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Abstract: The k-set agreement problem is a paradigm of coordination problems encountered in distributed com-
puting. The parameter k defines the coordination degree we are interested in. The case k � � corresponds to the
well-known uniform consensus problem. More precisely, the k-set agreement problem considers a system made up of
n processes where each process proposes a value. It requires that each non-faulty process decides a value such that a
decided value is a proposed value, and no more than k different values are decided.

This paper visits the k-set agreement problem in synchronous systems where up to t processes can experience
failures. Three failure models are explored: the crash failure model, the send omission failure model, and the general
omission failure model. Lower bounds and protocols are presented for each model. Open problems for the general
omission failure model are stated. This paper can be seen as a short tutorial whose aim is to make the reader familiar
with the k-set agreement problem in synchrony models with increasing fault severity. An important concern of the
paper is simplicity. In addition to its survey flavor, several results and protocols that are presented are new.
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Une visite guidée de l’accord ensembliste synchrone

Résumé : Ce rapport constitue une visite guidé de l’accord ensembliste synchrone en preésence de crashs, de fautes
d’omission en émission, et de fautes d’omission en émission et réception.

Mots clés : Systèmes répartis asynchrones, Tolérance aux fautes, Crash de processus, Accord ensembliste; Omission
en émission, Omission en réception.



Synchronous Set Agreement 3

1 Introduction

Coordination problems and k-set agreement Coordination problems are central in the design of distributed sys-
tems where processes have to exchange information and synchronize in order to agree in one way or another (for
otherwise, they would behave as independent Turing machines, and the system would no longer be a distributed sys-
tem). This paper surveys one distributed coordination problem, namely, the k-set agreement problem. This survey
focuses on recent results in synchronous systems.

The k-set agreement problem has been introduced in [5]. It can can be defined as follows. Considering a system
made up of n processes where each process proposes a value, and up to t processes can experience failures, each
non-faulty process has to decide a value such that a decided value is a proposed value, and no more than k different
values are decided. The well-known consensus problem is nothing else than the �-set agreement problem, where the
non-faulty process have to decided the same value. The parameter k of the set agreement can be seen as the degree of
coordination associated with the corresponding instance of the problem. The smaller k, the more coordination among
the processes: k � � means the strongest possible coordination, while k � n means no coordination.

Be the message-passing system synchronous or asynchronous, the k-set agreement problem can always be solved
despite process crash failures, as soon as k � t. A trivial solution is as follows: k predefined processes broadcast their
value to all the processes, and a process simply decides the first value it receives. (It is easy to see that, whatever the
crash pattern, at most k values are sent, and at least one value is sent.)

k-set agreement solvability Surprisingly, while the k-set agreement can be trivially solved in asynchronous systems
when the coordination degree k is such that k � t, there is no deterministic protocol that can solve it in such a system
as soon as k � t [4, 15, 28]. This impossibility result generalizes the impossibility to solve the consensus problem in
asynchronous systems where even only one process can crash (case k � t � �) [9]. This means that solving the k-set
agreement problem in an asynchronous system requires either to enrich this system with additional power (such as the
one provided by failure detectors [14, 19] or random numbers [20]), or restrict the input vectors that the processes can
collectively propose [3, 18].

Differently, the k-set agreement problem can always be solved in synchronous systems prone to process crash
failures. The protocols that solves it are all based on the round notion. The processes execute a sequence of rounds
and, during each round, each process executes sequentially the following steps: it first sends messages, then receives
messages, and finally executes local computation. The main property of a synchronous system is that the messages
sent during a round are received during the same round.

k-set agreement efficiency A fundamental question associated with k-set agreement concerns the minimal number
of rounds that any protocol has to execute in the worst case scenario where up to t processes crash (the time complexity
of a synchronous protocol is usually measured as the maximal number of rounds it requires). It has been shown that
lbt � b t

k
c � � is a lower bound on that number of rounds. This means that, whatever the k-set agreement protocol,

it is always possible to have a run of that protocol that requires at least lb t rounds for the processes to decide [6].
(This worst case scenario is when exactly k processes crash during each round, in such a way that -during the round
in which it crashes- a process sends values to some non-crashed processes but not to all of them.) It is important to
notice that the previous bound states an “inescapable tradeoff” relating the fault-tolerance parameter t, the degree k
of coordination achieved, and the best time complexity lb t that a set agreement protocol can attain [6]. Moreover, it is
worth noticing that, when compared to the consensus problem, k-set agreement divides the time by k.

Another fundamental question concerns the adaptivity of a k-set agreement protocol to the “good” runs. Those
are the runs where there are few crashes, i.e., when the number of actual crashes f is smaller than t (the maximum
number of crashes for which the protocol works). This is the notion of early decision [7]. It has very recently been
shown that there is no k-set agreement protocol that, in presence of f process crashes, allows the processes to always
decide before lbf � min�b f

k
c � �� b t

k
c � �� rounds [10]. This bound shows an additional relation linking the best

time efficiency a set agreement protocol can attain, the actual number of crashes f , and the coordination degree k. It
is worth noticing that, in failure-free runs (f � �), two rounds are sufficient for the processes to coordinate (decide)
whatever the value of k (which is the lower bound for solving the uniform consensus problem in failure-free runs [16]).

Content of the paper This paper visits k-set agreement protocols in several process failure models, namely, the
classical crash failure model, the send omission failure model and the more general omission failure model. In the send
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4 M. Raynal & C. Travers

omission failure model, during a round, a process can crash or forget to send messages. In the general omission failure
model, a process can additionally forget to receive messages. In addition to the (five) protocols that are described, it is
shown that the previous lower bounds lbt and lbf are still valid for the send omission failure model for any value of t
(i.e., t � n), and for the general omission failure model when t � n��. A protocol for general omission failures that
works for t � k

k��n is also presented. It is shown that this protocol is optimal with respect to the resilience bound t.
The paper also introduces a new property for the k-set agreement problem in presence of omission failures. This

property, called strong termination, requires that the processes that commit only send omission failures decide as if
they were non-faulty. This allows more processes to decide. Open problems that concern k-set agreement in the
general omission failure models are also presented. A main accent of the paper is simplicity. (To not overload the
presentation, the proofs of the protocols that are described are given in an appendix.) In that sense, the paper can be
considered as an “introductory survey”. As indicated in the abstract, this paper can be seen as a short tutorial whose
aim is to make the reader familiar with the k-set agreement problem in synchrony models with increasing fault severity.
In addition to its survey flavor, several results and protocols that are presented are new.

2 Distributed Computing Model and k-Set Agreement Problem

2.1 Synchronous System

The system model consists of a finite set of processes, namely, � � fp�� � � � � png, that communicate and synchronize
by sending and receiving messages through channels. Every pair of processes p i and pj is connected by a reliable
channel (which means that there is no creation, alteration, loss or duplication of message).

The system is synchronous. This means that each of its executions consists of a sequence of rounds. Those are
identified by the successive integers �� �� etc. For the processes, the current round number appears as a global variable
r that they can read, and whose progress is managed by the underlying system. A round is made up of three consecutive
phases:

� A send phase in which each process sends messages.

