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Abstract:  The k-set agreement problem is a paradigm of coordination problems encountered in distributed com-
puting. The parameter k& defines the coordination degree we are interested in. The case £ = 1 corresponds to the
well-known uniform consensus problem. More precisely, the k-set agreement problem considers a system made up of
n processes where each process proposes a value. It requires that each non-faulty process decides a value such that a
decided valueis a proposed value, and no more than & different values are decided.

This paper visits the k-set agreement problem in synchronous systems where up to ¢ processes can experience
failures. Three failure models are explored: the crash failure model, the send omission failure model, and the general
omission failure model. Lower bounds and protocols are presented for each model. Open problems for the general
omission failure model are stated. This paper can be seen as a short tutorial whose aim is to make the reader familiar
with the k-set agreement problem in synchrony models with increasing fault severity. An important concern of the
paper is simplicity. In addition to its survey flavor, several results and protocolsthat are presented are new.
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Une visite guidée de I’accord ensembliste synchrone
Résumé : Ce rapport constitue une visite guidé de I’ accord ensembiliste synchrone en preésence de crashs, de fautes
d’ omission en émission, et de fautes d’ omission en émission et réception.

Mots clés : Systemesrépartis asynchrones, Tol érance aux fautes, Crash de processus, Accord ensembliste; Omission
en émission, Omission en réception.



Synchronous Set Agreement 3

1 Introduction

Coordination problems and k-set agreement Coordination problems are central in the design of distributed sys-
tems where processes have to exchange information and synchronize in order to agree in one way or another (for
otherwise, they would behave as independent Turing machines, and the system would no longer be a distributed sys-
tem). This paper surveys one distributed coordination problem, namely, the k-set agreement problem. This survey
focuses on recent results in synchronous systems.

The k-set agreement problem has been introduced in [5]. It can can be defined as follows. Considering a system
made up of n processes where each process proposes a value, and up to ¢ processes can experience failures, each
non-faulty process has to decide a value such that a decided value is a proposed value, and no more than & different
values are decided. The well-known consensus problem is nothing el se than the 1-set agreement problem, where the
non-faulty process have to decided the same value. The parameter k of the set agreement can be seen as the degree of
coordination associated with the corresponding instance of the problem. The smaller k, the more coordination among
the processes: k = 1 means the strongest possible coordination, while & = n means no coordination.

Be the message-passing system synchronous or asynchronous, the k-set agreement problem can always be solved
despite process crash failures, assoon as k > t¢. A trivia solutionisasfollows: k predefined processes broadcast their
valueto all the processes, and a process simply decides the first value it receives. (It is easy to see that, whatever the
crash pattern, at most k£ values are sent, and at least one valueis sent.)

k-set agreement solvability  Surprisingly, while the k-set agreement can betrivially solved in asynchronous systems
when the coordination degree k is such that & > t, thereis no deterministic protocol that can solveit in such asystem
assoonask < t[4, 15, 28]. Thisimpossibility result generalizes the impossibility to solve the consensus problemin
asynchronous systems where even only one process can crash (case k = ¢t = 1) [9]. Thismeansthat solving the &-set
agreement problem in an asynchronous system requires either to enrich this system with additional power (such asthe
one provided by failure detectors[14, 19] or random numbers[20]), or restrict the input vectors that the processes can
collectively propose([3, 18].

Differently, the k-set agreement problem can always be solved in synchronous systems prone to process crash
faillures. The protocols that solvesit are al based on the round notion. The processes execute a sequence of rounds
and, during each round, each process executes sequentially the following steps: it first sends messages, then receives
messages, and finally executes local computation. The main property of a synchronous system is that the messages
sent during around are received during the same round.

k-set agreement efficiency A fundamental question associated with k-set agreement concerns the minimal number
of roundsthat any protocol hasto executein the worst case scenario where up to ¢ processes crash (the time complexity
of a synchronous protocol is usually measured as the maximal number of roundsit requires). It has been shown that
Ib; = | £] + 1 isalower bound on that number of rounds. This means that, whatever the k-set agreement protocol,
it is always possible to have a run of that protocol that requires at least Ib; rounds for the processes to decide [6].
(This worst case scenario is when exactly k& processes crash during each round, in such a way that -during the round
in which it crashes- a process sends values to some non-crashed processes but not to all of them.) It is important to
notice that the previous bound states an “inescapable tradeoff” relating the fault-tolerance parameter ¢, the degree k
of coordination achieved, and the best time complexity Ib that a set agreement protocol can attain [6]. Moreover, it is
worth noticing that, when compared to the consensus problem, k-set agreement dividesthetime by &.

Another fundamental question concerns the adaptivity of a k-set agreement protocol to the “good” runs. Those
are the runs where there are few crashes, i.e., when the number of actual crashes f is smaller than ¢ (the maximum
number of crashes for which the protocol works). This is the notion of early decision [7]. It has very recently been
shown that thereis no k-set agreement protocol that, in presence of f process crashes, allows the processes to always
decide before lb; = min(L%J +2,|£] + 1) rounds [10]. This bound shows an additional relation linking the best
time efficiency a set agreement protocol can attain, the actual number of crashes f, and the coordination degree k. It
is worth noticing that, in failure-free runs (f = 0), two rounds are sufficient for the processes to coordinate (decide)
whatever the value of k£ (whichisthelower bound for solving the uniform consensus problem in failure-freeruns[16]).

Content of the paper This paper visits k-set agreement protocols in severa process failure models, namely, the
classical crashfailure model, the send omission failure model and the more general omission failure model. Inthe send
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4 M. Raynal & C. Travers

omission failure model, during around, a process can crash or forget to send messages. In the general omission failure
model, a process can additionally forget to receive messages. In addition to the (five) protocolsthat are described, it is
shown that the previous lower bounds b, and Ib; are still valid for the send omission failure mode! for any value of ¢
(i.e, t < n), and for the general omission failure model whent < n/2. A protocol for general omission failures that
worksfor ¢t < kLJ,-ln isalso presented. It is shown that this protocol is optimal with respect to the resilience bound ¢.

The paper also introduces a new property for the k-set agreement problem in presence of omission failures. This
property, called strong termination, requires that the processes that commit only send omission failures decide as if
they were non-faulty. This allows more processes to decide. Open problems that concern k-set agreement in the
general omission failure models are also presented. A main accent of the paper is simplicity. (To not overload the
presentation, the proofs of the protocols that are described are given in an appendix.) In that sense, the paper can be
considered as an “introductory survey”. Asindicated in the abstract, this paper can be seen as a short tutorial whose
aimisto make the reader familiar with the k-set agreement problemin synchrony modelswith increasing fault severity.
In addition to its survey flavor, several results and protocols that are presented are new.

2 Distributed Computing Model and k-Set Agreement Problem

2.1 Synchronous System

The system model consists of afinite set of processes, namely, IT = {p1, . .. , p, }, that communicate and synchronize
by sending and receiving messages through channels. Every pair of processes p; and p; is connected by a reliable
channel (which means that there is no creation, alteration, loss or duplication of message).

The system is synchronous. This means that each of its executions consists of a sequence of rounds. Those are
identified by the successiveintegers 1, 2, etc. For the processes, the current round number appears as aglobal variable
r that they can read, and whose progressis managed by the underlying system. A round is made up of three consecutive
phases:

¢ A send phase in which each process sends messages.

