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Abstract

We present an information flow monitoring mechanism for sequential programs. The monitor executes a
program on standard data that are tagged with labels indicating their security level. We formalize the monitor-
ing mechanism as a big-step operational semantics that integrates a static information flow analysis to gather
information flow properties of non-executed branches of theprogram. Using the information flow monitoring
mechanism, it is then possible to partition the set of all executions in two sets. The first one contains executions
whichare safeand the other one contains executions whichmay be unsafe. Based on this information, we show
that, by resetting the value of some output variables, it is possible to alter the behavior of executions belonging
to the second set in order to ensure the confidentiality of secret data.

Keywords: security, noninterference, language-based security, information flow control, monitoring, dy-
namic analyses, semantics

1 Introduction

This paper is concerned with the monitoring (or dynamic analysis) of information flow in sequential programs
in order to ensure confidentiality. The goal of confidentiality analysis is to ensure that secret data will not be
revealed to unauthorized parties by the execution of a program [3, 6]. A by now standard way of formalizing
safe information flow is via the notion ofnoninterferenceintroduced by Goguen and Meseguer [9]. Following the
notation of Sabelfeld and Myers [18], noninterference (w.r.t. some low-equivalence relations=L and≈L on states
and observations) can be expressed as follows:

∀s1, s2 ∈ S. s1 =L s2 ⇒ [[C]]s1 ≈L [[C]]s2 (1)

This equation states that a commandC is said to benoninterferingif and only if for any two statess1 ands2

that associate the same value to low (public) data (writtens1 =L s2), the executions of the commandC in the
initial states1 ands2 are “low-equivalent” ([[C]]s1 ≈L [[C]]s2). The “low-equivalent” relation characterizes the
observational power of the attacker, by stating what he can distinguish. This may vary from requiring the output
of low level of security to be equal for both executions, to requiring the two executions to have the same energy
consumption. In the work presented in this paper, the attacker is considered to be only able to observe the low data
of the initial state and of the final state.

As witnessed by the recent survey paper by Myers and Sabelfeld [18] there has been a substantial amount
of research on static analysis for checking the noninterference property of programs, starting with the abstract
interpretation of Mizuno and Schmidt [10] and the type basedapproach of Volpano, Smith and Irvine [21, 22].
Static analyses may reject a program because ofsomeof its executions which might be unsafe; and thus deny
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executions which are safe. The work presented in this paper attempt at preventing executions which are unsafe,
while still allowing safe ones. This requires the definitionof what is meant by “safe execution”. An execution of
a commandC starting in the original states1 is said to be safe (or noninterfering) if and only if:

∀s2 ∈ S. s2 =L s1 ⇒ [[C]]s1 ≈L [[C]]s2 (2)

In order to allow such noninterfering executions, one approach could consist in combining a standard static
information flow analysis with other static analyses in order to determine conditions on input that lead to noninter-
fering executions. The determination of such conditions isa difficult problem. For example, it would be possible
to run a partial evaluation of the program followed by a standard information flow analysis. However there would
be infinitely many partial evaluations to run, one for each set of low-equivalent initial states. The approach pre-
sented in this paper extends the execution mechanism with a monitor that allows detecting illicit information flows
and forbids final states which contain illicit information flows. This will allow validating certain executions of
programs beyond the reach of current static analyses, at theprice of additional run-time overhead incurred by the
monitoring.

Monitoring information flow is more complicated thane.g. monitoring divisions by zero, since it has to take
into account not only the current state of the program but also the execution paths that were not taken during
execution. For example, executions in an initial state where h is false andx is 0 of
(a) if h then x := 1 else skip;
and
(b) if h then skip else skip;
are equivalent concerning executed commands. However, if (b) is obviously a noninterfering program, the exe-
cution of (a) with the given initial state is not noninterfering. The execution of (a), with a low-equivalent initial
state whereh is true andx is 0, does not give the same final value for the low outputx .

This leads to a monitoring mechanism which integrates a static analysis of commands which were not executed.
The monitor will be defined formally as an operational semantics ([[ ]]) computing with tagged values. At any step
of the evaluation of a program, the tags associated to any data identify a set of inputs which may have influenced
the current value of the data up to this evaluation step. Thismonitoring mechanism is combined with a predicate
(Safe) on the final state of the computation to obtain the followingproperty for any commandC:

∀s1 ∈ S. Safe([[C]]s1) ⇒ (∀s2 ∈ S. s2 =L s1 ⇒ [[C]]s1 ≈L [[C]]s2) (3)

This states that all executions starting in a start state whose low (public) part is identical to the low part of the
initial state of an execution satisfyingSafe will be noninterfering (i.e. return the same values for low output).
By comparison with static information flow analyses, we obtain information flow knowledge for a restricted set
of input states, whereas static analyses infer a result valid for all executions. This implies a restriction of the
potential paths taken into account; which enables the achievement of a better precision than with a standard static
information flow analysis.

