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Abstract

We present an information flow monitoring mechanism for ssdial programs. The monitor executes a
program on standard data that are tagged with labels indgctteir security level. We formalize the monitor-
ing mechanism as a big-step operational semantics tharates a static information flow analysis to gather
information flow properties of non-executed branches ofpfagram. Using the information flow monitoring
mechanism, it is then possible to partition the set of altexiens in two sets. The first one contains executions
whichare safeand the other one contains executions whitdy be unsateBased on this information, we show
that, by resetting the value of some output variables, ibissfble to alter the behavior of executions belonging
to the second set in order to ensure the confidentiality aeselata.

Keywords: security, noninterference, language-based securitgrimdition flow control, monitoring, dy-
namic analyses, semantics

1 Introduction

This paper is concerned with the monitoring (or dynamic wsia) of information flow in sequential programs
in order to ensure confidentiality. The goal of confidentyaknalysis is to ensure that secret data will not be
revealed to unauthorized parties by the execution of a pradB, 6]. A by now standard way of formalizing
safe information flow is via the notion @oninterferencentroduced by Goguen and Meseguer [9]. Following the
notation of Sabelfeld and Myers [18], noninterference .(wsome low-equivalence relatiors, and~:;, on states
and observations) can be expressed as follows:

Vs1,89 € S. 51 =1 s2 = [C]s1 =L [C]s2 Q)

This equation states that a commafids said to benoninterferingif and only if for any two states; and sy

that associate the same value to low (public) data (writtes=;, s2), the executions of the commaiddin the
initial states; and s, are “low-equivalent” [C]s; ~1 [C]s2). The “low-equivalent” relation characterizes the
observational power of the attacker, by stating what he gstinduish. This may vary from requiring the output
of low level of security to be equal for both executions, tquieing the two executions to have the same energy
consumption. In the work presented in this paper, the attaskconsidered to be only able to observe the low data
of the initial state and of the final state.

As witnessed by the recent survey paper by Myers and Sathdlf&] there has been a substantial amount
of research on static analysis for checking the noninterfeg property of programs, starting with the abstract
interpretation of Mizuno and Schmidt [10] and the type bagpgdroach of Volpano, Smith and Irvine [21, 22].
Static analyses may reject a program becausgoaieof its executions which might be unsafe; and thus deny



executions which are safe. The work presented in this papemnpt at preventing executions which are unsafe,
while still allowing safe ones. This requires the definitmnwhat is meant by “safe execution”. An execution of
a command” starting in the original state, is said to be safe (or noninterfering) if and only if:

Vsg € S. 59 =1 81 = [C]s1 =1 [C]s2 2

In order to allow such noninterfering executions, one apphocould consist in combining a standard static
information flow analysis with other static analyses in eftgedetermine conditions on input that lead to noninter-
fering executions. The determination of such conditiore d@sfficult problem. For example, it would be possible
to run a partial evaluation of the program followed by a staddnformation flow analysis. However there would
be infinitely many partial evaluations to run, one for eachasdow-equivalent initial states. The approach pre-
sented in this paper extends the execution mechanism withn#on that allows detecting illicit information flows
and forbids final states which contain illicit informatiomowis. This will allow validating certain executions of
programs beyond the reach of current static analyses, afrites of additional run-time overhead incurred by the
monitoring.

Monitoring information flow is more complicated th&ng. monitoring divisions by zero, since it has to take
into account not only the current state of the program but #te execution paths that were not taken during
execution. For example, executions in an initial state whes false andk is 0 of
(@) if h then x := 1 else skip;
and
(b) if h then skip else skip;
are equivalent concerning executed commands. Howevdr) iE(obviously a noninterfering program, the exe-
cution of @) with the given initial state is not noninterfering. The exgon of @), with a low-equivalent initial
state wherdn is true andx is 0, does not give the same final value for the low output

This leads to a monitoring mechanism which integrates &staglysis of commands which were not executed.
The monitor will be defined formally as an operational sentar(f ) computing with tagged values. At any step
of the evaluation of a program, the tags associated to aryidentify a set of inputs which may have influenced
the current value of the data up to this evaluation step. iusitoring mechanism is combined with a predicate
(Safe) on the final state of the computation to obtain the followmgperty for any command’:

Vs1 € S. Safe([C]s1) = (Vs2 € S. 52 =1 51 = [C]s1 =L [C]s2) (3)

This states that all executions starting in a start statesevlwav (public) part is identical to the low part of the
initial state of an execution satisfyirfghfe will be noninterfering (i.e. return the same values for loutput).