¢ A receive phasein which each process receives messages.
The fundamental property of the synchronous model lies in the fact that a message sent by a process p; to a
process p; at round r, is received by p; at the same round r.

e A computation phase during which each process processes the messages it received during that round and
executes local computation.

2.2 Process Failure Model

A process is faulty during an execution if its behavior deviates from that prescribed by its algorithm, otherwise it
is correct. A failure model defines how a faulty process can deviate from its algorithm [13]. We consider here the
following failure models;

e Crash failure. A faulty process stops its execution prematurely. After it has crashed, a process does nothing.
Let us observe that if a process crashes in the middle of a sending phase, only a subset of the messages it was
supposed to send might actually be received.

e Send Omission failure. A faulty process crashes or omits sending messages it was supposed to send.

e General Omission failure. A faulty process crashes, omits sending messages it was supposed to send or omits
receiving messages it was supposed to receive (receive omission) [22].

It is easy to see that these failure models are of increasing “severity” in the sense that any protocol that solves a
problem in the General Omission (resp., Send Omission) failure model, also solves it in the (less severe) Send
Omission (resp., Crash) failure model.

A send (receive) omission failure actually models a failure of the output (input) buffer of a process. A buffer
overflow is a typical example of such afailure. An intuitive explanation of the fact that it is more difficult to cope
with receive omission failures than with send omission failures is the following. A process that commits only send
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Function set_agreement (v;)

(01) est; + v;;

(02) whenr =1,2,...,|t/k] + 1do % r: round number %

(03) begin_round

(04) send (est;) to all; % including p; itself %

(05) est; < min({est; values received during the current round r})
(06) end_round;

(07) return (est;)

Figure 1: Crash failures: Synchronous k-set agreement, codefor p; (t < n)

omission failure continues to receive the messages sent by the correct process. Differently, a process that commits
receive omission failures does not: it has an “autism” behavior.

2.3 The k-Set Agreement Problem

The problem has been informally stated in the Introduction: every process p; proposes a value v; and each correct
process hasto decide on avaluein relation to the set of proposed values. More precisely, the set agreement problem
with coordination degree £, is defined by the following three properties:

e Termination: Every correct process decides.
o Validity: If aprocess decides v, then v was proposed by some process.
e Agreement: No morethan & different values are decided.

Aswe have seen, 1-set agreement is the uniform consensus problem. In the following, we implicitly assumek < t
(thisis because, as we have seen in the introduction, k-set agreement istrivial when k& > t).

3 Set Agreement in the Crash Failure Model

3.1 A simple protocol

A very simple synchronous k-set agreement protocol for the most general crash failuremodel (i.e., ¢ < n) isdescribed
in Figure 1 (thisisthe classical protocol presented in distributed computing textbooks (e.g., [2, 11, 17]). A processp ;
invokesthe protocol by calling the function set agreement (v;) where v; isthe valueit proposes. If it does not crash,
p; terminates when it executes the return() statement.

Theideaisfor a process to decide the smallest estimate value it has ever seen. To attain this goal, the protocol is
based on the flooding strategy. Each process p; maintains alocal variable est; that containsits current estimate of the
decision value. Initially, est; is set to v; the value proposed by p;. Then, during each round, each non-crashed process
first broadcastsits current estimate, and then updatesit to the smallest values among the estimates it hasreceived. (The
proof of this protocol appears as a particular case of the proof of the early-deciding protocol that follows.)

3.2 An early-deciding protocol

An early deciding k-set agreement protocol for the crash failure model is presented in Figure 2. This protocol (intro-
duced in [24]) is a generalization of the previous flood-set protocol. Its underlying principles are the following. Let
nb;[r] be the number of processes from which a process p; has received messages during the round r (by definition,
nb;[0] = n). As crashes are stable (thereis no recovery), we have nb;[r — 1] > nb;[r].

This simple observation incite investigating the local predicate nb;[r — 1] — nb;[r] < k. When true, this predicate
means that p; is missing the current estimates from at most k£ — 1 processes among all the processes that were aive
at the beginning of the round ». Combined with the systematic use of the flooding strategy, this allows p ; to conclude
that it knows one of the & smallest value present in the system.

Unfortunately, the local predicate nb;[r — 1] — nb;[r] < k is not powerful enough to allow p; to aso conclude that
the other processes know it has one of the & smallest values. Consequently, p; cannot decide and stop immediately. To
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6 M. Raynal & C. Travers

Function set_agreement (v;)

(01) est; < v;; nb;[0] < n; can-dec; + false;

(02) whenr =1,2,...,|t/k] + 1 do%r: round number %
(03) begin_round

(04) send (est;, can_decide;) to all; % including p; itself %

(05) if can_decide; then return (est;) end.if;

(06) let nb;[r] = number of messages received by p; during r;

(07) let decide; = Vv onthe set of can_decide; boolean values received during 7;
(08) est; < min({est; values received during the current round r});

(09) if ((nbi[r — 1] — nb;[r] < k) V decide;) then can_decide; + true end.if

(10) end_round;
(11) return (est;)

Figure 2: Early stopping synchronous k-set agreement: codefor p; (¢t < n)

be more explicit, let us consider the case where the current estimate of process p ; isthe smallest value v in the system,
p; isthe only process that knows v, p; decides v at the end of r, and crashes immediately after deciding. The other
processes can then decide k other values as v is no longer is the system from round » + 1. An easy way to fix this
problem consistsin requiring p; to proceed to theround r + 1 beforedeciding. When nb ;[r — 1] — nb;[r| < k becomes
true, p; sets aboolean (can_decide;) to true and proceeds to the next round r + 1. As, before deciding at line 05 of
r+ 1, p; hasfirst sent the pair (est;, can_decide;) to @l processes, any process p; active during r + 1 not only knows
v but, as can_decide; is true, knows also that v is one of k& smallest values present in the system during r + 1. The
protocol followsimmediately from these observations.

The protocol is early-deciding, namely, a process that does not crash decides at the latest during the round Ib ; =
min( L%J +2,|£] + 1) rounds. The correctness of the protocol and that lower bound are proved in Appendix A.

3.3 On the early decision predicate

Instead of using the local predicate nb;[r — 1] — nb;[r] < k, an early stopping protocol could be based on the local
predicate faulty;[r] < k r where faulty;[r] = n—nb;[r] (the number of processes perceived as faulty by p;)1. While
both predicates can be used to ensure early stopping, we show here that nb ;[r — 1] — nb;[r] < k is amore efficient
predicate than faulty;[r] < k r (more efficient in the sense that it can allow for earlier termination). To proveit, we
show the following:

e (i) Let r be the first round during which the local predicate faulty;[r] < k r is satisfied. The predicate
nb;[r — 1] — nb;[r] < k isthen also satisfied.

e (i7) Let r be thefirst round during which the local predicate nb;[r — 1] — nb;[r] < k is satisfied. It is possible
that faulty;[r] < k r be not satisfied.

We first show (i). Asr isthefirst round during which faulty;[r] < k r is satisfied, we have faulty;[r — 1] >
k (r —1). So, we have faulty;[r] — faulty;[r — 1] < kr —k (r — 1) = k. Replacing the sets faulty;[r] and
faulty;[r — 1] by their definitionswe obtain (n — nb;[r]) — (n — nb;[r — 1]) < k, i.e., (nb;[r — 1] — nb;[r]) < k.