� A receive phase in which each process receives messages.
The fundamental property of the synchronous model lies in the fact that a message sent by a process p i to a
process pj at round r, is received by pj at the same round r.

� A computation phase during which each process processes the messages it received during that round and
executes local computation.

2.2 Process Failure Model

A process is faulty during an execution if its behavior deviates from that prescribed by its algorithm, otherwise it
is correct. A failure model defines how a faulty process can deviate from its algorithm [13]. We consider here the
following failure models:

� Crash failure. A faulty process stops its execution prematurely. After it has crashed, a process does nothing.
Let us observe that if a process crashes in the middle of a sending phase, only a subset of the messages it was
supposed to send might actually be received.

� Send Omission failure. A faulty process crashes or omits sending messages it was supposed to send.

� General Omission failure. A faulty process crashes, omits sending messages it was supposed to send or omits
receiving messages it was supposed to receive (receive omission) [22].

It is easy to see that these failure models are of increasing “severity” in the sense that any protocol that solves a
problem in the General Omission (resp., Send Omission) failure model, also solves it in the (less severe) Send
Omission (resp., Crash) failure model.

A send (receive) omission failure actually models a failure of the output (input) buffer of a process. A buffer
overflow is a typical example of such a failure. An intuitive explanation of the fact that it is more difficult to cope
with receive omission failures than with send omission failures is the following. A process that commits only send
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Synchronous Set Agreement 5

Function set agreement (vi)
(01) esti � vi;
(02) when r � �� �� � � � � bt�kc� � do % r: round number %
(03) begin round
(04) send �esti� to all; % including pi itself %
(05) esti � min�festj values received during the current round rg�
(06) end round;
(07) return (esti)

Figure 1: Crash failures: Synchronous k-set agreement, code for p i (t � n)

omission failure continues to receive the messages sent by the correct process. Differently, a process that commits
receive omission failures does not: it has an “autism” behavior.

2.3 The k-Set Agreement Problem

The problem has been informally stated in the Introduction: every process p i proposes a value vi and each correct
process has to decide on a value in relation to the set of proposed values. More precisely, the set agreement problem
with coordination degree k, is defined by the following three properties:

� Termination: Every correct process decides.

� Validity: If a process decides v, then v was proposed by some process.

� Agreement: No more than k different values are decided.

As we have seen, �-set agreement is the uniform consensus problem. In the following, we implicitly assume k � t
(this is because, as we have seen in the introduction, k-set agreement is trivial when k � t).

3 Set Agreement in the Crash Failure Model

3.1 A simple protocol

A very simple synchronous k-set agreement protocol for the most general crash failure model (i.e., t � n) is described
in Figure 1 (this is the classical protocol presented in distributed computing textbooks (e.g., [2, 11, 17]). A process p i

invokes the protocol by calling the function set agreement (v i) where vi is the value it proposes. If it does not crash,
pi terminates when it executes the return() statement.

The idea is for a process to decide the smallest estimate value it has ever seen. To attain this goal, the protocol is
based on the flooding strategy. Each process p i maintains a local variable esti that contains its current estimate of the
decision value. Initially, esti is set to vi the value proposed by pi. Then, during each round, each non-crashed process
first broadcasts its current estimate, and then updates it to the smallest values among the estimates it has received. (The
proof of this protocol appears as a particular case of the proof of the early-deciding protocol that follows.)

3.2 An early-deciding protocol

An early deciding k-set agreement protocol for the crash failure model is presented in Figure 2. This protocol (intro-
duced in [24]) is a generalization of the previous flood-set protocol. Its underlying principles are the following. Let
nbi�r	 be the number of processes from which a process p i has received messages during the round r (by definition,
nbi��	 � n). As crashes are stable (there is no recovery), we have nb i�r � �	 � nbi�r	.

This simple observation incite investigating the local predicate nb i�r � �	� nbi�r	 � k. When true, this predicate
means that pi is missing the current estimates from at most k � � processes among all the processes that were alive
at the beginning of the round r. Combined with the systematic use of the flooding strategy, this allows p i to conclude
that it knows one of the k smallest value present in the system.

Unfortunately, the local predicate nbi�r� �	� nbi�r	 � k is not powerful enough to allow pi to also conclude that
the other processes know it has one of the k smallest values. Consequently, p i cannot decide and stop immediately. To
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6 M. Raynal & C. Travers

Function set agreement (vi)
(01) esti � vi; nbi���� n; can deci � false;
(02) when r � �� �� � � � � bt�kc � � do % r: round number %
(03) begin round
(04) send (esti� can decidei) to all; % including pi itself %
(05) if can decidei then return (esti) end if;
(06) let nbi�r� = number of messages received by pi during r;
(07) let decidei = � on the set of can decidej boolean values received during r;
(08) esti � min�festj values received during the current round rg�;
(09) if

�
�nbi�r � ��� nbi�r� � k� � decidei

�
then can decidei � true end if

(10) end round;
(11) return (esti)

Figure 2: Early stopping synchronous k-set agreement: code for p i (t � n)

be more explicit, let us consider the case where the current estimate of process p i is the smallest value v in the system,
pi is the only process that knows v, pi decides v at the end of r, and crashes immediately after deciding. The other
processes can then decide k other values as v is no longer is the system from round r � �. An easy way to fix this
problem consists in requiring pi to proceed to the round r�� before deciding. When nb i�r��	�nbi�rj � k becomes
true, pi sets a boolean (can decidei) to true and proceeds to the next round r � �. As, before deciding at line 05 of
r��, pi has first sent the pair �esti� can decidei� to all processes, any process pj active during r�� not only knows
v but, as can decidei is true, knows also that v is one of k smallest values present in the system during r � �. The
protocol follows immediately from these observations.

The protocol is early-deciding, namely, a process that does not crash decides at the latest during the round lb f �

min�b f
k
c� �� b t

k
c� �� rounds. The correctness of the protocol and that lower bound are proved in Appendix A.

3.3 On the early decision predicate

Instead of using the local predicate nbi�r � �	 � nbi�r	 � k, an early stopping protocol could be based on the local
predicate faultyi�r	 � k r where faultyi�r	 � n�nbi�r	 (the number of processes perceived as faulty by p i)1. While
both predicates can be used to ensure early stopping, we show here that nb i�r � �	 � nbi�r	 � k is a more efficient
predicate than faultyi�r	 � k r (more efficient in the sense that it can allow for earlier termination). To prove it, we
show the following:

� (i) Let r be the first round during which the local predicate faulty i�r	 � k r is satisfied. The predicate
nbi�r � �	� nbi�r	 � k is then also satisfied.

� (ii) Let r be the first round during which the local predicate nb i�r � �	 � nbi�r	 � k is satisfied. It is possible
that faultyi�r	 � k r be not satisfied.