By comparison with static information flow analyses, we obiaformation flow knowledge for a restricted set
of input states, whereas static analyses infer a resuldl ¥ali all executions. This implies a restriction of the
potential paths taken into account; which enables the aehient of a better precision than with a standard static
information flow analysis.

The paper is organized as follows. The next section presesésnantics integrating a monitor of information
flow. It also gives a definition of the predicatafe. This semantics and the predicate definition satisfy the
equation (3), hence with this pair (semantics and predidatepossible to detect noninterfering executions. Once
an information leak has been detected, the program behavist be modified in order to prevent the leakage.
Section 3 explores the idea of program behavior alteratiaseth on information flow monitoring in order to
ensure the respect of the confidentiality of secret data dbserved that a simple analysis as the one developed
in Section 2, althougtsoundwith regard to noninterference between secret inputs afigooutputs, is not
adequate to serve as a basis for behavior alteration. Westimm a possible refinement of the analysis so that the
information flow monitoring mechanism can “safely” direbetprogram’s behavior alteration. Finally, the paper
concludes by presenting some related works and possilleefdevelopments of the information flow monitoring
approach.



2 Detecting noninterfering executions

The programming language considered in this paper is a séglianguage with integer and boolean expressions
and including loop, conditional and assignment statemerite grammar is given in Figure k. stands for any
constant valuegp for any binary operator or relation on values, addor any variable identifier (or name).

v = C
e = e 0pe | id | w
S == ifethen Selse S end

|  while edo S done
| S;8 | skip | id:=e

Figure 1: Grammar of the language

Variables and values are tagged with labels, intended fiticating their security level. In order to simplify
our exploration of the concepts exposed in this paper, thergg lattice considered is constituted of only two
elements { and L with the usual ordering. C T).

The special semantics on tagged data is defined as a “big estapiation semantics that defines an evaluation
relation|. It uses a value store to keep track of the value of varial8asilarly, a “tag store” is used to track the
information flow between the inputs of the program and theenirvalues in variables. Each input of the program
receives a tag which reflects its security levelfor high (secret) input and. for low (public) input). At any step
of the execution, the set of tags associated to any variabtheb“tag store” contains the tag of any input which
has influenced the current value of the variable.

The forms of semantic judgments are described on top of EigurThe first environmental parameter is the
value store (noted in the semantics rules); the second one is the tag storedpdtethe semantics rules). The
evaluation of an expression returns a value and a set of tHgis. set includes the tag of all input whose value
influenced the value of the expression evaluated. For thie@uen of statements there is a third environmental
parameter (noted”* in the semantics rules). It is a set of tags reflecting thermédion flowing through the
“program counter”. It contains the tag of any input which hekienced the control flow of the program up to this
point in the evaluation. The evaluation of a statement nstarnew value store and a new tag store reflecting all
the previous information flows created and those generatedebevaluation of this statement.

2.1 SDIF: Static and Dynamic Information Flow analysis

The semantic rules are given in Figure 2 page 4. In order taaedhe number of rules and focus on the
information flow computation mechanism, the semantics opeendc. op is the function corresponding to the
symbolop. Similarly, c is the value corresponding to the constant

The rule (E5-ASSIGN) updates the value of the variablg™with the result of the evaluation of the expression
e. It also updates the tags set of the variable in the resuitigg store. The new tags set is the uniofi'6fwhich
reflects the information flowing through the expression, @#gl which reflects the information flowing through
the control flow of the program. The rule §HF) evaluates the statement designated by the evaluafitimeo
conditione, and updates the resulting tags store with the informationdlcreated by the branch not evaluated
using a special functior.