A simple counter-example is sufficient to show (i7). Let us consider arun where f1 > ak (a > 2) processes
crash initialy (i.e., before the protocol starts), and f2 < k processes crash thereafter. We haven — f1 > nb;[1] >
nb;[2] > n — (f1+ f2), whichimpliesthat (nb;[r — 1] — nb;[r]) < k is satisfied at round » = 2. On an other side,
faulty;[2] > f1 = ak > 2k, from which we concludethat faulty;[r] < r k isnot satisfied at r = 2.

This discussion shows that, while the early decision lower bound can be obtained with any of these predicates,
the predicate nb;[r — 1] — nb;[r] < k is more efficient in the sense it takes into consideration the actual failure
pattern (a process counts the number of failures it perceives during each round, and not only from the beginning of
the run). Differently, the predicate faulty;[r] < r k considersonly the actual number of failures and not their pattern
(it basically aways considers the worst case where there are k crashes per round, whatever their actual occurrence
pattern).

1This predicate isimplicitly used in the proof of the (not-early deciding) k-set agreement protocol described in [17].
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Synchronous Set Agreement 7

4 Set Agreement in the Send Omission Failure Model

Let us now consider that, in addition to crash, a process can aso fails by omitting to send messages. This means that,
during around, a process can send a message to some processes and forget to send a message to some other processes.
Similarly to the crash failure model, the fact that a process p; does not receive a message from p; can alow p; to
concludethat p; is faulty, but differently, it cannot alow it to conclude that p ; has crashed.

4.1 A simple protocol

A simple k-set agreement protocol that can cope with up to ¢ < n faulty processes is described in Figure 3. This
protocol (avariant of a protocol introduced in [12]) is obtained from the basic flooding protocol by two simple modi-
fications. They concern the lines 04 and 05.

Function set_agreement (v;)

(01) est; + v;;

(02) whenr =1,2,...,[t/k| + 1do % r: round number %

(03) begin_round

(04) if (¢ issuchthat (r — 1)k < i < rk) then send (est; ) to all end.if;
(05) est; < any est; received during r if any, unchanged otherwise

(06) end_round;

(07) return (est;)

Figure 3: Send omission failures. Synchronous &-set agreement, code for p; (¢t < n)

The underlying ideais the following one. Duringaroundr (1 < r < |t/k] + 1), only the processes p ; such that
(r — 1)k < i < rk send their estimate values. As far as message reception is concerned, at the end of around, a
process p; defines its estimate est; as being any estimate value it has received during that round. If it has received no
estimate, est; keepsits previous value.

The protocol is based on the following simple principle: restricting each round to have at most & senders. As
(lt/k] + 1)k > t and at most ¢ processes crash or commit send omission failures, there is at least one round (say R)
that has a correct sender p.. This means that during R, al the processes receives an estimate from p .. Conseguently,
any non-crashed process updates its estimate during R. Finaly, at most & different estimates can be adopted during
around (line 05). It follows that, from round R, there are at most & distinct values in the system. Interestingly, this
protocol associates specific senders with each round (which, in some sense, means that it forces the other processesto
simulate send omission failures during that round).

4.2 Early decision and strong termination

An early-deciding k-set protocol for the send omission failure model with ¢ < n, is described in [25]. No process
decides after theround b = min(L%J +2,|£] + 1). Thanksto this protocol, we have the following theorem.

Theorem 1 lby = min([%] +2,|£] + 1) is a lower bound on the number of rounds for solving k-set agreement in
the synchronous send omission failure model with ¢ < n.

Proof The theorem follows from the following observations. (1) The very existence of the previous early-deciding
protocol. (2) The fact that Ib; is alower bound in the crash failure model. And, (3) the fact that the send omission
failure model includes (is more severe than) the crash failure model. O Theorem 1

In addition to the termination, validity and agreement properties that defines the k-set agreement problem, the
early deciding protocol described in [25] enjoys the following noteworthy property:

e Strong termination: aprocess that does not crash decides.

It isworth noticing that each of these properties (early decision vs strong termination) is not obtained at the detriment
of the other. Strong termination is a property particularly meaningful when one is interested in solving agreement
problems despite omission failures. Intuitively, it states that a protocol has to force as many processes to decide.
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8 M. Raynal & C. Travers

Problem difficulty The non-early deciding protocol described in Figure 3 and the early deciding protocol described
in [25] shows that the k-set agreement problem has the same lower bounds in the crash model and the send omission
faillure model. This meansthat, for that problem, the send omission failure model is not “more difficult” than the crash
model. Aswe are about to see, thisis no longer true for the general omission failure model.

5 Set Agreement in the General Omission Failure Model when t < n/2

Let us now consider the more severe failure model where a process can crash, omit to send messages or omit to receive
messages. We first address the case where no more than ¢ < n/2 processes can be faulty. This section presents an
optimal k-set agreement protocol suited to this context and states an open problem.

5.1 A strongly terminating protocol for ¢t < n/2

There is no way to force a process that commits receive omission failures to decide one of the k& values decided by
the other processes. This is because, due to its faults, such a process can never know these values. In that case, the
protocol forces such processes to stop without deciding avalue (let us remind that the problem requires“only” that the
correct processes decide). A faulty process that does not decide, returns a default value denoted | whose meaning is
“no decision” from the k-set agreement point of view. By a language abuse we then say that such a process “decides
17,

Local variables The protocol, described in Figure 4, has been proposed in [26]. In addition to est ;, a process p;
manages three local variables whose meaning is the following:

e trusted; represents the set of processes that p; currently considers as being correct. It initial valueis II (the
whole set of processes). So, i € trusted; (line 04) meansthat p; considersitiscorrect. (If j € trusted; we say
“pi trustsp;”; if j ¢ trusted; we say “p; suspectsp;”.)

e rec_from; isaround local variable used to contain the ids of the processes that p; does not currently suspect
and from which it has received messages during that round (line 05).

e W;(j) isaset of process identities associated with the processes p, that are currently trusted by p; and that (to
p;’'s knowledge) trust p; (line 06).

Function set_agreement(v;)

(01) est; < v;; trusted; <+ II; %r =0%

(02 forr=1,...,| L] +1do

(03) begin_round

(04) if (3 € trusted;) then for_each j € II do send(est;, trusted;) to p; end_do end._if;
(05) letrec_from; = {j : (est;, trust;) isreceived fromp; duringr A j € trusted;};
(06) for_each j € rec_from; let W;i(j) = {€: £ € rec_from; N j € trust,};

(07)  trusted; < rec_from; — {j : [Wi(j)| <n —t};

(08) if (Jtrusted;| < n — t) then return (L) end.if;

(09) est; « min(est; received during r and such that j € trusted;)

(20) end_round;

(11) return (est;)

Figure 4. Genera omission failures: strongly terminating k-set protocol, codefor p; (t < %)

Process behavior Theaim isfor aprocessto decide the smallest value it has seen. But, due to the send and receive
omission failures possibly committed by some processes, a process cannot safely decide the smallest valueit has ever
seen, it can only safely decide the smallest in “ some subset” of valuesit has received. The crucial part of the protocol
consists in providing each process with correct rules that allow it to determine a“safe subset”.

During each round r, these rules are implemented by the following process behavior decomposed in three parts
according to the synchronous round-based computation model.

