide whether σ was issued by the given user and if so, to
whom the signature was directed. The TA first ascertains that π is correct and
searches in the public key database a key Y for which 〈T,W−zU〉 = 〈Y, P2〉. The
search is always successful, because a proof that Y lies in the set of registered
keys is included in π and is known to be correct. Now given Y and x1, the TA
checks whether 〈V,X2+H(m,U,W, T, Y)P2〉 = 〈Y, U〉x1 . We note that in case of
mismatch, the TA is left with anonymous material meaning that if the signature
was issued by some user A′ then the identity of A′ is preserved. This property
is in fact computationally guaranteed, as stated later.

5.2 Security Analysis

We state that (A,B)-directed signatures are existentially unforgeable and in-
visible under adaptive chosen-message attack for any user 6= A,B,TA. We rely
again on the FSDH and the DTDH assumptions in the random oracle model.

Theorem 3 (Unforgeability and Weak Invisibility). Let t, qH ∈ NN, q =
(qSign, qConfirm, qDeny, qConv, qTrap, qReg) ∈ [NN]6 and ε ∈ [0, 1]N.

1. Assume there exists a (k, t, q, ε)-forger A against DST, in the random oracle
model. Further assume that A is limited to qH executions of H. Then there
is an algorithm that solves the FSDH problem in the bilinear group system
generator Setup with probability ε′(k) ≥ 1− 1/2k within time

t′ ≤ t · (qH + qConfirm + qDeny + qConvert + 2)
ε

+ (‖q‖+ qH) · p3,

where p3 is a explicit polynomial.
2. Assume there exists a (k, t, (qSign, qConfirm, qDeny, 0, 0, qReg), ε)-distinguisher
A against DST, in the random oracle model. Then there exists an algorithm
that solves the DTDH problem in the bilinear group system generator Setup
with probability ε′ = ε/2 − o(1) within time t′ ≤ qReg · t + (‖q‖+ qH) · p4,
where p4 is an explicit polynomial.

Proof. The proof is similar to those of the security of the scheme DS and will be
given in the full version of the paper. ut

We also state two important properties fulfilled by the tracing mechanism.
They tell us in essence that beyond traceability, the Tracing Authority has no
’hidden powers’ over standard users of the system.

Theorem 4 (Abuse-free Traceability). Signatures issued by user A remain
invisible to the tracing authority itself as long as the anonymity key x1 of user
A is undisclosed to the TA.

Theorem 5 (Tracing-Proof Unforgeability). After x1 is disclosed to the
TA to enable tracing, the tracing authority is still unable to existentially forge
signatures on behalf of A.

We argue that these properties come from the computational separation be-
tween the anonymity key x1 and the signing key x2. In fact, after the x1-part of
the secret key of a traced user has been revoked, signatures from that user re-
main unforgeable because x2 has not been compromised. The revoked user could
even be rehabilitated and a new anonymity key generated to replace the revoked
one. This allows a clear separation of powers invested in users and authorities
of the system. Due to lack of space, the complete proofs will be given in the full
version of the paper.

5.3 Technical Considerations

Implementation of the nizk proof π. The nizk proof π is implemented as
a Fiat-Shamir-transformed conjunction of interactive proofs of the predicates
forming π. We rely on prior art [8] to provide an efficient procedure to generate
π in practice.
Performances. Signature generation requires 2 exponentiations over group G1

and 2 over group G2, and no pairing. Here too, off-line/online signature gener-
ation trade-offs are possible by appending a third key part X3 = x3P2 in the
user key. Signature conversions and the generation of trapdoors require a single
exponentiation over G2 or G1 respectively. All verification algorithms require at
least two evaluations of the bilinear map. We note that the tracing procedure
requires O(N) bilinear map evaluations where N is the number of registered
(non-revoked) users. We leave as an open problem to find similar schemes ad-
mitting a tracing procedure in polylog complexity in all parameters.
Extensions. Invisibility under the Decisional Tripartite Diffie-Hellman assump-
tion is obtained by replacing the individual conversion procedures by standard
nizk proofs. All operations within the scheme (signature conversion, trapdoor
generation) are easily adapted to be verifiable. Among other possible extensions,
we cite multi-receiver directed signatures.