The paper is organized as follows. The next section presentsa semantics integrating a monitor of information
flow. It also gives a definition of the predicateSafe. This semantics and the predicate definition satisfy the
equation (3), hence with this pair (semantics and predicate) it is possible to detect noninterfering executions. Once
an information leak has been detected, the program behaviormust be modified in order to prevent the leakage.
Section 3 explores the idea of program behavior alteration based on information flow monitoring in order to
ensure the respect of the confidentiality of secret data. It is observed that a simple analysis as the one developed
in Section 2, althoughsoundwith regard to noninterference between secret inputs and public outputs, is not
adequate to serve as a basis for behavior alteration. We thenshow a possible refinement of the analysis so that the
information flow monitoring mechanism can “safely” direct the program’s behavior alteration. Finally, the paper
concludes by presenting some related works and possible future developments of the information flow monitoring
approach.
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2 Detecting noninterfering executions

The programming language considered in this paper is a sequential language with integer and boolean expressions
and including loop, conditional and assignment statements. The grammar is given in Figure 1.c stands for any
constant value,op for any binary operator or relation on values, andid for any variable identifier (or name).

v ::= c

e ::= e1 op e2 | id | v

S ::= if e then S else S end

| while e do S done

| S ; S | skip | id := e

Figure 1: Grammar of the language

Variables and values are tagged with labels, intended for indicating their security level. In order to simplify
our exploration of the concepts exposed in this paper, the security lattice considered is constituted of only two
elements (⊤ and⊥ with the usual ordering⊥ ⊑ ⊤).

The special semantics on tagged data is defined as a “big step”evaluation semantics that defines an evaluation
relation⇓. It uses a value store to keep track of the value of variables.Similarly, a “tag store” is used to track the
information flow between the inputs of the program and the current values in variables. Each input of the program
receives a tag which reflects its security level (⊤ for high (secret) input and⊥ for low (public) input). At any step
of the execution, the set of tags associated to any variable by the “tag store” contains the tag of any input which
has influenced the current value of the variable.

The forms of semantic judgments are described on top of Figure 2. The first environmental parameter is the
value store (notedσ in the semantics rules); the second one is the tag store (noted ρ in the semantics rules). The
evaluation of an expression returns a value and a set of tags.This set includes the tag of all input whose value
influenced the value of the expression evaluated. For the evaluation of statements there is a third environmental
parameter (notedT pc in the semantics rules). It is a set of tags reflecting the information flowing through the
“program counter”. It contains the tag of any input which hasinfluenced the control flow of the program up to this
point in the evaluation. The evaluation of a statement returns a new value store and a new tag store reflecting all
the previous information flows created and those generated by the evaluation of this statement.

2.1 SDIF: Static and Dynamic Information Flow analysis

The semantic rules are given in Figure 2 page 4. In order to reduce the number of rules and focus on the
information flow computation mechanism, the semantics usesop andc. op is the function corresponding to the
symbolop. Similarly, c is the value corresponding to the constantc .

The rule (ES-ASSIGN) updates the value of the variable “id” with the result of the evaluation of the expression
e. It also updates the tags set of the variable in the resultingtags store. The new tags set is the union ofT e, which
reflects the information flowing through the expression, andT pc, which reflects the information flowing through
the control flow of the program. The rule (ES -IF) evaluates the statement designated by the evaluation of the
conditione, and updates the resulting tags store with the information flows created by the branch not evaluated
using a special functionΦ.

The functionΦ (: Id → P(Tag)) × P(Tag) × S → (Id → P(Tag)) is used whenever anif -statement is
evaluated. Its aim is to modify the tag store so that it reflects the information flow created by the fact that one
branch of the statement is not executed. In the following program “if h then x := k else skip end ”,
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(Id → Value); (Id → P(Tag)) ⊢S Expr ⇓ Value : P(Tag)

(Id → Value); (Id → P(Tag));P(Tag) ⊢S S ⇓ (Id → Value) : (Id → P(Tag))

σ; ρ ⊢S e ⇓ v : T e σ; ρ;T pc ∪ T e ⊢S Sv ⇓ σ′ : ρ′

σ; ρ;T pc ⊢S if e then Strue else Sfalse end ⇓ σ′ : Φ(ρ′, T e, S¬v)
(ES -IF)