Irisa



Synchronous Set Agreement 9

e If p; considersit is correct (i € trusted;), it first sends to all the processes its current local state, namely, the
current pair (est;, trusted;) (line 04). Otherwise, p; skips the sending phase.

e Then, p; executes the receive phase (line 05). As already indicated, when it considers the messages it has
received during the current round, p; considers only the messages sent by the processes it trusts (here, the set
trusted; can be seen as afilter).

o Finaly, p; executesthelocal computation phase that isthe core of the protocol (lines 06-09). Thisphaseis made
up of the following statements where the value n — ¢ constitutes a threshold that plays a fundamental role.

— Firgt, p; determines the new value of trusted; (lines 06-07). It is equal to the current set rec_from;
from which are suppressed all the processes p; such that |[WW;(j)| < n — t. These processes p; are no
longer trusted by p; because there are “not enough” processes trusted by p; that trust them (p; is missing
“Witnesses’ to remain trusted by p;, hence the name 1;(5)); “not enough” means here less than n — t.

— Then, p; checksif it trusts enough processes, i.e., at least n — t (line 08). If the answer is negative, p;
discoversthat it has committed receive omission failures and cannot safely decide. It consequently halts,
returning the default value L.

— Finaly, if it has not stopped at line 08, p; computes its new estimate of the decision value (line 09)
according to the estimate values it has received from the processesit currently trusts.

A proof of this protocol can be found in [26]. The role of the TV ;() control variable and the associated predicate
|[Wi(j5)| < n — t arecentra to ensure the strong termination property. Let p,; be afaulty process that neither crashes,
nor commits receive omission failures (i.e., it commits only send omission failures). Let us observethat, at each round,
such a p; receives a message from each correct process p;. This means that, with respect to each correct process p ;,
we always have |WW;(j)| > n — ¢t (lines 06-07). Consequently, p; alwaystrustsall correct processes, and so we always
have |trusted;| > n — t. It followsthat such a process p; cannot stop at line 08, and decides consequently at line 11.

5.2 Afirst open problem

Asfar as early-decision is concerned, to our knowledge, only one protocol has been designed for the general omission
failure model with ¢ < n/2. This protocol (introduced in [26]) enjoys the following properties:

e |tisstrongly terminating.

e Any processthat commits only send omission failures (and does not crash) decidesin at most Ib ; = min( L%J +
2, |£] + 1), which shows that thisis alower bound on the time complexity for the k-set agreement problemin

the general omission failure model wheret < n/2.

e A process that commits receive omission failures (and does not crash) executes at most min( [ g] +2,[5]+1)
rounds.

Thefollowing problem remains open: Is [%1 + 2 atight lower bound for a process that commits receive omission
failure (and does not crash) to stop when f = k  + y, with z and y being integerssuchthat 0 < y < .

6 Set Agreement in the General Omission Failure Model when t > n /2

Let usfinally consider the general omission failure model when the “majority of correct processes’ assumption is no

longer valid. This section first shows that there is no k-set agreement protocol that can cope with general omission
failureswhent > +25n. Then, it presentsa protocol showingthat ¢ < %5n isatight lower bound. Finally, problems

are stated, that remain open in the general omission failure model.
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6.1 A resilience bound for k-set agreement

Several k set agreement protocol s have been designed for the crash failure and the send omission failure models. They
all consider the most general casg, i.e., t < n. Very differently, to our knowledge, only one k-set protocol has been
designed for the general omission failure model (the protocol presented in the previous section [26]), and that protocol
considerst < n/2. (Several protocols have been designed for the particular case £ = 1 -consensus problem-, e.g.,
[21, 23, 27], where it is shown that ¢ < n/2 is an upper bound on the value of ¢). So the following fundamental
question comesimmediately to mind: Doest¢ < n/2 define the upper bound for the value of ¢ when one is interested
in solving the £ set agreement problem, for any ¥ > 1? This section shows that it is not. The lower bound on
the maximal number of faulty processesist < kiﬂn The next subsection shows that this lower bound it tight by
providing a corresponding protocol.

Theorem 2 There is no k-set agreement protocol in synchronous systems prone to general omission failures when

k

The proof is a straightforward generalization of proofs that show there is no uniform consensus protocol in syn-

chronous systems prone to general omission faillureswhen ¢t > n/2 [21, 27]. It is based on a simple classical parti-
tioning argument.
Proof Inorder to etablish acontradiction, let usassumethat ¢ > kiﬂn and thereis an algorithm A that solvesthe k-set
agreement problem in synchronous systems where at most ¢ processes can commit general omission failures. Let us
partition the set of processesin k+ 1 setsSy, ... Sky1 suchthatVl <i < k:|S;| =n—tand|Sir1| =n—k(n—t).
Ast > kiﬂn it followsthat ¢ > k(n — t), fromwhich we have |Si4+1| = n — k(n — t) > n —t. We now exhibit a
run R of algorithm A in which & + 1 distinct values are decided: a contradiction.

In the run R, every process that belongs to the same set S; initially proposes the same value v;. Moreover, the
valuesv; are choosensuchthat i # j = v; # v;. Processesthat belongtoset Sy, . .. , Sy arefaulty whereas processes
in set Si41 are correct. The number of faulty processesis k(n — t) < ¢. We now describe the behavior of the faulty
processes during run R. Let p, be afaulty process that belongsto aset S; (i < k). From the very beginning of the

execution, p, commits
¢ asend omission failure for each message it has to send to a process that does not belongto S';,

e areceive omission failure each time it has to receive a message from a process that belong to set S j. 11 .

Foreach1 <i < k + 1, weconstruct arun R; asfollows: Inrun R;, every process that does not belong to set S;
crashes before sending any message. Processesin set .S; are correct. Asinrun R, al processesin S; initially propose
the samevauew;. Inrun R;, messages are only exchanged between processesin set S;. Moreover, for any p.., p, € S;,
each time algorithm A requires p,, to send a message to p,,, this message is delivered by p,. Asthe processesin S; are
correct, it follows from the correction of algorithm A that they decide. Since the only value that they hear of isv ; (the
only value proposed by processesin S;), they decide that value.

Let us now consider the processes in S; during run R. Let us first observe (O1) that a process p, € S; does
not receive messages sent by any process that does not belongto S;. If i = k£ + 1 (i.e, p, belongsto Si4; and is
a correct process), this is because a any process p, that does not belong to Sy41 commits a send omission failure
each time it has to send a message to p,.. In the other case (i # k + 1), p, does not receive messages from any
p. € Sj,j #iNj # k+1 sincethese processes commit send omission failures each time they have to send amessage
to p,; p, neither receive message fromany p. € Si41 Sinceit commits areceive omission failure with respect to any
process that belongsto Sy41 .

Asinrun R;, for any p,,p, € S; each time agorithm A requires p, to send a message to p,,, this message is
delivered by p, (O2). Thisis because, for any set S;, a process that belongsto S; does not commit omission failures
with respect to the other processes of S;. Consequently, it follows from the observations (O1) and (O2) that runs R
and R; areindistinguishablefor any processthat belongto S;. Thisimpliesthat intherun R, foreach1 <i < k+ 1,
any p,. € S; decidesw;, from which we concludethat k& + 1 values are decided. O Theorem 2

6.2 A protocol for t < 25n

This section presents anew, yet very simple, protocol that solves the &-set agreement problem despite up to ¢ processes
k

that commit general omission failures in a synchronous system where ¢t < ;Z=5n. To our knowledge, the design of
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such a protocol has never been addressed before. This protocol requirest — k + 2 rounds. To make more visible the
meaning of this number, it can be rewritten as (¢t + 1) — (k — 1). It iseasy to see that for k¥ = 1, thisisthet + 1
consensus lower bound, and ¢t < ﬁn becomes ¢ < n/2, which is a necessary condition for that problem in the

general omission failure setting (see the “ Open problems” section that follows).