We first show �i�. As r is the first round during which faultyi�r	 � k r is satisfied, we have faultyi�r � �	 �
k �r � ��. So, we have faultyi�r	 � faultyi�r � �	 � k r � k �r � �� � k. Replacing the sets faultyi�r	 and
faultyi�r � �	 by their definitions we obtain �n� nbi�r	� � �n� nbi�r � �	� � k, i.e., �nbi�r � �	� nbi�r	� � k.

A simple counter-example is sufficient to show �ii�. Let us consider a run where f� � ak (a � �) processes
crash initially (i.e., before the protocol starts), and f� � k processes crash thereafter. We have n � f� � nb i��	 �
nbi��	 � n � �f� � f��, which implies that �nbi�r � �	� nbi�r	� � k is satisfied at round r � �. On an other side,
faultyi��	 � f� � ak � �k, from which we conclude that faultyi�r	 � r k is not satisfied at r � �.

This discussion shows that, while the early decision lower bound can be obtained with any of these predicates,
the predicate nbi�r � �	 � nbi�r	 � k is more efficient in the sense it takes into consideration the actual failure
pattern (a process counts the number of failures it perceives during each round, and not only from the beginning of
the run). Differently, the predicate faulty i�r	 � r k considers only the actual number of failures and not their pattern
(it basically always considers the worst case where there are k crashes per round, whatever their actual occurrence
pattern).

1This predicate is implicitly used in the proof of the (not-early deciding) k-set agreement protocol described in [17].
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Synchronous Set Agreement 7

4 Set Agreement in the Send Omission Failure Model

Let us now consider that, in addition to crash, a process can also fails by omitting to send messages. This means that,
during a round, a process can send a message to some processes and forget to send a message to some other processes.
Similarly to the crash failure model, the fact that a process p i does not receive a message from pj can allow pi to
conclude that pj is faulty, but differently, it cannot allow it to conclude that p j has crashed.

4.1 A simple protocol

A simple k-set agreement protocol that can cope with up to t � n faulty processes is described in Figure 3. This
protocol (a variant of a protocol introduced in [12]) is obtained from the basic flooding protocol by two simple modi-
fications. They concern the lines 04 and 05.

Function set agreement (vi)
(01) esti � vi;
(02) when r � �� �� � � � � bt�kc � � do % r: round number %
(03) begin round
(04) if �i is such that �r � ��k � i � rk� then send �esti� to all end if;
(05) esti � any estj received during r if any, unchanged otherwise
(06) end round;
(07) return (esti)

Figure 3: Send omission failures: Synchronous k-set agreement, code for p i (t � n)

The underlying idea is the following one. During a round r (� � r � bt�kc� �), only the processes p i such that
�r � ��k � i � rk send their estimate values. As far as message reception is concerned, at the end of a round, a
process pi defines its estimate esti as being any estimate value it has received during that round. If it has received no
estimate, esti keeps its previous value.

The protocol is based on the following simple principle: restricting each round to have at most k senders. As
�bt�kc� ��k � t and at most t processes crash or commit send omission failures, there is at least one round (say R)
that has a correct sender pc. This means that during R, all the processes receives an estimate from p c. Consequently,
any non-crashed process updates its estimate during R. Finally, at most k different estimates can be adopted during
a round (line 05). It follows that, from round R, there are at most k distinct values in the system. Interestingly, this
protocol associates specific senders with each round (which, in some sense, means that it forces the other processes to
simulate send omission failures during that round).

4.2 Early decision and strong termination

An early-deciding k-set protocol for the send omission failure model with t � n, is described in [25]. No process
decides after the round lbf � min�b f

k
c� �� b t

k
c� ��. Thanks to this protocol, we have the following theorem.

Theorem 1 lbf � min�b f
k
c � �� b t

k
c � �� is a lower bound on the number of rounds for solving k-set agreement in

the synchronous send omission failure model with t � n.

Proof The theorem follows from the following observations. (1) The very existence of the previous early-deciding
protocol. (2) The fact that lbf is a lower bound in the crash failure model. And, (3) the fact that the send omission
failure model includes (is more severe than) the crash failure model. � Theorem �

In addition to the termination, validity and agreement properties that defines the k-set agreement problem, the
early deciding protocol described in [25] enjoys the following noteworthy property:

� Strong termination: a process that does not crash decides.

It is worth noticing that each of these properties (early decision vs strong termination) is not obtained at the detriment
of the other. Strong termination is a property particularly meaningful when one is interested in solving agreement
problems despite omission failures. Intuitively, it states that a protocol has to force as many processes to decide.
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8 M. Raynal & C. Travers

Problem difficulty The non-early deciding protocol described in Figure 3 and the early deciding protocol described
in [25] shows that the k-set agreement problem has the same lower bounds in the crash model and the send omission
failure model. This means that, for that problem, the send omission failure model is not “more difficult” than the crash
model. As we are about to see, this is no longer true for the general omission failure model.

5 Set Agreement in the General Omission Failure Model when t � n��

Let us now consider the more severe failure model where a process can crash, omit to send messages or omit to receive
messages. We first address the case where no more than t � n�� processes can be faulty. This section presents an
optimal k-set agreement protocol suited to this context and states an open problem.

5.1 A strongly terminating protocol for t � n��

There is no way to force a process that commits receive omission failures to decide one of the k values decided by
the other processes. This is because, due to its faults, such a process can never know these values. In that case, the
protocol forces such processes to stop without deciding a value (let us remind that the problem requires “only” that the
correct processes decide). A faulty process that does not decide, returns a default value denoted � whose meaning is
“no decision” from the k-set agreement point of view. By a language abuse we then say that such a process “decides
�”.

Local variables The protocol, described in Figure 4, has been proposed in [26]. In addition to est i, a process pi
manages three local variables whose meaning is the following:

� trustedi represents the set of processes that pi currently considers as being correct. It initial value is � (the
whole set of processes). So, i � trustedi (line 04) means that pi considers it is correct. (If j � trustedi we say
“pi trusts pj”; if j �� trustedi we say “pi suspects pj”.)

� rec fromi is a round local variable used to contain the ids of the processes that p i does not currently suspect
and from which it has received messages during that round (line 05).

� Wi�j� is a set of process identities associated with the processes p� that are currently trusted by pi and that (to
pi’s knowledge) trust pj (line 06).

Function set agreement(vi)
(01) esti � vi; trustedi � 	; % r � � %
(02) for r � �� � � � � b t

k
c� � do

(03) begin round
(04) if �i � trustedi� then for each j � 	 do send�esti� trusted i� to pj end do end if;
(05) let rec fromi � fj 
 �estj � trustj� is received from pj during r � j � trustedig;
(06) for each j � rec fromi let Wi�j� � f� 
 � � rec fromi � j � trust�g;
(07) trustedi � rec fromi �

�
j 
 jWi�j�j � n� t

�
;

(08) if �jtrustedij � n� t� then return ��� end if;
(09) esti � min�estj received during r and such that j � trustedi�
(10) end round;
(11) return �esti�

Figure 4: General omission failures: strongly terminating k-set protocol, code for p i (t � n
� )

Process behavior The aim is for a process to decide the smallest value it has seen. But, due to the send and receive
omission failures possibly committed by some processes, a process cannot safely decide the smallest value it has ever
seen, it can only safely decide the smallest in “some subset” of values it has received. The crucial part of the protocol
consists in providing each process with correct rules that allow it to determine a “safe subset”.