6 Conclusion

We properly defined security notions for directed signatures that support the
additional property of universal conversion. Using the xyz-trick, we realized the
first scheme featuring both individual and universal conversion of signatures,
thereby addressing a problem left open since 1993. The new scheme offers at-
tractive practical advantages in terms of signature length and performances. In
comparison with previous works, the computational costs for the signer in the
signature generation, the confirmation/disavowal protocols and the conversion
algorithms, are among the smallest of all delegated undeniable signature schemes.
We have proved the security of our scheme in the random oracle model under

computational assumptions closely related to the Diffie-Hellman and Decision
Diffie-Hellman assumptions on bilinear map groups.

Finally, we introduced traceable directed signatures as a powerful extension
to allow a Tracing Authority within the system to link signatures to their di-
rection i.e. issuer and receiver. We believe that our signature schemes are simul-
taneously efficient and customizable, and we expect to see new cryptographic
applications of our work in the future. The xyz-trick will certainly have other
applications in future works as well. For example, our scheme is easily extended
to achieve the time-selective conversion property as in [20].

References

1. S. Araki, S. Uehara, K. Imamura: The Limited Verifier Signature and Its Applica-
tion. IEICE Trans. Fundamentals, Vol. E82-A (1), 63–68 (1999)

2. N. Asokan, V. Shoup, M. Waidner: Optimistic Fair Exchange of Digital Signatures.
Proc. of Eurocrypt’98, Springer LNCS Vol. 1403, 591–606 (1998)

3. M. Bellare, A. Palacio: The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. Proc. of Crypto’04, Springer LNCS Vol. 3152, 273–289 (2004)

4. M. Bellare, P. Rogaway: Random Oracles are Practical: a Paradigm for Designing
Efficient Protocols. Proc. of 1st ACM Conference on Computer and Communica-
tions Security. 62–73 (1993)

5. D. Boneh, X. Boyen: Short Signatures Without Random Oracles. Proc. of Euro-
crypt’04, Springer LNCS Vol. 3027, 56–73 (2004)

6. D. Boneh, M. Franklin: Identity-based Encryption from the Weil Pairing. SIAM J.
Computing, 32 (3), 586–615 (2003)

7. J. Boyar, D. Chaum, I. B. Damg̊ard, T.P. Pedersen: Convertible Undeniable Sig-
natures. Proc. of Crypto’90, Springer Vol. LNCS 537, 189–205 (1991)

8. E. Bresson, J. Stern: Proofs of Knowledge for Non-Monotone Discrete-Log Formu-
lae and Applications. Proc. of ISC’02, Springer LNCS Vol. 2433, 272–288 (2002)

9. J. Camenisch, M. Michels: Confirmer Signature Schemes Secure against Adaptive
Adversaries. Proc. of Eurocrypt’00, Springer LNCS Vol. 1807, 243–258 (2000)

10. J. Camenisch, M. Stadler: Efficient Group Signature Schemes for Large Groups.
Proc. of Crypto’97, Springer LNCS Vol. 1296, 410–424 (1997)

11. D. Chaum: Designated Confirmer Signatures. Proc. of Eurocrypt’94, Springer
LNCS Vol. 950, 86–91 (1995)

12. D. Chaum, H. van Antwerpen: Undeniable Signatures. Proc. of Crypto’89, Springer
LNCS Vol. 435, 212–216 (1989)

13. D. Chaum, E. van Heijst, B. Pfitzmann: Cryptographically Strong Undeniable
Signatures Unconditionally Secure for the Signer. Proc. of Crypto’91, Springer
LNCS Vol. 576, 470–484 (1992)