Function set_agreement(v;)

(01) est; < v;; trusted; < II; %r =0%

02) forr=1,...,t+2—kdo

(03) begin_round

(04) for_each j € trusted; do send est; to p; end_do;

(05) foreach j € trusted; do

(06) if (est; received from p;) then est; <— min(est;, est;)

(o7 else trusted; « trusted; — {5}
(08)  end.if
(09) end_do;

(10) if (J¢rusted;| < n — t) then return (L) end_if;
(11) end_round,;
(12) return (est;)

Figure 5: k-set protocol for general omission failures, codefor p; (t < ﬁﬂ")

Differently from its proof that is not trivial (see Appendix B), the design of this protocol is particularly simple.
It is similar to the early-deciding uniform consensus protocol presented in [23] from which the early decision part
is suppressed. More precisely, the protocol can be seen as managing two variables, a control variable (a set denoted
trusted; that contains the processes it considers as non-faulty), and a data variable, namely, its current estimate est ;.
More specifically, we have the following:

e A process p; sends its current estimate only to the processes in trusted;, and accept receiving estimates only
from them. Basically, it communicates only with the processes it trusts (lines 04-09). In that way, if during a
round r, p; commits a send omission failure with respect to p;, or if p; commits a receive omission failure with
respect to p;, p; and p; will not trust each other from the round r + 1. Interestingly, this ensuresthat, if p; is
correct, it will alwaystrust at least n — t processes. So, if duringaround r, a processfindsthat it trustsless than
n — t processes, it can conclude that it is faulty, and consequently decides the default value L (line 10).

e Each datalocal variable est; isused as in the previous protocols. It contains the smallest value that p; has ever
received from the processesit currently trusts.

This ssimple management of the variables trusted; and est;, solves the k-set agreement problem despite up to
t < kiﬂn processes prone to general omission failures. This protocol is proved in Appendix B. It is not strongly
terminating.
6.3 Four more open problems

Concerning the k-set agreement problem in synchronous systems where up to to ¢ < kLHn processes can commit
general omission failures, four problems (at least) remain open.

e Ist — k + 2 alower bound on the number of rounds? (Let us remind that ¢ + 1 is the lower bound for the
consensus problem[1, 8], i.e., whenk = 1.)

e How to design an early-deciding protocol ? Which is the corresponding early-deciding lower bound?
e Isit possible to design a strongly terminating protocol ? If the answer is “yes’, design such a protocol.
o Isthere aproof simpler than the one described in Appendix B, for the protocol described in Figure 5.

These questions remain open challenges for peopleinterested in lower bounds and synchronous agreement problems.
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A Proof of the early-deciding protocol (crash failures)

This appendix shows that the set-agreement protocol suited to the crash failure model, that is presented in Figure 2, is
correct.

Lemma 1 [Validity] A decided value is a proposed value.

Proof The proof of the validity consists in showing that an est ; local variable always contains a proposed variable.
Thisisinitialy true (round » = 0). Then, a simple induction reasoning proves the property: assuming the property is
trueat around r > 1, it follows from the protocol code (lines 04 and 08), and the fact that a process receives at least
the value it has sent, that the property remainstrue at round » + 1. O Lemmea 1

Lemma 2 [Termination] Every correct process decides.

Proof The proof is an immediate consequence of the fact that a process executes at most |¢/k| + 1 rounds and the
computation model is the synchronous round-based computation model. O Lemma 2

Lemma 3 [Agreement] No more than & different values are decided.

Proof Let EST[0] bethe set of proposed values, and EST[r] the set of est; values of the processesthat decide during
rorproceedtor + 1 (r > 1). Wefirst state and prove three claims.

ClamC1.¥r > 0: EST[r + 1] C EST|r].

Proof of the claim. The claim follows directly from the fact that, during a round, the new value of an est ; variable
computed by a process is the smallest of the est; values it has received. So values can only disappear, due to the
minimum function used at line 08 or to process crashes. End of the proof of the claim C'1.

Claim C2. Let p; be a process such that can _decide; is set to true at the end of ». Then est; is one of the k smallest
valuesin ESTr].
Proof of the claim. Let v be the value of est; at theend of » (v € EST[r]). If can _decide; is set to true at the end
of r, nb;[r — 1] — nb;[r] < k is satisfied or p; has received a message carrying a pair (v1, true), and v1 has been
taken into account when computing the new value of est; at line 08 during round r, i.e., v < vl. So, thereisachain
of processes j = jq,Ja—1,---,jo = & that has carried the boolean value true to p;. Thischainissuchthat a > 0,
nbj[r —a — 1] — nb;[r — a] < k is satisfied, and any value v’ sent by a process participating in this chain is such
that v < v’ (as each processin the chain computes the minimum of the values it has received). In particular, we have
v < v" wherev” is the value sent by the first processin the chain. (The case a = 0 correspondsto the “one process’
chain case where the local predicateis satisfied at p;.) Dueto clam C1, EST[r] C EST[r — a]. Consequently, if v”
isone of the k smallest valuesof EST[r — a], v < v” impliesv isone of the & smallest valuesof EST[r].

So, takingr — a = r', we haveto show that nb;[r’ — 1] —nb;[r'] < k impliesthat the valuev” of est; at theend of
', isoneof the k smallest valuesof EST[r']. Asthe crashes are stable, nb;[r' — 1] — nb;[r'] < k, alows concluding
that p; has received a message from al but at most & — 1 processes that where not crashed at the beginning of /. As
p; computes the minimum of all the values it has received, and misses at most k¥ — 1 values of EST[r'], this means
that the value v"” computed by p; at the end of r’ is one of the k smallest values present in EST'[r']. End of the proof
of theclam C'2.

Clam C3. Let p; be process that decides (at line 05 or 11) during the round r. Its boolean flag can decide ; is then
equal to true.

Proof of the claim. The claimistrivialy trueif p; decidesat line 05. If p; decidesat line 11, it decides during the last
round, namely r = |¢/k] + 1. Let us consider two cases.

e At round r, p; receives from a process p; a message such as can_decide; = true. In that case, p; sets
can_decide; 1o true at line 09, and the claim follows.
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e In the other case, no process p; has decided at around r’ < r (otherwise, p; would have received from p;
a message such that can_decide; = true). Lett = ko« + y withy < k (hence, = [t/k] = r — 1).
As nb;[r' — 1] — nb;[r'] < k was not satisfied at each round ' suchthat 1 < ' < z = r — 1, we have
nb;[z] < n — kxz. Moreover, as p; has not received from any p; a message such that can_decide; is equal to
true, if, during r, p; does not receive amessage from p; it is because p; has crashed. So, as at most ¢ processes
crash, we havenb;[x + 1] > n —t =n — (k z + y). It followsthat nb;[z] — nb;[x + 1] < y < k. theclaim
follows.

End of the proof of the claim C'3.