During each round r, these rules are implemented by the following process behavior decomposed in three parts
according to the synchronous round-based computation model.

Irisa



Synchronous Set Agreement 9

� If pi considers it is correct (i � trustedi), it first sends to all the processes its current local state, namely, the
current pair �esti� trustedi� (line 04). Otherwise, pi skips the sending phase.

� Then, pi executes the receive phase (line 05). As already indicated, when it considers the messages it has
received during the current round, p i considers only the messages sent by the processes it trusts (here, the set
trustedi can be seen as a filter).

� Finally, pi executes the local computation phase that is the core of the protocol (lines 06-09). This phase is made
up of the following statements where the value n� t constitutes a threshold that plays a fundamental role.

– First, pi determines the new value of trustedi (lines 06-07). It is equal to the current set rec from i

from which are suppressed all the processes pj such that jWi�j�j � n � t. These processes pj are no
longer trusted by pi because there are “not enough” processes trusted by p i that trust them (pj is missing
“Witnesses” to remain trusted by pi, hence the name Wi�j�); “not enough” means here less than n� t.

– Then, pi checks if it trusts enough processes, i.e., at least n � t (line 08). If the answer is negative, p i
discovers that it has committed receive omission failures and cannot safely decide. It consequently halts,
returning the default value �.

– Finally, if it has not stopped at line 08, pi computes its new estimate of the decision value (line 09)
according to the estimate values it has received from the processes it currently trusts.

A proof of this protocol can be found in [26]. The role of the W i�j� control variable and the associated predicate
jWi�j�j � n� t are central to ensure the strong termination property. Let p i be a faulty process that neither crashes,
nor commits receive omission failures (i.e., it commits only send omission failures). Let us observe that, at each round,
such a pi receives a message from each correct process pj . This means that, with respect to each correct process pj ,
we always have jWi�j�j � n� t (lines 06-07). Consequently, pi always trusts all correct processes, and so we always
have jtrustedij � n� t. It follows that such a process pi cannot stop at line 08, and decides consequently at line 11.

5.2 A first open problem

As far as early-decision is concerned, to our knowledge, only one protocol has been designed for the general omission
failure model with t � n��. This protocol (introduced in [26]) enjoys the following properties:

� It is strongly terminating.

� Any process that commits only send omission failures (and does not crash) decides in at most lb f � min�b f
k
c�

�� b t
k
c � ��, which shows that this is a lower bound on the time complexity for the k-set agreement problem in

the general omission failure model where t � n��.

� A process that commits receive omission failures (and does not crash) executes at most min�d f
k
e� �� b t

k
c� ��

rounds.

The following problem remains open: Is d f
k
e� � a tight lower bound for a process that commits receive omission

failure (and does not crash) to stop when f � k x� y, with x and y being integers such that � � y � x.

6 Set Agreement in the General Omission Failure Model when t � n��

Let us finally consider the general omission failure model when the “majority of correct processes” assumption is no
longer valid. This section first shows that there is no k-set agreement protocol that can cope with general omission
failures when t � k

k��n. Then, it presents a protocol showing that t � k
k��n is a tight lower bound. Finally, problems

are stated, that remain open in the general omission failure model.
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10 M. Raynal & C. Travers

6.1 A resilience bound for k-set agreement

Several k set agreement protocols have been designed for the crash failure and the send omission failure models. They
all consider the most general case, i.e., t � n. Very differently, to our knowledge, only one k-set protocol has been
designed for the general omission failure model (the protocol presented in the previous section [26]), and that protocol
considers t � n��. (Several protocols have been designed for the particular case k � � -consensus problem-, e.g.,
[21, 23, 27], where it is shown that t � n�� is an upper bound on the value of t). So the following fundamental
question comes immediately to mind: Does t � n�� define the upper bound for the value of t when one is interested
in solving the k set agreement problem, for any k � �? This section shows that it is not. The lower bound on
the maximal number of faulty processes is t � k

k��n. The next subsection shows that this lower bound it tight by
providing a corresponding protocol.

Theorem 2 There is no k-set agreement protocol in synchronous systems prone to general omission failures when
t � k

k��n.

The proof is a straightforward generalization of proofs that show there is no uniform consensus protocol in syn-
chronous systems prone to general omission failures when t � n�� [21, 27]. It is based on a simple classical parti-
tioning argument.
Proof In order to etablish a contradiction, let us assume that t � k

k��n and there is an algorithmA that solves the k-set
agreement problem in synchronous systems where at most t processes can commit general omission failures. Let us
partition the set of processes in k�� sets S�� � � � Sk�� such that �� � i � k 
 jSij � n� t and jSk��j � n�k�n� t�.
As t � k

k��n, it follows that t � k�n � t�, from which we have jSk��j � n� k�n � t� � n � t. We now exhibit a
run R of algorithmA in which k � � distinct values are decided: a contradiction.

In the run R, every process that belongs to the same set S i initially proposes the same value vi. Moreover, the
values vi are choosen such that i �� j � vi �� vj . Processes that belong to set S�� � � � � Sk are faulty whereas processes
in set Sk�� are correct. The number of faulty processes is k�n � t� � t. We now describe the behavior of the faulty
processes during run R. Let px be a faulty process that belongs to a set Si (i � k). From the very beginning of the
execution, px commits

� a send omission failure for each message it has to send to a process that does not belong to S i,

� a receive omission failure each time it has to receive a message from a process that belong to set S k��.

For each � � i � k � �, we construct a run Ri as follows: In run Ri, every process that does not belong to set S i

crashes before sending any message. Processes in set Si are correct. As in run R, all processes in Si initially propose
the same value vi. In runRi, messages are only exchanged between processes in set S i. Moreover, for any px� py � Si,
each time algorithmA requires px to send a message to py, this message is delivered by py. As the processes in Si are
correct, it follows from the correction of algorithmA that they decide. Since the only value that they hear of is v i (the
only value proposed by processes in S i), they decide that value.

Let us now consider the processes in Si during run R. Let us first observe (O1) that a process px � Si does
not receive messages sent by any process that does not belong to S i. If i � k � � (i.e., px belongs to Sk�� and is
a correct process), this is because a any process pz that does not belong to Sk�� commits a send omission failure
each time it has to send a message to px. In the other case (i �� k � �), px does not receive messages from any
pz � Sj � j �� i	j �� k�� since these processes commit send omission failures each time they have to send a message
to px; px neither receive message from any pz � Sk�� since it commits a receive omission failure with respect to any
process that belongs to Sk��.