14. I. Damg̊ard: Towards Practical Public Key Systems Secure Against Chosen Ci-
phertext Attacks. Proc. of Crypto’91, Springer LNCS Vol. 576, 445–456 (1991)

15. M. K. Franklin, M. K. Reiter: Verifiable Signature Sharing. Proc. of Eurocrypt’95,
Springer LNCS Vol. 921, 50–63 (1995)

16. S. Goldwasser, S. Micali, R. Rivest: A Digital Signature Scheme Secure against
Adaptive Chosen-Message Attacks. SIAM J. Computing, 17 (2), 281–308 (1988)

17. S. Goldwasser, E. Waisbard: Transformation of Digital Signature Schemes into
Designated Confirmer Signature Schemes. Proc. of TCC’04, Springer LNCS Vol.
2951, 77–100 (2004)

18. M. Jakobsson, K. Sako, R. Impagliazzo: Designated Verifier Proofs and their Ap-
plications. Proc.of Eurocrypt’96, Springer LNCS Vol. 1070, 142–154 (1996)

19. Aggelos Kiayias, Yiannis Tsiounis, Moti Yung: Traceable Signatures. Proc. of Eu-
rocrypt’04, Springer LNCS Vol. 3027, 571–589 (2004)

20. F. Laguillaumie, D. Vergnaud: Time-Selective Convertible Undeniable Signatures.
Proc. of CT-RSA’05, Springer LNCS Vol. 3376, 154-171 (2005)

21. C. H. Lim and P. J. Lee: Modified Maurer-Yacobi’s Scheme and its Applications.
Proc. of Auscrypt’92, Springer LNCS Vol. 718, 308–323 (1993)

22. D. Pointcheval, J. Stern: Security Arguments for Digital Signatures and Blind
Signatures. J. Cryptology, Vol. 13 (3), 361–396 (2000)

23. F. Zhang, K. Kim: A Universal Forgery on Araki et al.’s Convertible Limited
Verifier Signature Scheme. IEICE Trans. Fundamentals, Vol. E86-A (2), 515–516
(2003)

A Invisibility of DS

The invisibility of DS relies on the difficulty of solving the following `-Tripartite-
DCAA Problem in connection to the xyz-trick. It is similar to a class of problems
recently introduced by Laguillaumie and Vergnaud [20]:
`-Tripartite-DCAA Problem: Let (q, P1, P2, gt,G1,G2,Gt, 〈·, ·〉, ρ) be a bilinear
group system. Given (x1P1, x2P2, yP1, zP2, Q, h)

$←− (G1 ×G2)
2 × G1 × Z∗q and

for some ` ≥ 0,(
hi, x1(x2 + hi)−1P1, x1y(x2 + hi)−1P1

)
i∈[[1,`]]

∈
(
Z∗q ×G2

1

)`
with h /∈ {h1, . . . , h`}, decide whether Q = x1yz(x2 + h)−1P1.

We state that, assuming the hardness of the `-Tripartite-DCAA problem and
that of the Flexible Square Diffie-Hellman problem, the schemes DS and DST
are invisible under chosen-message attack in the random oracle model.

Theorem 6 (Invisibility of DS and DST). Let t, qH ∈ NN, q =
(qSign, qConfirm, qDeny, qConv, qTrap, qReg) ∈ [NN]6 and ε ∈ [0, 1]N. Assume there
exists a (k, t, q, ε)-distinguisher A, in the random oracle model, against DS (or
DST). Then there exists an algorithm B that solves the qs-Tripartite-DCAA prob-
lem in the bilinear group generator Setup with advantage ε′ and a (k, t′′, q, ε′′)-
forger C against DS such that

ε′ + (qConfirm + qDeny + qConvert) · ε′′ ≥ ε

where B runs in time at most t′ = (qReg +1) · t and C runs in time t′′ = t+O(1).