To prove the lemma, we now consider two cases according to the line during which a process decides.

e No processdecidesat line 05. Thismeansthat aprocess p; that decides, decides at line 11 during the last round.
Dueto the claim C'3, such a p; hasthen its flag can _decide; equal to true. Dueto the claim C2, it decides one
of the k smallest valuesin EST[|t/k] + 1].

e A processdecidesat line 05. Let » be the first round during which a process p ; decides at that line and v be the
valueit decides. Since p; decidesat r:

— p; hasset itsbooleanflag can _decide; to true at theend of r — 1, and its estimate est; = v is consequently
oneof the k smallest valuesin EST[r — 1] (Claim C2). It follows that two processes that decide during r
decide valuesthat are among the the k smallest valuesin EST[r — 1].

— p; hassent to all the processes (line 04) the pair (v, true) beforedeciding at line 05 during . Thisimplies

that a (non-crashed) processp ; that does not decide at r receivesv at r and usesit to computeits new value
of est;. Due to the minimum function used at line 08, it follows that, from now on, we will always have
est; <w.
Let us assume that p; does not crash. If it decides, it decides at »' > r, and then it necessarily decides a
vauev' < v. ASEST[r'] C EST[r — 1] (claim C1), we havev’ € EST[r — 1]. Combiningv’ < v,
v € EST[r —1], and thefact that v isone of the k& smallest valuesin EST[r — 1], it follows that the value
v’ decided by p; isone of the k smallest valuesin EST[r — 1].

IjLemma 3

Theorem 3 [k-Set Agreement] The protocol solves the k-set agreement problem.

Proof The proof followsfrom the Lemmas 1, 2, and 3. O Theorem 3

Theorem 4 [Early Stopping] No process halts after the round min(| f/k] + 2, [t/k] + 1).

Proof Let usfirst observethat aprocess decidesand halts at the same round; this occurswhen it executesreturn (est ;)
at line 04 or 11. As observed in Lemma 2, the fact that no process decides after |¢/k] + 1 roundsis an immediate
conseguence of the code of the protocol and the round-based synchronous model. So, consideringthat 0 < f < ¢
processes crash, we show that no process decides after theround | f/k| + 2. Let f = zk + y (withy < k). This
meansthat z = | f/k].

The worst case scenario is when, for any process p; that evaluates the local decision predicate nb;[r — 1] —
nb;[r] < k, this predicate is false as many times as possible. Due to the pigeonhole principle, this occurs when
exactly k processes crash during each round. This means that we have nb;[1] = n — k,--- ,nb[z] = n — kz
and nb;[x + 1] = n — f = n — (kz + y), from which we conclude that » = z + 1 is the first round such that
nb;[r — 1] —nb;[r] = y < k. 1t followsthat the processes p; that executetheround z + 1 set their can decide; boolean
to true. Consequently, the processes that proceed to  + 2 decide at line 05 during that round. Asx = | f/k], they
decideat round | f/k] + 2. O heorem 4
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B Proof of the protocol for general omission failures when ¢ < kiﬂn

This appendix shows that the set-agreement protocol for the general omission failure model, that is presented in Figure
5, is correct. The proof uses the following notations :

e (Cistheset of correct processesin agiven execution.

e 1;[r] denotesthe value of p;’slocal variable z at the end of round r.
By definition, trusted;[0] = II. When j € trusted;, we say that “p; trusts p;” (or “p; istrusted by p;").

e Completing;[r] = {i : p; proceedsto r + 1}. By definition, Completing;[0] = II. If r = t — k + 2, “p;
proceedsto r + 1" means p; executesline 12.

e ESTI[r] = {est;[r] : i € Completing|[r]}. By definition EST[0] = the set of proposed values.
EST|r] contains the values that are present in the system at the end of round r.

e ForanyreationR € {=,>,>,<,<}, Pr(v,r) = {i : (i € Completing[r]) A (est;[r] R v)}. Asan example,
P_(v,r) isthe set of processes p; that proceed to r + 1 with an estimate equal to v at the end of round r (i.e.,
such that est;[r] = v).

The proof of the following relationsis |eft to the reader:

Completing[r +1] C  Completing]r],
Vi € Completing[r + 1] : trusted;[r + 1] C Completing]r],
Vi € Completing[r + 1] : trusted;[r + 1] C  trusted;[r],
Vi € Completing[r + 1] s est;[r + 1] < est;[r].
The next lemma states that the sequence of set values EST'[0], EST|1],. .. ismonotonic and never increases.

Lemma4 Vr >0: EST[r+ 1] C EST[r].

Proof Thelemma follows directly from the fact that, during a round, values can only disappear because (1) the new
value of est; computed by aprocessisthe smallest of valuesit has received, and (2) some processes may stop sending
or receiving messages. ULemma 4

Lemma5 |EST[1]| <t+1.

Proof Let v,,;, = min{est;[0],7 € C}. The proof uses the following sets of processes/values:

F_={iell -C:est;[0] < vmin}

Fr={i eI -C:est;[0] > vmin}s

V_ ={v:3i € F_ suchthat v = est;[0]},

Vi ={v:3i € F; suchthat v = est;[0]}.

F_ (resp., F) isthe set of faulty processesthat propose avaue strictly smaller (resp., strictly greater) than v i,
V_ (resp. V) isthe set of values strictly smaller (resp., strictly greater) than v ,,,;, that are proposed by faulty pro-
CESSES.

Let p; be a correct process. During the first round, it receives and processes all the values proposed by the
correct processes. As a process updates its estimate by taking the smallest value it has received (line 06), we have
est;[1] < Umin. It follows that p; can update its estimate only to v,,;,, Or avalue sent by aprocessp; : j € F_, i.e,
{est;[1] :i € C} C {vminy UV_ (O1).

Leti € F_. Asest;[0] < vmin, p; Can update its estimate only to a value received from a process that belong to
F_. Thisimpliesthat {est;[1]: i € F_} CV_ (02).

Leti € F,. Inthat case, p; can adopt a value from any processin I1. It follows that, at the end of the first round,
there are at most | 7| distinct values among the processes that belongto 7  (O3).

From (O1) and (02), we obtain: {est;[1] : i € CU F_} C {vmin} U V_. Moreover, we have |V_| < |F_|
(O4). From (0O3), (04) and the fact that |F_| + |F4| < ¢, we conclude that at the end of the first round we have
[{esti[1] : i € Completing[1]}| <t + 1. OLemma 5
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Lemma6 Vr,1 <r <t—k+ 2, wehave |[EST[r]| <t —r+2.

Proof The proof is by induction on the round number r. Foral r, 1 < r <t — k + 2, let HR(r) be the pred-
icate |[EST[r]| < t —r + 2. The base case of the induction (i.e., HR(1)) follows directly from Lemma 5. So,
considering the induction assumption (namely, HR(z) is satisfied for al = such that 1 < z < r), we prove that
HR(r) issatisfied. Let usfirst observethat if |[EST[r — 1]| < t — (r — 1) + 2, HR(r) followsdirectly from Lemma4
as|EST[r]| < |[EST[r—1]| < t—r+2. So, therest of the proof assumes |[EST[r—1)| =t—(r—1)+2 =t—7r+3.

In the following, we consider a particular value v,,, € EST[r — 1] and the set of processes that have an estimate
equal to v,,, at theend of theroundr — 1. Thevalue v, is defined as follows:

U = max{v : |P=(v,r — 1) <n —t}

(among the values of EST[r — 1], v,,, isthe greatest onethat is the estimate of less than n — ¢ processes that complete
theround r — 1).