σ; ρ;T pc ⊢S if e then S ; while e do S done else skip end ⇓ σ′ : ρ′

σ; ρ;T pc ⊢S while e do S done ⇓ σ′ : ρ′
(ES -WHILE)

σ; ρ ⊢S e ⇓ v : T e

σ; ρ;T pc ⊢S id := e ⇓ [id 7→ v]σ : [id 7→ T pc ∪ T e]ρ
(ES -ASSIGN)

σ; ρ;T pc ⊢S skip ⇓ σ : ρ
(ES -SKIP)

σ; ρ;T pc ⊢S S1 ⇓ σ′ : ρ′ σ′; ρ′;T pc ⊢S S2 ⇓ σ′′ : ρ′′

σ; ρ;T pc ⊢S S1 ; S2 ⇓ σ′′ : ρ′′
(ES -SEQUENCE)

σ; ρ ⊢S e1 ⇓ v1 : T1 σ; ρ ⊢S e2 ⇓ v2 : T2

σ; ρ ⊢S e1 op e2 ⇓ op(v1, v2) : T1 ∪ T2

(ES -OP)

σ; ρ ⊢S id ⇓ σ(id) : ρ(id)
(ES-VAR)

σ; ρ ⊢S c ⇓ c : ∅
(ES-VAL)

Figure 2: Semantics rules

the fact thatx is different fromk means that thethen -branch has not been executed; and then thath is false.
In this situation (whereh is false), the final value ofx is influenced by the initial value ofh but not ofk ; even
if k is the expression appearing on the right side of the assignment. The functionΦ is built and used in order to
take into account such information flows. A definition of the functionΦ is given in Figure 3 using a combining
function∐ (∐ ≡ λfλgλx. (f x) ∪ (g x)). Φ adds the tags appearing in the tags set given in parameter to the tags
set associated to any variable appearing on the left side of an assignment statement.

Φ(ρ, T, “S1 ; S2”) = Φ(ρ, T, “S1”) ∐ Φ(ρ, T, “S2”)

Φ(ρ, T, “if e then S1 else S2 end”) = Φ(ρ, T, “S1”) ∐ Φ(ρ, T, “S2”)

Φ(ρ, T, “while e do S done”) = Φ(ρ, T, “S”)

Φ(ρ, T, “id := e”) = [id 7→ (ρ(id) ∪ T )]ρ

Φ(ρ, T, “skip”) = ρ

Figure 3:Φ’s semantics

The definition given here is a simple one. However it is sufficient to detect noninterfering executions with a
reasonable level of precision. In the majority of cases, forprograms manipulating more public inputs than secret
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ones, the method presented in this section is more precise than flow insensitive analyses. Among those flow
insensitive analyses are the standard security type systems which are wildly studied in the domain of language
based security. In the following program, wherel is a public input,h a secret input,x a public output andtmp
a temporary variable, a type system would give a security level to x at least as high than the one ofh; and then
reject the program.

1 if ( l < 0 ) then { tmp := h } else { skip } end
2 if ( l > 0 ) then { x := tmp } else { skip } end

Using the semantics of Figure 2, all the executions of this program are detected as noninterfering (i.e. the tag ofx
at the end of the execution is⊥). The reason of this better precision lies in the fact that the monitoring mechanism
gives us the best possiblelow control flowinformation: low control flowdesignates the control flow produced by
branching statements whose condition has a low level of security.

The evaluation of a command produces a value store and a tag store. The notation[[C]]Vσ,ρ designates the output
value store produced by the evaluation of the commandC with input valuesσ and input tagsρ. [[C]]Tσ,ρ is similarly
defined to be the output tag store. To summarize on those notations, the following holds:

σ; ρ; ∅ ⊢S C ⇓ [[C]]Vσ,ρ : [[C]]Tσ,ρ

Four sets of variables give a security specification of the program.Hi andLi form a partition of the program’s
variables. Hi contains the variables holding a secret data in the initial sate (i.e. secret inputs) andLi contains
public inputs. Similarly,Ho andLo form a partition of the program’s variables in which publicly observable
variables in the final state belong toLo and unobservable variables in the final state belong toHo. A tag storeρ is
said “well-tagged” if it respects the following properties:

∀x ∈ Hi. ρ(x) = {⊤}

∀x ∈ Li. ρ(x) = {⊥}

Definition 2.1 (Safe)
Safe([[C]]Tσ1,ρ) ≡ ∀x ∈ Lo. [[C]]Tσ1,ρ(x) ⊆ {⊥}

Using the semantics and definition ofSafe presented, the following theorem is an instance of the schema in
equation (3).