The function® (: Id — P(Tag)) x P(Tag) x S — (Id — P(Tag)) is used whenever aifi -statement is
evaluated. Its aim is to modify the tag store so that it reflelbe information flow created by the fact that one
branch of the statement is not executed. In the followingam ‘if h then x := k else skip end



(Id — Value); (Id — P(Tag)) ks Expr | Value : P(Tag)
(Id — Value); (Id — P(Tag)); P(Tag) s S | (Id — Value) : (Id — P(Tag))

o;pksel v:Te o;p;TPeUTe Fs Sy, | o 2 pf

o;p; TP¢ g if e then Sppye else Spqse end L o' = ®(p',T°,5-,) (Es-IF)
o;p; TP¢ s if ethen S ; while e do S done else skipend |} o' : p/ )

o; p; TP s whileedo Sdone || o : p (Es-WHILE)
opbsel v:Te _

U;/O;Tpc Fs id := e | [’Ld&—)'[}]g : [idHTpCUTe]p (ES ASS|GN)

(Es-SKIP)

o;p; TP Fg skip | o @ p

o;p T ks Si Y o' = pf ol piT Fs Sy 4 o 2 p”

o; p;Tpc l_S Sl; 52 U O_// . p// (ES'SEQUENCE)

o;ptse | vy Ty o;p s ea | vo 1o (Es-OP)

o;p Fs et op ez || op(vi,ve) : T UT
oyp Fs id | o(id) : p(id) (Es-VAR)
(Es-VAL)

o;pksc c:0

Figure 2: Semantics rules

the fact thatx is different fromk means that théhen -branch has not been executed; and then hhist false.
In this situation (wheré is false), the final value of is influenced by the initial value di but not ofk; even
if k is the expression appearing on the right side of the assighnide function® is built and used in order to
take into account such information flows. A definition of thdtion ® is given in Figure 3 using a combining
functionIl (IT = A fAgAz. (f =) U (¢ z)). ® adds the tags appearing in the tags set given in parametes tads
set associated to any variable appearing on the left side asignment statement.

D(p, T, “S1 5 S27) ®(p,
O(p, T, “if e then Sy else Sy end”) D(p, T,“S1”) L ®(p, T, “Sy”)
O(p, T, “while e do S done”) = ®(p, T, “S”)
)
)

T’ “Sl”) H @(p’ T’ 445277)

O(p, T, “id =€) = [id— (pid) UT)|p
D(p, T, “skip”) = p

Figure 3:®’s semantics

The definition given here is a simple one. However it is sudfitito detect noninterfering executions with a
reasonable level of precision. In the majority of casespfograms manipulating more public inputs than secret



ones, the method presented in this section is more precase fibw insensitive analyses. Among those flow
insensitive analyses are the standard security type sgsidnich are wildly studied in the domain of language
based security. In the following program, wherés a public inputh a secret inputx a public output andmp

a temporary variable, a type system would give a securitgllgvx at least as high than the onelofand then
reject the program.

1 if (I <0)then { tmp := h } else { skip } end
2 if (1 >0)then { x ;= tmp } else { skip } end

Using the semantics of Figure 2, all the executions of thigg@am are detected as noninterfering (i.e. the tag of
at the end of the execution is). The reason of this better precision lies in the fact thatrttonitoring mechanism
gives us the best possidiew control flowinformation: low control flowdesignates the control flow produced by
branching statements whose condition has a low level ofrggcu

The evaluation of a command produces a value store and aot&g $he notatiorﬂC]]?,’,p designates the output
value store produced by the evaluation of the comm@ndth input valuesr and input tag. [[C]]E,p is similarly
defined to be the output tag store. To summarize on thosdamgathe following holds:

oip;0bs CLICTY, : [C]5,

Four sets of variables give a security specification of tlegmm. H; and L; form a partition of the program’s
variables. H; contains the variables holding a secret data in the iniag ¢i.e. secret inputs) and; contains
public inputs. Similarly,H, and L, form a partition of the program’s variables in which pubji@dbservable
variables in the final state belong ig and unobservable variables in the final state belonf 10A tag storep is
said “well-tagged” if it respects the following properties

Vo € Hy. p(x) ={T}
Va € Li. p(x) = {1}

Definition 2.1 (Safe)
Safe([[C’]]Ehp) =V € L,. [C]]UTl,p(x) c{l}
Using the semantics and definition ®dife presented, the following theorem is an instance of the sehiem
equation (3).