We claim that v,,, exists (Clam C1) and v,,, ¢ EST[r] (Clam C2). Assuming these claims, it follows from
Um € EST[r—1],and |EST[r —1]| = t — r + 3 (Case assumption), that | EST'[r]| = t — r + 2, which proves HR(r),
from which the Lemmafollows. Therest of the proof concernsthe claims C1 and C2.

Clam C1: Jv suchthat | P—(v,r — 1)| < n —t.
Proof of the Claim C1. Asr < t — k + 2 (Lemma assumption), we havet — r + 2 > k. Combining this with
|[EST[r — 1]| =t — r + 3 (Case assumption), we obtain |[EST[r — 1]| > k.

We now show the existence of v by contradiction. Let us suppose that each value v’ € EST|[r — 1] is such that
|[P—(v',r —1)] > n —t (i.e, thereare at least n — ¢ copies of each value present in the system at the end of round
r—1). As|EST[r — 1]| > k and a most n processes complete round r — 1, the inequality n > (k + 1)(n — t) must
hold. Thus, (k + 1)t > (k + 1)n — n from which we obtain that ¢t > k’“—fl This contradicts the upper bound on ¢,
namely, 2% > ¢. End of the Proof of the Claim C1.

Clam C2: vy, ¢ EST|r].

Proof of the Claim C2. If est;[0] = v, we say “p; learns v during the (fictitious) round 0”. More generally, for
d > 1, wesay “p; learns v during round d” if p; (1) completes the round d, (2) has never received v by the end of
round d — 1 and, (3) has an estimate equal to v at the end of round d. This meansthat (1) i € Completing[d], (2)
Vd' < d: est;[d'] > v and, (3) est;[d] = v. We consider two cases: no processlearnsv,,, during round r — 1 (case 1);
aprocesslearns v,,, during roundr — 1 (case 2).

Case 1: No processlearnsv,,, duringr — 1.
We claim (Sub-claim C2.1) est;[r] = v, = |trusted;[r]| < n —t. The proof that v,,, ¢ EST[r] follows directly
from this claim as then a process p; that sets its estimate to v,,, after having executed the lines 05-09 during round r
necessarily returns L at line 10. Thisimpliesthat any process p; that completesround r issuch that est;[r] # vy, i.€,
U ¢ ESTr].

The proof of C2.1 isbased on the following properties (implicitly defined in the context of the case assumption):
Property P1: Vi € P (v, — 1) : P=(vp,r — 1) C II — trusted;[r — 1].
This property states that any process p,, completing the round » — 1 with an estimate value equal to v ,,, is not trusted
by any process p; that completesthe round » — 1 with an estimate value greater than v ;.
Property P2: (z € Completing|r]) A (esty[r] = vy) = © € P—(vp,r — 1).
This property states that any process p, completing the round r with an estimate value equal to v,,,, was such that
esty[r — 1] = v,
We provefirst P1 and P2, and then C2.1.

Property P1: Vi € Ps (v, — 1) : P_(vp,r — 1) C II — trusted;[r — 1].
Proof of P1. Leti € Ps (v, r — 1) andz € P—(v,,,r — 1). Let usfirst observe that it follows from the fact that no
process learns v,,, during round r — 1 that P—(v,,,r — 1) C P—(v,,r — 2). Consequently, z € P—(v,,,r —2) and
thus a message sent by p, during roundr — 1 carries v,,, (= est,[r — 2]) (line 04).

Asest;[r — 1] > v, and p,, sends v,,, during round r — 1, it follows from the min() function used to compute new
estimates (line 06) that either p; does not receive the message from p,. during round  — 1 or p; does not trust p,, at the
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beginning of round » — 1. In both cases, p; doesnot trust p,, a theend of roundr — 1, i.e,, z € II — trusted;[r — 1].
End of the Proof of P1

Property P2: (x € Completing|r]) A (esty[r] = vy) = © € P—(vp,r — 1).
Proof of P2. Let z € Completing|r] such that est,[r] = v,,. Dueto the min() function used by a process to update
itsestimate (line 06), z ¢ P (v,,,r — 1) (1).

Consider now a process p; that belongsto P (v,,,r — 1). Let usobserve that only the processesin P=(v,,,r — 1)
can send v,,, during theround r. Dueto property P1, when p,; completestheround » — 1, it does not trust the processes
belongingto P— (v,,,,r —1). Consequently, p; does not consider the messages sent during the round r by the processes
in P—(vy,,r — 1). It followsthat est;[r] # v,,, from which we concludethat « ¢ Ps (vy,,r — 1) (2).

As the sets P (v, r — 1), P=(vy,,r — 1) and Ps (v, — 1) define a partition of Completing[r — 1], and
x € Completing[r] C Completing[r — 1], it follows from (1) and (2) that z € P (v,,,r — 1). End of the Proof of
P2.

Clam C2.1: est,[r] = vy = |trusted,[r]| <n —t.

Proof of theClaim C2.1. Let x € Completing[r] suchthat est ,[r] = v,,,. Let usfirst consider aprocess p; that belongs
to P (vy,,r —1). If p; sends messages during round r, these messages necessarily carry avalue < v, (line04). Since
est,[r] = v, €ither p,. does not receive this message from p; (lines 06-08) or p,, does not trust p; at the beginning of
round r. In both cases, we havei ¢ trusted,[r], from which we concludethat P (vy,,r — 1) C II — trusted,[r] (1).

Let now p; be a process that belongs to P- (v, — 1). Due to property P2, x € P_(vp,,r — 1). Consequently,
x ¢ trusted;[r — 1] (property P1). This impliesthat p; does not send a message to p, during round = (line 04).
Thus, i ¢ trusted,[r]. Since this holds for any process that belongsto P (v,,,r — 1), we have Ps (v,,,r — 1) C
II — trusted,[r] (2).

By combining (1) et (2), we obtain trusted,[r] C II — (P<(vp,r — 1) U Ps (v, — 1)). Moreover, as only
processes that belong to Completing[r — 1] may send messages during round r, it follows from the fact that the
sets P (v, — 1), P— (v, r — 1) and Ps (vy,,r — 1) define a partition of Completing[r — 1] that trusted,[r] C
P_(vy,,r — 1). Finally, due to the definition of v,,,, we have | P—(v,,,r — 1)| < n — t from which we conclude that
trusted,[r]| < n — t. End of the Proof of the Claim C2.1.

End of the Proof of Case 1 of the Claim C2.

Case 2: Thereisaprocess that learns v,,, during round r — 1.

We claim (Claim C2.2), in the case assumptions, v, = max(EST[r — 1]). We prove by contradiction that v,,, ¢
EST(r]. Let us assume that there is a process p, such that z € Completing[r] A estgy[r] = vn,. Dueto the
min() function used by p,. to update its estimate (line 06), p, receives during round » from the processes it trusts
only values > v,,,. As (1) only processes that belong to P> (vy,,r — 1) can send values > v,,, during round r and (2)
P> (v, — 1) = P=(vy,,r — 1) (Claim C2.2), p,, can only trust processes that belong to P— (v, r — 1). Moreover,
due to the very definition of vy, |P— (v, — 1)| < n —t. Thisimpliesthat |trusted,[r]| < n — t from which we
concludethat p, returns L at line 12: acontradiction with z € Completing]r].