Proof. Assume A is an Inv-CMA-adversary that (k, t, q, ε)-distinguishes the sig-
natures of DS. As in the unforgeability proof, qH represents the number of queries
submitted by A to H since H is again viewed as a random oracle. We construct
two reduction algorithms B and C that interact with A and respectively solve
the qs-Tripartite-DCAA problem and produce an existential forgery with time
and success probability as claimed in Theorem 6.

Algorithm B: Algorithm B is given public parameters
(q, P1, P2, gt,G1,G2,Gt, 〈·, ·〉, ρ) generated by Setup(k) and an instance(

(x1P1, x2P2, yP1, zP2, Q, h) ,
(
hi, Ri =

x1

x2 + hi
P1, Si =

x1y

x2 + hi
P1

)
i∈[[1,qs]]

)
in (G1 ×G2)

2×G1×Z∗q ×
(
Z∗q ×G2

1

)qs of the qs-Tripartite-DCAA problem. B’s
goal is to decide whether Q = x1yz(x2 + h)−1P1 and B proceeds to use forger
A to do so. B sets X1 = x1P1, X2 = x2P2, Y ? = yP1, initializes a counter i = 1
and simulates A’s environment as follows:
Simulation of H. Same simulation as in the unforgeability proof.
Simulation of DS.Register. Each time the adversary registers a new public
key Y = y′P1, the reduction rewinds A from the beginning without changing
anything but the challenge in the proof-of-knowledge of the discrete logarithm
y′ of Y in base P2 (see the proof of unforgeability). Therefore, we can suppose
wlog that the reduction knows the secret key of all the users registered by A, at
the expense of running A at most qReg(k) times.
Simulation of DS.Signer.{Confirm,Deny}. If the signature has been produced
by B in the simulation then use the same simulation as in the unforgeability
proof. Otherwise, simulate a designated-verifier proof of invalidity.
Simulation of DS.Sign. Given m ∈ {0, 1}∗ and a confirmer’s public key Y ,
pick a random r

$←− Z∗q . If Y = Y ? set U = rP2 and V = rSi. Otherwise
Y = y′P1 6= Y ?, and B sets U = rP2 and V = ry′Ri. Now if H(m,U, Y) is
defined and is 6= hi, the reduction restarts with a new value for r. Otherwise the
reduction defines H(m,U, Y) = hi, outputs σ = (U, V) and increments i.
Simulation of DS.Convert.{Signer,Confirmer}. Given Y ∈ G, m ∈ {0, 1}∗ and
σ = (U, V) ∈ G2, invoke the simulation of H on (m,U, Y). If σ has been obtained
by the simulation of DS.Sign then retrieve the randomness r such that U = rP2

and output σ̃A = (U, V, rX1) or σ̃B = (U, V, rY). Otherwise, output Invalid.
Simulation of DS.Signer.Trapdoor. Given Y ∈ G \ {Y ?}, output T = y′X1

where Y ? = y′P2.
In this simulation B simulates perfectly A’s environment unless at some point

in time A queries a valid signature (U, V) not produced by B to the oracles
DS.Signer.{Confirm,Deny} or DS.Convert.{Signer,Confirmer}. Let us denote Bad this
event. We have |ε′(k)− ε(k)| ≤ Pr(Bad) and the running time of B is at most
t′(k) = (qReg(k) + 1) · t(k) +O(1).

Algorithm C: We claim that there exists an EF-CMA-adversary C which
(k, t′′, q, ε′′)-breaks DS, where t′′ = t + O(1) and ε′′ ≥ (qConfirm + qDeny +
qConvert)−1 Pr[Bad]. Basically, C runs A and outputs as a forgery one of the sig-
natures (selected at random) queried by A during the Inv-CMA game, to one of
the oracles DS.Signer.{Confirm,Deny} or DS.Convert.{Signer,Confirmer} which was
not obtained by the oracle DS.Sign.

This directly leads to the above claims for the scheme DS and the proof
extends readily to the invisibility of the scheme DST. ut