As in run Ri, for any px� py � Si each time algorithm A requires px to send a message to py, this message is
delivered by py (O2). This is because, for any set Si, a process that belongs to Si does not commit omission failures
with respect to the other processes of Si. Consequently, it follows from the observations (O1) and (O2) that runs R
and Ri are indistinguishable for any process that belong to S i. This implies that in the run R, for each � � i � k � �,
any px � Si decides vi, from which we conclude that k � � values are decided. �Theorem �

6.2 A protocol for t � k
k��

n

This section presents a new, yet very simple, protocol that solves the k-set agreement problem despite up to t processes
that commit general omission failures in a synchronous system where t � k

k��n. To our knowledge, the design of
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Synchronous Set Agreement 11

such a protocol has never been addressed before. This protocol requires t � k � � rounds. To make more visible the
meaning of this number, it can be rewritten as �t � �� � �k � ��. It is easy to see that for k � �, this is the t � �
consensus lower bound, and t � k

k��n becomes t � n��, which is a necessary condition for that problem in the
general omission failure setting (see the “Open problems” section that follows).

Function set agreement(vi)
(01) esti � vi; trustedi � 	; % r � � %
(02) for r � �� � � � � t� �� k do
(03) begin round
(04) for each j � trustedi do send esti to pj end do;
(05) foreach j � trustedi do
(06) if (estj received from pj ) then esti � min�esti� estj�
(07) else trustedi � trustedi � fjg
(08) end if
(09) end do;
(10) if �jtrustedij � n� t� then return ��� end if;
(11) end round;
(12) return �esti�

Figure 5: k-set protocol for general omission failures, code for p i (t � k
k��n)

Differently from its proof that is not trivial (see Appendix B), the design of this protocol is particularly simple.
It is similar to the early-deciding uniform consensus protocol presented in [23] from which the early decision part
is suppressed. More precisely, the protocol can be seen as managing two variables, a control variable (a set denoted
trustedi that contains the processes it considers as non-faulty), and a data variable, namely, its current estimate est i.
More specifically, we have the following:

� A process pi sends its current estimate only to the processes in trustedi, and accept receiving estimates only
from them. Basically, it communicates only with the processes it trusts (lines 04-09). In that way, if during a
round r, pj commits a send omission failure with respect to pi, or if pi commits a receive omission failure with
respect to pj , pi and pj will not trust each other from the round r � �. Interestingly, this ensures that, if p i is
correct, it will always trust at least n� t processes. So, if during a round r, a process finds that it trusts less than
n� t processes, it can conclude that it is faulty, and consequently decides the default value � (line 10).

� Each data local variable esti is used as in the previous protocols. It contains the smallest value that p i has ever
received from the processes it currently trusts.

This simple management of the variables trustedi and esti, solves the k-set agreement problem despite up to
t � k

k��n processes prone to general omission failures. This protocol is proved in Appendix B. It is not strongly
terminating.

6.3 Four more open problems

Concerning the k-set agreement problem in synchronous systems where up to to t � k
k��n processes can commit

general omission failures, four problems (at least) remain open.

� Is t � k � � a lower bound on the number of rounds? (Let us remind that t � � is the lower bound for the
consensus problem [1, 8], i.e., when k � �.)

� How to design an early-deciding protocol? Which is the corresponding early-deciding lower bound?

� Is it possible to design a strongly terminating protocol? If the answer is “yes”, design such a protocol.

� Is there a proof simpler than the one described in Appendix B, for the protocol described in Figure 5.

These questions remain open challenges for people interested in lower bounds and synchronous agreement problems.
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A Proof of the early-deciding protocol (crash failures)

This appendix shows that the set-agreement protocol suited to the crash failure model, that is presented in Figure 2, is
correct.

Lemma 1 [Validity] A decided value is a proposed value.

Proof The proof of the validity consists in showing that an est i local variable always contains a proposed variable.
This is initially true (round r � �). Then, a simple induction reasoning proves the property: assuming the property is
true at a round r � �, it follows from the protocol code (lines 04 and 08), and the fact that a process receives at least
the value it has sent, that the property remains true at round r � �. �Lemma �

Lemma 2 [Termination] Every correct process decides.

Proof The proof is an immediate consequence of the fact that a process executes at most bt�kc � � rounds and the
computation model is the synchronous round-based computation model. � Lemma �

Lemma 3 [Agreement] No more than k different values are decided.

Proof Let EST ��	 be the set of proposed values, and EST �r	 the set of est i values of the processes that decide during
r or proceed to r � � (r � �). We first state and prove three claims.

Claim C�. �r � �: EST �r � �	 
 EST �r	.
Proof of the claim. The claim follows directly from the fact that, during a round, the new value of an est i variable
computed by a process is the smallest of the estj values it has received. So values can only disappear, due to the
minimum function used at line 08 or to process crashes. End of the proof of the claim C�.

Claim C�. Let pi be a process such that can decidei is set to true at the end of r. Then esti is one of the k smallest
values in EST �r	.
Proof of the claim. Let v be the value of est i at the end of r (v � EST �r	). If can decidei is set to true at the end
of r, nbi�r � �	 � nbi�r	 � k is satisfied or pi has received a message carrying a pair �v�� true�, and v� has been
taken into account when computing the new value of est i at line 08 during round r, i.e., v � v�. So, there is a chain
of processes j � ja� ja��� � � � � j� � i that has carried the boolean value true to pi. This chain is such that a � �,
nbj �r � a � �	 � nbj �r � a	 � k is satisfied, and any value v � sent by a process participating in this chain is such
that v � v� (as each process in the chain computes the minimum of the values it has received). In particular, we have
v � v�� where v�� is the value sent by the first process in the chain. (The case a � � corresponds to the “one process”
chain case where the local predicate is satisfied at pi.) Due to claim C�, EST �r	 
 EST �r � a	. Consequently, if v ��

is one of the k smallest values of EST �r � a	, v � v �� implies v is one of the k smallest values of EST �r	.
So, taking r�a � r�, we have to show that nbj �r���	�nbj�r

�	 � k implies that the value v�� of estj at the end of
r�, is one of the k smallest values of EST �r �	. As the crashes are stable, nbj �r� � �	� nbj �r

�	 � k, allows concluding
that pj has received a message from all but at most k � � processes that where not crashed at the beginning of r �. As
pj computes the minimum of all the values it has received, and misses at most k � � values of EST �r �	, this means
that the value v�� computed by pj at the end of r� is one of the k smallest values present in EST �r �	. End of the proof
of the claim C�.

Claim C�. Let pi be process that decides (at line 05 or 11) during the round r. Its boolean flag can decide i is then
equal to true.
Proof of the claim. The claim is trivially true if p i decides at line 05. If pi decides at line 11, it decides during the last
round, namely r � bt�kc� �. Let us consider two cases.

� At round r, pi receives from a process pj a message such as can decidej � true. In that case, pi sets
can decidei to true at line 09, and the claim follows.

PI n ˚ 1791



ii M. Raynal & C. Travers

� In the other case, no process pj has decided at a round r � � r (otherwise, pi would have received from pj
a message such that can decidej � true). Let t � k x � y with y � k (hence, x � bt�kc � r � �).
As nbi�r� � �	 � nbi�r

�	 � k was not satisfied at each round r � such that � � r� � x � r � �, we have
nbi�x	 � n � kx. Moreover, as pi has not received from any pj a message such that can decidej is equal to
true, if, during r, pi does not receive a message from pj it is because pj has crashed. So, as at most t processes
crash, we have nbi�x � �	 � n � t � n � �k x � y�. It follows that nbi�x	 � nbi�x � �	 � y � k. the claim
follows.