Clam C2.2: vy, = max(EST[r — 1]). (Let us remind that, in the context of thisclaim, |[EST[r —1]| =t —r + 3
and at least one process learns v, duringr — 1.)
Proof of theClam C2.2. Leta = |{v:v € EST[r — 1]Av < vy} and, 8 = |{v:v € EST[r — 1] Av > vy }.
To prove that v, is the greatest value in EST'[r — 1], the rest of the proof establishes 5 = 0. Let us notice that
|[EST[r —1]|=a+p8+1=t—1r+3.

L et us define three sets of processes, denoted A, B and C', asfollows:

o Let A= {i:est;[0] <vy}. Aisthesetof processesthat proposeavalue strictly smaller than v,,,. Since values
can only disappear while rounds progress (Lemmad), clearly |A| > .

o Let B = {i:estjfr — 1] > vm A i € Completing[r — 1]} (or B = U,cpsrir—1javse, P=(v,r —1)). B
isthe set of processes that have an estimate strictly greater than v, at the end of round r — 1. Dueto the very
definition of vy, for eechv € EST[r — 1] suchthat v > v,,,, we have |P=(v,r — 1)| > n — ¢. It follows that
|B| > B(n - t).
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e Letp, beaprocessthat learnswv,,, during roundr — 1. We claim (Claim C2.3) that thereis achain of r distinct
ProCeSSES Py, (0)s « +  » Pum(r—1)(= pz) SUChthat Vl: 1 < £ <r—1:p, (s leansv,, around/fromp,  (—1)
(hence, est,, (¢)[¢] = vin). Theset C isthe set of processes that participate in the chain that carries v, to p,.
Moreprecisely, C = {v(0),...,v(r — 1) = z}. Weclearly have |C| = r.

We now show that any pair of sets A, B and C' has an empty intersection.

e ANB=PandANC = 0.
Leta € A (est,[0] < vp)andz € BUC. Thereisaroundd < r—1 suchthat est . [d] > vy, (O1). (Thisfollows
from the following observations. If x € B, takingd = r — 1 establishes (01). If z € C, (O1) follows from the
definition of the set C',namely, p, learnsv,,, during someround d < r — 1, at the end of which est .[d] = v,,,.)

It follows from (O1) and therelation V £,£" : 0 < £ < ¢! <1 —1 = est,[l] > est,[l'] that est,[0] > vp,.
Consequently, as est,[0] < v, (definition A), wehave ANB=0and ANC = .

e BNC =0.
Let p, beaprocessthat belongsto C. If x ¢ Completing[r — 1], z ¢ B (aprocessthat belongsto B completes
round r — 1). If z € Completing[r — 1], asthereisaround ¢, 1 < ¢ < r — 1, such that est . [¢] = v,,, and
due to the min() function an estimate value can only decrease, we have est . [r — 1] < v,,. Consequently, as
every process p, that belongsto B issuch that est,[r — 1] > v,,, wehavex ¢ B, from which we conclude that
BNnC =0.

We have established the following relations:
e WANB=0,ANC=Pand BNC =0,
e (2|4l >a,|B|>B(n—t)and|C| =,
e Ba+B+1=t—1+3.

By combining (1) and (2) we obtain: n > o+ 8(n —t) + r,i.e, n — B(n —t) — r > «. Thelast inequaity
combined with (3) givesn — (n —t) —r >t —r +3 — g — 1 fromwhichwehave: n —t — 1 > f(n —t — 1).
Thisimplies 3 = 02. Since 3 is the number of values greater than v, in EST[r — 1], it followsthat v,, isthe greatest
value that belongsto EST'[r — 1]. End of Proof of Claim C2.2.

Clam C2.3: Let p; be aprocess that learns avalue v at round d > 1. Thereisachain of d + 1 distinct processes
Pu(0), -+ »Pu(a)(= pi) suchthat vV £,1 < £ < d : py(p) leansv at round £ from p,o—1).
Proof of Claim C2.3. We prove the claim by induction on d.

[Base case: d = 1] Supposethat a process p; learnsavalue v during thefirst round. Then, aprocessp (g has sent
v to p; during that round. It follows that there are two distinct processes p; and p,, (o) such that p, (o) learned v during
the round 0 and and p; learnsit during the first round.

[Induction case: d > 1] Supposetheclaimholdsfor 1 < d’ < d. Let p; be aprocessthat learns avalue v at round
d from some process p,.. During the round d, p; can process messages only from processes it has never suspected
from the first round until the round d — 1 (included). It followsthat p ; has received a message from p,. at each round
1,...,d—1. Sinceaprocessthat learns avalue during a round forwards that val ue during the next round, we conclude
that p,, learnt v at round d — 1. By applying the induction hypothesisto p ., we conclude that thereisachain of d + 1
distinct processes that participated in forwarding the value v to p; (that learns it at round d). End of the Proof of the
Clam C2.3.
End of the Proof of Case 2 of the Claim C2.

IjLemma 6

Theorem 5 [Agreement] No more than & different values are decided.

2Noticethat n —t — 1 # 0. Let usremind that the protocol assumesk < t < kk—fl (if £ > t aoneround protocol solvestrivialy the problem).
k

Supposet = n—1. Ast < k—fl,wethen haven —1 < k’“—ﬁ,whichimplisn— 1 < k. Ontheother sidek < t,i.e, k < n—1. A contradiction.
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Proof Let usfirst notice that a decided value belongsto the set EST'[t — k +2]. Dueto Lemma6, |[EST[t — k+2]| <
t—(t —k+2)+ 2= k. Consequently, at most k distinct values are decided. O heorem 5

Theorem 6 [Termination] Every correct process decides.

Proof

Let usfirst observethat it follows from the protocol text that a process executes at most ¢ — & + 2 rounds (line 02).
A process that does not crash nor returns L at line 08 decides when it executes the return statement of line 12. Asa
correct process does not crash, we have to show that a correct process never returns L at line 08. More precisely, we
prove by induction on the round number the following property: Vi € C,Vr,1 <r <t —k+2: (1) C C trusted ;[r]
and, (2) C C Completing[r]. Let p; be acorrect process.

¢ [Base case] Let us consider any correct processp ;. Let usfirst observe that we haveinitialy trusted;[0] = II
(line 01). It follows then from line 04 that p; sends a message to p; during the first round. As both p; and
p; arecorrect and j € trusted;[0], this message is received and processed (at line 06) by p; during the first
round. Consequently, p; does not remove j from trusted;. Since thisis true for any correct processp;, C C
trusted;[1] which provesitem (1). As|C| > n — t, p; does not return L at line 08 during the first round, i.e.,
i € Completing[1] which provesitem (2).

¢ [Induction case] Let us assume that properties (1) and (2) hold from the first round until round » — 1(r > 2)
for any correct process. First of all, let us notice that any correct process p ; sends a message to p; during round
r. Thisfollows from the induction assumption: asj € Completing[r — 1] and C C trusted ;[r — 1], p; send a
message to p; at line 04. Moreover, as both p; and p; arecorrectand j € C C trusted;[r — 1], this messageis
received and processed by p; during round . The proof is now the same as the base step, replacing trusted ;[1]
by trusted;[r], and Completing[1] by Completing|r].

|jTheoa“em 6

Theorem 7 [Validity] A decided value is a proposed value.

Proof Let usfirst observethat aprocessp; decidesthevalueest;[t — k + 2]. This meansthat the set of decided value
isasubset of EST[t — k + 2]. Dueto Lemmad4, EST[t — k + 2] C EST]0], which is the set of proposed values.

|jTheoa“em 7
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