Theorem 2.1 For any command’, value stores; ando,, and “well-tagged” tag storep, such thaSafe([[C]]UThp)
and[C]Y.  # L,ifoy =1, oo then[C]Y, | =1, [C]Y

02,p 01,P g2,p"

This theorem states that, for a given command, if the lowatstpf an executionr are all tagged withl, then for
all other terminating execution if the low inputs are equeiiose ofe, (o1 =7, 02), then the low outputs will be
equal to those of, ([C]Y, , =z, [C]Y, ).

The theorem 2.1 is similar to the equation (3) given in intrctgbn. In fact, as the attacker can only observe
the low outputs, the equality of the low outpufe’(;, p =Lo [C1Y,. ,) matches the equivalence of the final states
as defined in the equatiofi{]s; ~1, [C]s2). And similarly, the equality of low inputsof =1, o2) corresponds
to the low equivalence of the initial states. The only visiblifference is the statemenfCT,, , # L" in the
theorem 2.1. However, as the attacker is unable to obseevietimination behavior of the program, this statement
is implied by the definition of low-equivalence of final swigsed in the equation (3). Therefore, we can conclude
that if all the low outputs are tagged with then the current execution is noninterfering, and then taclagr is

unable to deduce any information about the high inputs.
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To illustrate what precede, the result of the evaluatiorheffbllowing programP is given in Table 1.
X = 0;
if 1 then
if h then { x := 1 } else { skip } end
else { skip } end

In this programx is a low level output| is a low level input (with tagl ), andh is a high input (with tagr).

a(l) | a(r) | [P15,(9) | [P]5,(¥)
True | True 1 T
True | False 0 T
False| True 0 1
False| False 0 il

Table 1: Results for the output

3 Altering the program’s behavior

The semantics described in the previous section enabletethetionof a subset of noninterfering executions. The
next step consists in the alteration of programs behaviorder toenforcethe confidentiality of secret data. Our
goal is to ensure that the set of all altered executions,fgipaogramP, respects the noninterference property of
Goguen and Meseguer as defined by the equation (1). Thispymiates that any execution of the program is a
noninterfering execution as defined by the equation (2).s€quently, the behavior alteration consists in:

¢ doing nothing for executions which are detected as norieriag,

e modifying the output values of executions which may be fietang.

The altered execution of the progrdPrstarted in the initial state is noted[P]s.

The predicat&afe partitions the set of executions of the progrRrimto two setst,,; (containing the executions
for which the predicat8afe is true) andS; (containing the executions for which the predicaige is false). From
the equation (3), we know that all the executiongjn are noninterfering. The problem lies in the executions of
&; among which some are noninterfering and some are not, andagaeweal information about the secret data.
The solution envisioned consists in using a default outfaies?. As it is possible to detect, during the execution
of the programP, if the current execution belongs &,; or &-, it is possible to force the output store of all the
executions belonging t6; to bes?. Then, for any prograr® and initial states; the following properties hold:

Safe([P]s1) = (Safe([P[s1) A (V2 € S. 52 =1 51 = [Pls1 = [Pls1 ~r [Plso = [P]s2)) (&)

—Safe([P]s1) = ( —Safe([P]s1) A [P]s; = s?) (5)

If the predicateSafe gives the same answer for any two executions started in tpivalent statesthen the
equations (4) and (5) imply that for all altered executiohamy programP the following holds:

Vs1, 82 € S. 89 =1 51 = (([P]s1 =1 [P]s2) V [P]s1 = [P]s2 = sg) (6)

It is then obvious that the set of all altered executionsafor progranP, respects the noninterference property of
Goguen and Meseguer as defined in equation (1).