End of the proof of the claim C�.

To prove the lemma, we now consider two cases according to the line during which a process decides.

� No process decides at line 05. This means that a process p i that decides, decides at line 11 during the last round.
Due to the claim C�, such a pi has then its flag can decidei equal to true. Due to the claim C�, it decides one
of the k smallest values in EST �bt�kc� �	.

� A process decides at line 05. Let r be the first round during which a process p i decides at that line and v be the
value it decides. Since pi decides at r:

– pi has set its boolean flag can decidei to true at the end of r��, and its estimate esti � v is consequently
one of the k smallest values in EST �r� �	 (Claim C��. It follows that two processes that decide during r
decide values that are among the the k smallest values in EST �r � �	.

– pi has sent to all the processes (line 04) the pair �v� true� before deciding at line 05 during r. This implies
that a (non-crashed) process pj that does not decide at r receives v at r and uses it to compute its new value
of estj . Due to the minimum function used at line 08, it follows that, from now on, we will always have
estj � v.

Let us assume that pj does not crash. If it decides, it decides at r � � r, and then it necessarily decides a
value v� � v. As EST �r�	 
 EST �r � �	 (claim C�), we have v � � EST �r � �	. Combining v� � v,
v� � EST �r��	, and the fact that v is one of the k smallest values in EST �r��	, it follows that the value
v� decided by pj is one of the k smallest values in EST �r � �	.

�Lemma �

Theorem 3 [k-Set Agreement] The protocol solves the k-set agreement problem.

Proof The proof follows from the Lemmas 1, 2, and 3. � Theorem �

Theorem 4 [Early Stopping] No process halts after the round min�bf�kc� �� bt�kc� ��.

Proof Let us first observe that a process decides and halts at the same round; this occurs when it executes return (est i)
at line 04 or 11. As observed in Lemma 2, the fact that no process decides after bt�kc � � rounds is an immediate
consequence of the code of the protocol and the round-based synchronous model. So, considering that � � f � t
processes crash, we show that no process decides after the round bf�kc � �. Let f � xk � y (with y � k). This
means that x � bf�kc.

The worst case scenario is when, for any process p i that evaluates the local decision predicate nbi�r � �	 �
nbi�r	 � k, this predicate is false as many times as possible. Due to the pigeonhole principle, this occurs when
exactly k processes crash during each round. This means that we have nb i��	 � n � k� � � � � nbi�x	 � n � kx
and nbi�x � �	 � n � f � n � �kx � y�, from which we conclude that r � x � � is the first round such that
nbi�r��	�nbi�r	 � y � k. It follows that the processes pi that execute the round x�� set their can decidei boolean
to true. Consequently, the processes that proceed to x � � decide at line 05 during that round. As x � bf�kc, they
decide at round bf�kc� �. �Theorem �
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B Proof of the protocol for general omission failures when t � k
k��n

This appendix shows that the set-agreement protocol for the general omission failure model, that is presented in Figure
5, is correct. The proof uses the following notations :

� C is the set of correct processes in a given execution.

� xi�r	 denotes the value of pi’s local variable x at the end of round r.
By definition, trustedi��	 � �. When j � trustedi, we say that “pi trusts pj” (or “pj is trusted by pi”).

� Completingi�r	 � fi 
 pi proceeds to r � �g. By definition, Completingi��	 � �. If r � t � k � �, “pi
proceeds to r � �” means pi executes line 12.

� EST �r	 � festi�r	 
 i � Completing �r	g. By definition EST ��	 = the set of proposed values.
EST �r	 contains the values that are present in the system at the end of round r.

� For any relation R � f�� ���� ���g� PR�v� r� � fi 
 �i � Completing�r	�	 �esti�r	R v�g. As an example,
P��v� r� is the set of processes pi that proceed to r � � with an estimate equal to v at the end of round r (i.e.,
such that esti�r	 � v).

The proof of the following relations is left to the reader:

Completing�r� �	 
 Completing�r	�

�i � Completing�r� �	 
 trustedi�r � �	 
 Completing�r	�

�i � Completing�r� �	 
 trustedi�r � �	 
 trustedi�r	�

�i � Completing�r � �	 
 esti�r � �	 � esti�r	�

The next lemma states that the sequence of set values EST ��	, EST ��	,� � � is monotonic and never increases.

Lemma 4 �r � � 
 EST �r � �	 
 EST �r	.

Proof The lemma follows directly from the fact that, during a round, values can only disappear because (1) the new
value of esti computed by a process is the smallest of values it has received, and (2) some processes may stop sending
or receiving messages. �Lemma �

Lemma 5 jEST ��	j � t� �.

Proof Let vmin � minfesti��	� i � Cg. The proof uses the following sets of processes/values:
F� � fi � �� C 
 esti��	 � vming,
F� � fi � �� C 
 esti��	 � vming,
V� � fv 
 �i � F� such that v � esti��	g,
V� � fv 
 �i � F� such that v � esti��	g.
F� (resp., F�) is the set of faulty processes that propose a value strictly smaller (resp., strictly greater) than vmin.

V� (resp. V�) is the set of values strictly smaller (resp., strictly greater) than vmin that are proposed by faulty pro-
cesses.

Let pi be a correct process. During the first round, it receives and processes all the values proposed by the
correct processes. As a process updates its estimate by taking the smallest value it has received (line 06), we have
esti��	 � vmin. It follows that pi can update its estimate only to vmin or a value sent by a process pj 
 j � F�, i.e.,
festi��	 
 i � Cg 
 fvming 
 V� (O1).

Let i � F�. As esti��	 � vmin, pi can update its estimate only to a value received from a process that belong to
F�. This implies that festi��	 
 i � F�g 
 V� (O2).

Let i � F�. In that case, pi can adopt a value from any process in �. It follows that, at the end of the first round,
there are at most jF�j distinct values among the processes that belong to F� (O3).

From (O1) and (O2), we obtain: festi��	 
 i � C 
 F�g 
 fvming 
 V�. Moreover, we have jV�j � jF�j
(O4). From (O3), (O4) and the fact that jF�j � jF�j � t, we conclude that at the end of the first round we have
jfesti��	 
 i � Completing��	gj � t� �. �Lemma �
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Lemma 6 �r� � � r � t� k � �, we have jEST �r	j � t� r � �.

Proof The proof is by induction on the round number r. For all r, � � r � t � k � �, let HR�r� be the pred-
icate jEST �r	j � t � r � �. The base case of the induction (i.e., HR���) follows directly from Lemma 5. So,
considering the induction assumption (namely, HR�x� is satisfied for all x such that � � x � r), we prove that
HR�r� is satisfied. Let us first observe that if jEST �r� �	j � t� �r� ��� �, HR�r� follows directly from Lemma 4
as jEST �r	j � jEST �r��	j � t�r��. So, the rest of the proof assumes jEST �r��	j � t��r����� � t�r��.