The following example illustrates the ideas exposed ab@iegua program transformation altering the final
value of the outpuk depending on its final tag.

X = 0;
if h then
if | then { x =11} else { skip } end
else { skip } end
if (T in tag(x)) then { x := 2 }

a b~ WN PP

The 4 first lines correspond to the original program in whidls a low level output| is a low level input (with tag
1), andh is a high input (with tagr). The 5" line is added to prevent information leakage. If, at the beigig
of line 5, the tag ok containsT, thenx is reset to a default value (2 in this case, it could be what eafele is
desired). The idea behind th&'Sine is thatif, at the beginning of line 5 may have different values for two
executions having the same low inptiien the tag ofx will be T; so the test of the# line will succeed for both
executionsand thenx will be reset to the same value (2 in this case) for both exesit This way, the program
has been corrected in order to respect the noninterferemgeqy.

The tag, as computed by the semantics given in Section 2¢ arti of line 4 (i.e. just before the information
flow test) is given in Table 2 as a function of the input valué ghorizontally) anch (vertically). In this program,

a(l)
o(h) True | False
True T 1
False T T

Table 2:[P]7 ,(x)

if | is true it is possible to deduce the valuehaby looking at the value ot before line 5. Ifx is 1 thenh is true,
and ifx is 0 thenh is false. This is reflected by the tag »fwhich is T in both cases. Consequently, the value
of x will be reset in both cases; those two altered executionseoptogram will then respect the noninterference
property (i.e. the value of the output x is identical whatetbee value of the high input is). Nevertheless, the
statement added for correction is troublesome in a sitoatioich was safe without it.

If | is false therx is equal to 0 whatever the value bfis. This means that those two executions respect the
noninterference property before line 5. However, the tag o L if h is true, andT if h is false. Both tags are
correct because there is no flow frdmo x and the tag reflects only afayinfluence” relation. The problem with
those tags is that, in the case wheres false, the correcting statement will change the value idfand only if h
is false. So, in the case whdras false, the value of after the line 5 depends on the valueofThis implies that
the set of all altered executions of the program does noertgphe noninterference property.

3.1 Afully dynamic tag semantics

As shown in what precedes, in order for the equation (6) td$at is required that the predicatafe returns
the same answer for two executions started in low-equivattes. If and only if that is the case, it is possible
to secure programs based on the information flow computedrdigally. In our case, it means that the semantics
must compute the same output tag stores for any two exesutiaving the same low inputs. It is not the case for
the semantics studied in Section 2.

Another semantics, whose rules can be found in Figure 4 papasBbeen developed. This semantics goes
through all possible paths in order to compute adequate Yaben it encounters a branching statement it evaluates
completely the branch that the condition designates (@mputes the new value store and tag store), and computes
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Figure 4: Rules of the full-paths semantics

the new tag store returned by the evaluation of the otherchraihe tag store the semantics returns in such a
situation is the join of the two tag stores (one for each bmxntising this semantics, the following theorem has
been proved to hold.

Theorem 3.1 For any command’, value stores; andos, and “well-tagged” tag storep, such thaSafe([C]]El,p)
and[C]), , # L, if o1 =1, oo then[C]Y, , =1, [C]Y, ,and[C]3, , =L, [C]?

oLp T 02,p o1,p 02,p"

This is sufficient to be able to safely alter the behavior aigpams in order to ensure the respect of the nonin-
terference property. Nevertheless, the semantics usadhfyhnefficient. For any execution of a program, the
semantics evaluates all paths which are accessible by &oyton started in a low-equivalent initial state. More-
over, as soon as the semantics encountevhike-statement branching on a condition influenced by a highl leve
input (but not if the condition depends only on public inputee semantics loops forever. This is quite disturbing
and the reason for the current development of another sémsant



4 Related Works

The vast majority of information flow analyses are static analve type systems [18]. In the recent years,
this approach has reached a good level of maturity. Pottidr@nchon described in [16] a systematic way
of producing a type system usable for checkimmninterference Profiting from this maturity, some “real size”
languages including a security oriented type system haga developed. Among them are JFlow [11], JIF [14],
and FlowCaml [19, 17]. There also exists an interpreter fosMEaml. This interpreter dynamically type data,
commands and functions which are successively evaluatedertheless, it types commands the same way the
static analysis does. And then, the interpreter merges/tiestof both branches of afirstatement without taking
into account, when possible, the fact that one branch isste&da@nd the other one is not.

One of the drawbacks of type systems concerns the level abaippation involved. In order to improve the
precision of those static analyses, dynamic security teste been included into some languages and taken into
account in the static analyses. The JFlow language [11wt#¢h is an evolution of Java, uses fthecentralized
label modebf Myers and Liskov [13]. In this model, variables receivabdl which describes allowed information
flows among the principals of the program. Some dynamic téstse principals hierarchy and variables labels are
possible, as well as some labels modifications [26]. Zhenig\yers [27] include dynamic security labels which
can be read and tested at run-time. Nevertheless, labeloai@mmputed at run-time. Using dynamic security
tests similar to the Java stack inspection, Banerjee andnidan developed in [2] a type system guarantying
noninterference for well-typed programs and taking intccamt the information about the calling context of
method given by the dynamic tests.

Going further thartestingdynamically labels, there has been research on dynamicathputingabels. At the
level of languages, Abadi, Lampson, and Lévy expose in [dyr@amic analysis based on the labeledalculus
of Lévy. This analysis computes the dependencies betweedifferent parts of a-term and its final result in
order to save this result for a faster evaluation of any figuivalent\-term. Also based on a labelédcalculus,
Gandhe, Venkatesh, and Sanyal [8] address the informatienréilated issue ofieed It has to be noticed that
even some “real world” languages dispose of similar medmsi The language Perl includes a special mode
called “Perl Taint Mode” [23]. In this mode, trairect information flows originating with user inputs are tracked.
It is done in order to prevent the execution of “bad” commandene of those works take into accountlirect
flows created by the non-execution of one of the branches of anstaile At the level of operating systems,
Weissman [24] described at the end of the 60’s a securityralonmtechanism which dynamically computes the
security level of newly created files depending on the siclavel of files previously opened by the current job.
Following a similar approach, Woodward presentdliagting labelsmethod in [25]. This method deals with the
problem of over-classification of data in computer systemplémenting the MAC security model. The main
difference between those two works and ours lies in the daaityiof label application. In those models [24, 25],
at any time, there is only one label for all the data manimalaData’s “security levels” cannot evolve separately
from each other. More recently, Suh, Lee, Zhang, and Devpdasented in [20] an architectural mechanism,
calleddynamic information flow trackinglts aim is to prevent an attacker to gain control of a systgngibing
spuriousinputs to a program which may be buggy but is not maliciousiiork looks at the problem of security
under the aspect of integrity and does not take care of irdion flowing indirectly throw branching statements
containing different assignments. At the level of compmittiemselves, Fenton [7] describes a small machine,
in which storage locations havefized data mark. Those data marks are used to ensure a securei@xeawitit
regard to noninterference between private inputs and mivatp outputs. However, the fixed characteristic of
the data marks forbids modularity and reuse of code. As Fesitows himself, his mechanism does not ensure
confidentiality withvariable data marks. At the same level, Brown and Knight [4] describaaghine which
dynamically computes security level of data in memory waads try to ensure that there are no undesirable
flows. This work does not take care of non-executed commaAdst has been shown in this paper, this is a
feature which can be used to gain information about secnes®me cases. For example, Table 1 shows that it



is possible to deduce the valuelofwhenl! is true and[[P]]Xp(x) is 0; even if no assignment toor x has been
executed. With a program similar to the one used as examglage 6, their machine does not prevent the flow
from h to x whenl is true andh is false.