In the following, we consider a particular value vm � EST �r � �	 and the set of processes that have an estimate
equal to vm at the end of the round r � �. The value vm is defined as follows:

vm � maxfv 
 jP��v� r � ��j � n� tg

(among the values of EST �r� �	, vm is the greatest one that is the estimate of less than n� t processes that complete
the round r � �).

We claim that vm exists (Claim C1) and vm �� EST �r	 (Claim C2). Assuming these claims, it follows from
vm � EST �r��	, and jEST �r��	j � t� r�� (Case assumption), that jEST �r	j � t� r��, which provesHR�r�,
from which the Lemma follows. The rest of the proof concerns the claims C1 and C2.

Claim C1: �v such that jP��v� r � ��j � n� t.
Proof of the Claim C1. As r � t � k � � (Lemma assumption), we have t � r � � � k. Combining this with
jEST �r � �	j � t� r � � (Case assumption), we obtain jEST �r � �	j � k.

We now show the existence of v by contradiction. Let us suppose that each value v � � EST �r � �	 is such that
jP��v

�� r � ��j � n � t (i.e., there are at least n � t copies of each value present in the system at the end of round
r � �). As jEST �r � �	j � k and at most n processes complete round r � �, the inequality n � �k � ���n� t� must
hold. Thus, �k � ��t � �k � ��n � n from which we obtain that t � kn

k�� . This contradicts the upper bound on t,

namely, kn
k�� � t. End of the Proof of the Claim C1.

Claim C2: vm �� EST �r	.
Proof of the Claim C2. If esti��	 � v, we say “pi learns v during the (fictitious) round �”. More generally, for
d � �, we say “pi learns v during round d” if pi (1) completes the round d, (2) has never received v by the end of
round d � � and, (3) has an estimate equal to v at the end of round d. This means that (1) i � Completing�d	, (2)
�d� � d 
 esti�d

�	 � v and, (3) esti�d	 � v. We consider two cases: no process learns vm during round r� � (case 1);
a process learns vm during round r � � (case 2).

Case 1: No process learns vm during r � �.
We claim (Sub-claim C2.1) esti�r	 � vm � jtrustedi�r	j � n � t. The proof that vm �� EST �r	 follows directly
from this claim as then a process pi that sets its estimate to vm after having executed the lines 05-09 during round r
necessarily returns� at line 10. This implies that any process p i that completes round r is such that esti�r	 �� vm, i.e.,
vm �� EST �r	.

The proof of C2.1 is based on the following properties (implicitly defined in the context of the case assumption):
Property P1: �i � P��vm� r � �� 
 P��vm� r � �� 
 �� trustedi�r � �	.
This property states that any process px completing the round r � � with an estimate value equal to vm, is not trusted
by any process pi that completes the round r � � with an estimate value greater than vm.
Property P2: �x � Completing�r	� 	 �estx�r	 � vm�� x � P��vm� r � ��.
This property states that any process px completing the round r with an estimate value equal to vm, was such that
estx�r � �	 � vm.
We prove first P1 and P2, and then C2.1.

Property P1: �i � P��vm� r � �� 
 P��vm� r � �� 
 �� trustedi�r � �	.
Proof of P1. Let i � P��vm� r � �� and x � P��vm� r � ��. Let us first observe that it follows from the fact that no
process learns vm during round r � � that P��vm� r � �� 
 P��vm� r � ��. Consequently, x � P��vm� r � �� and
thus a message sent by px during round r � � carries vm�� estx�r � �	� (line 04).

As esti�r� �	 � vm and px sends vm during round r� �, it follows from the min�� function used to compute new
estimates (line 06) that either pi does not receive the message from px during round r� � or pi does not trust px at the
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beginning of round r � �. In both cases, p i does not trust px at the end of round r � �, i.e., x � �� trustedi�r � �	.
End of the Proof of P1

Property P2: �x � Completing�r	� 	 �estx�r	 � vm�� x � P��vm� r � ��.
Proof of P2. Let x � Completing�r	 such that estx�r	 � vm. Due to the min�� function used by a process to update
its estimate (line 06), x �� P��vm� r � �� (1).

Consider now a process pi that belongs to P��vm� r� ��. Let us observe that only the processes in P��vm� r� ��
can send vm during the round r. Due to property P1, when p i completes the round r��, it does not trust the processes
belonging to P��vm� r���. Consequently, pi does not consider the messages sent during the round r by the processes
in P��vm� r � ��. It follows that esti�r	 �� vm, from which we conclude that x �� P��vm� r � �� (2).

As the sets P��vm� r � ��, P��vm� r � �� and P��vm� r � �� define a partition of Completing�r � �	, and
x � Completing�r	 
 Completing�r � �	, it follows from (1) and (2) that x � P��vm� r � ��. End of the Proof of
P2.

Claim C2.1: estx�r	 � vm � jtrustedx�r	j � n� t.
Proof of the Claim C2.1. Let x � Completing�r	 such that estx�r	 � vm. Let us first consider a process pi that belongs
to P��vm� r���. If pi sends messages during round r, these messages necessarily carry a value� vm (line 04). Since
estx�r	 � vm, either px does not receive this message from pi (lines 06-08) or px does not trust pi at the beginning of
round r. In both cases, we have i �� trustedx�r	, from which we conclude that P��vm� r� �� 
 �� trustedx�r	 (1).

Let now pi be a process that belongs to P��vm� r � ��. Due to property P2, x � P��vm� r � ��. Consequently,
x �� trustedi�r � �	 (property P1). This implies that pi does not send a message to px during round r (line 04).
Thus, i �� trustedx�r	. Since this holds for any process that belongs to P��vm� r � ��, we have P��vm� r � �� 

�� trustedx�r	 (2).

By combining (1) et (2), we obtain trustedx�r	 
 � � �P��vm� r � �� 
 P��vm� r � ���. Moreover, as only
processes that belong to Completing�r � �	 may send messages during round r, it follows from the fact that the
sets P��vm� r � ��� P��vm� r � �� and P��vm� r � �� define a partition of Completing�r � �	 that trustedx�r	 

P��vm� r � ��. Finally, due to the definition of vm, we have jP��vm� r � ��j � n � t from which we conclude that
trustedx�r	j � n� t. End of the Proof of the Claim C2.1.
End of the Proof of Case 1 of the Claim C2.

Case 2: There is a process that learns vm during round r � �.
We claim (Claim C2.2), in the case assumptions, vm � max�EST �r � �	�. We prove by contradiction that vm ��
EST �r	. Let us assume that there is a process px such that x � Completing�r	 	 estx�r	 � vm. Due to the
min�� function used by px to update its estimate (line 06), px receives during round r from the processes it trusts
only values � vm. As (1) only processes that belong to P��vm� r � �� can send values � vm during round r and (2)
P��vm� r � �� � P��vm� r � �� (Claim C2.2), px can only trust processes that belong to P��vm� r � ��. Moreover,
due to the very definition of vm, jP��vm� r � ��j � n � t. This implies that jtrustedx�r	j � n � t from which we
conclude that px returns � at line 12: a contradiction with x � Completing�r	.