5 Conclusion

In this paper, we refine the notion of noninterference, caring all possible executions of a program, to a
notion of noninterfering execution. All possible initigbges of a program are partitioned in equivalence classes.
The equivalence relation is based on the value of the pulghigts of the program. Two initial states are equivalent
if and only if they have the same values for public inputs. Aaaition, started in the initial state is said to be
noninterfering if any execution, started in an initial stéielonging to the same equivalence class thaeturns
the same values for the public outputs of the program.

Refining the notion of noninterference to the level of exexubffers two main advantages. The first one is that
it is now possible teafelyrun noninterfering executions of a program which is not nterifering. The second
benefit is a better precision in the analysis of some prograimstatic information flow analysis has to take into
consideration all the potential paths of all the executimithie program. Using the method presented in this paper
to ensure the respect of confidentiality, only the potemizhs of executions low-equivalent to the current one are
taken into consideration. This feature results in a bettecipion towards possible execution paths. For example,
in the following programh is a secret input, a public input,tmp a temporary variable which is not an output,
andx is the only public output.

1 if ( (cos )’2 < 0.1 ) then { tmp := h } else { skip } end
2 if ((tan 1) < 3 ) then { x := tmp } else { skip } end

Itis likely that a static analysis would conclude that thegram is not noninterfering because of a bad flow from
h to x. However, the progrars noninterfering. As fcosz)? + (sinz)? = 1" and “tanz = £2£” there is no

| such that(cos1)? < 0.1 and(tanl) < 3. It follows that there is no execution of the program whiclleates
both assignments. Consequently, there is never a flow fraax. The mechanism proposed in this paper would
allow all executions of this program. The reason is thatafoy low-equivalent class of executions, there is exactly
onepossible path. And so, only the current execution path isriakto consideration when determining if a given

execution is noninterfering or not.

Concerning the capacity of the attacker, this work consi@er attacker which is only able to get information
from the low outputs of the program at the end of the companatiAnother limitation concerns termination of
programs. The mechanism developed here does not prevenniation leakage from the study of the termination
behavior of programs (neither does it take care of timingecbehannels either). The system proposed in this
paper could prevent those flaws using a technique similangcone found in [5]. In short, the authors of this
paper track the security level of variables appearing ineviuop conditions and other statements influencing the
termination. This is efficient but restrictive since it fab any loop conditioned by a secret. That is the reason
why those types of covert channels are not taken into corsida at first.

We propose a special semantics and a predicate on the fitmlo$tan execution which, together, are able to
detect noninterfering executions. This semantics mixesohic mechanism and static analysis techniques. When
the semantics encounters a branching statement, the bdas@mnated by the value of the condition is evaluated
and the other branch is analyzed. The aim of the analysis exttact the information flow created by the fact
that the given branch is not executed. The result of the aiza#ind the evaluation of the other branch are merged
together to build the resulting information flows corresginig to the evaluation of the branching statement.

The next step of this work consists in altering programs tieinan order to ensure an appropriate behavior
of programs towards confidentiality. However, the first setitg presented does not necessarily return the same
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result about noninterference for two executions whoséaingtates belong to the same equivalence class. This
prevents the use of this semantics for the programs behalteration in order to ensure confidentiality. In
Section 3 we describe succinctly a first attempt at improvhrgysemantics. The resulting semantics is proved
sufficient to ensure the respect of confidentiality by akiedt execution of any program. However, this semantics
does not terminates for programs containing a while-stateroonditioned by a “secret” data.

Future work will involve the development of a semantics hgva precision enabling the insertion of dynamic
tests, but having better termination properties. This sgitawill use an analysis of non-executed branches based
on the model of flow logic [15] in a way similar to [5] since thisodel seems to have a good precision. In
particular, it does not require that a variable keeps theessacurity level in all the statements. The precision of
this model will be improved by taking into account the knasige (i.e. the value store) gathered by the semantics
up to the starting point of the analysis.

Acknowledgment. Discussions with David Schmidt and Anindya Banerjee dutireggdevelopment of this work
have been helpful; as well as their comments on this paper.
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