Claim C2.2: vm � max�EST �r � �	�. (Let us remind that, in the context of this claim, jEST �r � �	j � t � r � �
and at least one process learns vm during r � �.)
Proof of the Claim C2.2. Let � � jfv 
 v � EST �r � �	 	 v � vmgj and, � � jfv 
 v � EST �r � �	 	 v � vmgj.
To prove that vm is the greatest value in EST �r � �	, the rest of the proof establishes � � �. Let us notice that
jEST �r � �	j � �� � � � � t� r � �.

Let us define three sets of processes, denoted A�B and C, as follows:

� Let A � fi 
 esti��	 � vmg. A is the set of processes that propose a value strictly smaller than vm. Since values
can only disappear while rounds progress (Lemma 4), clearly jAj � �.

� Let B � fi 
 esti�r � �	 � vm 	 i � Completing�r � �	g (or B �
S
v�EST �r��	�v�vm

P��v� r � ��). B
is the set of processes that have an estimate strictly greater than vm at the end of round r � �. Due to the very
definition of vm, for each v � EST �r � �	 such that v � vm, we have jP��v� r � ��j � n� t. It follows that
jBj � ��n� t�.
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� Let px be a process that learns vm during round r � �. We claim (Claim C2.3) that there is a chain of r distinct
processes pvm
��� � � � � pvm
r����� px� such that �� 
 � � � � r�� 
 pvm
�� learns vm at round � from pvm
����

(hence, estvm
����	 � vm). The set C is the set of processes that participate in the chain that carries vm to px.
More precisely, C � fv���� � � � � v�r � �� � xg. We clearly have jCj � r.

We now show that any pair of sets A�B and C has an empty intersection.

� A � B � � and A � C � �.
Let a � A (esta��	 � vm) and x � B
C. There is a round d � r�� such that estx�d	 � vm (O1). (This follows
from the following observations. If x � B, taking d � r � � establishes (O1). If x � C, (O1) follows from the
definition of the set C,namely, px learns vm during some round d � r � �, at the end of which estx�d	 � vm.)

It follows from (O1) and the relation � �� � � 
 � � � � �� � r � � � estx��	 � estx��
�	 that estx��	 � vm.

Consequently, as esta��	 � vm (definition A), we have A � B � � and A � C � �.

� B � C � �.
Let px be a process that belongs to C. If x �� Completing�r��	, x �� B (a process that belongs to B completes
round r � �). If x � Completing�r � �	, as there is a round �, � � � � r � �, such that estx��	 � vm, and
due to the min�� function an estimate value can only decrease, we have est x�r � �	 � vm. Consequently, as
every process py that belongs to B is such that esty�r� �	 � vm, we have x �� B, from which we conclude that
B � C � �.

We have established the following relations:

� (1) A � B � �, A � C � � and B � C � �,

� (2) jAj � �, jBj � ��n� t� and jCj � r,

� (3) �� � � � � t� r � �.

By combining (1) and (2) we obtain: n � � � ��n � t� � r, i.e., n � ��n � t� � r � �. The last inequality
combined with (3) gives n � ��n � t� � r � t � r � � � � � � from which we have: n � t � � � ��n � t � ��.
This implies � � �2. Since � is the number of values greater than vm in EST �r� �	, it follows that vm is the greatest
value that belongs to EST �r � �	. End of Proof of Claim C2.2.

Claim C2.3: Let pi be a process that learns a value v at round d � �. There is a chain of d � � distinct processes
pv
��� � � � � pv
d��� pi� such that � �� � � � � d 
 pv
�� learns v at round � from pv
����.
Proof of Claim C2.3. We prove the claim by induction on d.

[Base case: d � �] Suppose that a process pi learns a value v during the first round. Then, a process p v
�� has sent
v to pi during that round. It follows that there are two distinct processes p i and pv
�� such that pv
�� learned v during
the round � and and pi learns it during the first round.

[Induction case: d � �] Suppose the claim holds for � � d � � d. Let pi be a process that learns a value v at round
d from some process px. During the round d, pi can process messages only from processes it has never suspected
from the first round until the round d� � (included). It follows that p i has received a message from px at each round
�� � � � � d��. Since a process that learns a value during a round forwards that value during the next round, we conclude
that px learnt v at round d� �. By applying the induction hypothesis to px, we conclude that there is a chain of d� �
distinct processes that participated in forwarding the value v to p i (that learns it at round d). End of the Proof of the
Claim C2.3.
End of the Proof of Case 2 of the Claim C2.

�Lemma �

Theorem 5 [Agreement] No more than k different values are decided.
2Notice that n� t� � �� �. Let us remind that the protocol assumes k � t � kn

k��
(if k � t a one round protocol solves trivially the problem).

Suppose t � n��. As t � kn
k��

, we then have n�� � kn
k��

, which implies n�� � k. On the other side k � t, i.e., k � n��. A contradiction.
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Proof Let us first notice that a decided value belongs to the set EST �t�k��	. Due to Lemma 6, jEST �t�k��	j �
t� �t� k � �� � � � k. Consequently, at most k distinct values are decided. �Theorem �

Theorem 6 [Termination] Every correct process decides.

Proof
Let us first observe that it follows from the protocol text that a process executes at most t� k�� rounds (line 02).

A process that does not crash nor returns � at line 08 decides when it executes the return statement of line 12. As a
correct process does not crash, we have to show that a correct process never returns � at line 08. More precisely, we
prove by induction on the round number the following property: �i � C��r� � � r � t� k � � 
 (1) C 
 trusted i�r	
and, (2) C 
 Completing�r	. Let pi be a correct process.

� [Base case] Let us consider any correct process pj . Let us first observe that we have initially trustedj ��	 � �
(line 01). It follows then from line 04 that p j sends a message to pi during the first round. As both pi and
pj are correct and j � trustedi��	, this message is received and processed (at line 06) by p i during the first
round. Consequently, pi does not remove j from trustedi. Since this is true for any correct process pj , C 

trustedi��	 which proves item (1). As jCj � n � t, pi does not return � at line 08 during the first round, i.e.,
i � Completing��	 which proves item (2).

� [Induction case] Let us assume that properties (1) and (2) hold from the first round until round r � ��r � ��
for any correct process. First of all, let us notice that any correct process p j sends a message to pi during round
r. This follows from the induction assumption: as j � Completing�r � �	 and C 
 trusted j �r � �	, pj send a
message to pi at line 04. Moreover, as both pi and pj are correct and j � C 
 trustedi�r � �	, this message is
received and processed by pi during round r. The proof is now the same as the base step, replacing trusted i��	
by trustedi�r	, and Completing��	 by Completing�r	.

�Theorem �

Theorem 7 [Validity] A decided value is a proposed value.

Proof Let us first observe that a process pi decides the value esti�t� k��	. This means that the set of decided value
is a subset of EST �t � k � �	. Due to Lemma 4, EST �t � k � �	 
 EST ��	, which is the set of proposed values.

�Theorem 
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