Theorem 2.1 For any commandC, value storesσ1 andσ2, and “well-tagged” tag storeρ, such thatSafe([[C]]Tσ1,ρ)

and [[C]]Vσ2,ρ 6= ⊥, if σ1 =Li
σ2 then[[C]]Vσ1,ρ =Lo

[[C]]Vσ2,ρ.

This theorem states that, for a given command, if the low outputs of an executionǫ are all tagged with⊥, then for
all other terminating execution if the low inputs are equal to those ofǫ, (σ1 =Li

σ2), then the low outputs will be
equal to those ofǫ, ([[C]]Vσ1,ρ =Lo

[[C]]Vσ2,ρ).
The theorem 2.1 is similar to the equation (3) given in introduction. In fact, as the attacker can only observe

the low outputs, the equality of the low outputs ([[C]]Vσ1,ρ =Lo
[[C]]Vσ2,ρ) matches the equivalence of the final states

as defined in the equation ([[C]]s1 ≈L [[C]]s2). And similarly, the equality of low inputs (σ1 =Li
σ2) corresponds

to the low equivalence of the initial states. The only visible difference is the statement “[[C]]Vσ2,ρ 6= ⊥” in the
theorem 2.1. However, as the attacker is unable to observe the termination behavior of the program, this statement
is implied by the definition of low-equivalence of final states used in the equation (3). Therefore, we can conclude
that if all the low outputs are tagged with⊥ then the current execution is noninterfering, and then an attacker is
unable to deduce any information about the high inputs.
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To illustrate what precede, the result of the evaluation of the following programP is given in Table 1.

1 x := 0;
2 if l then
3 if h then { x := 1 } else { skip } end
4 else { skip } end

In this program,x is a low level output,l is a low level input (with tag⊥), andh is a high input (with tag⊤).

σ(l) σ(h) [[P ]]Vσ,ρ(x) [[P ]]Tσ,ρ(x)
True True 1 ⊤
True False 0 ⊤
False True 0 ⊥

False False 0 ⊥

Table 1: Results for the outputx

3 Altering the program’s behavior

The semantics described in the previous section enables thedetectionof a subset of noninterfering executions. The
next step consists in the alteration of programs behavior inorder toenforcethe confidentiality of secret data. Our
goal is to ensure that the set of all altered executions, for any programP, respects the noninterference property of
Goguen and Meseguer as defined by the equation (1). This property states that any execution of the program is a
noninterfering execution as defined by the equation (2). Consequently, the behavior alteration consists in:

• doing nothing for executions which are detected as noninterfering,

• modifying the output values of executions which may be interfering.

The altered execution of the programP started in the initial states is noted[̃[P]]s.
The predicateSafe partitions the set of executions of the programP into two setsEni (containing the executions

for which the predicateSafe is true) andE? (containing the executions for which the predicateSafe is false). From
the equation (3), we know that all the executions inEni are noninterfering. The problem lies in the executions of
E? among which some are noninterfering and some are not, and so may reveal information about the secret data.
The solution envisioned consists in using a default output statesd

o. As it is possible to detect, during the execution
of the programP, if the current execution belongs toEni or E?, it is possible to force the output store of all the
executions belonging toE? to besd

o. Then, for any programP and initial states1 the following properties hold:

Safe([[P]]s1) ⇒ ( Safe([̃[P]]s1) ∧ (∀s2 ∈ S. s2 =L s1 ⇒ [̃[P]]s1 = [[P]]s1 ≈L [[P]]s2 = [̃[P]]s2) ) (4)

¬Safe([[P]]s1) ⇒ ( ¬Safe([̃[P]]s1) ∧ [̃[P]]s1 = sd
o ) (5)

If the predicateSafe gives the same answer for any two executions started in low-equivalent states, then the
equations (4) and (5) imply that for all altered executions of any programP the following holds:

∀s1, s2 ∈ S. s2 =L s1 ⇒ ( ([̃[P]]s1 ≈L [̃[P]]s2) ∨ [̃[P]]s1 = [̃[P]]s2 = sd
o ) (6)

It is then obvious that the set of all altered executions, forany programP, respects the noninterference property of
Goguen and Meseguer as defined in equation (1).
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The following example illustrates the ideas exposed above using a program transformation altering the final
value of the outputx depending on its final tag.

1 x := 0;
2 if h then
3 if l then { x := 1 } else { skip } end
4 else { skip } end
5 if (T in tag(x)) then { x := 2 }

The 4 first lines correspond to the original program in whichx is a low level output,l is a low level input (with tag
⊥), andh is a high input (with tag⊤). The 5th line is added to prevent information leakage. If, at the beginning
of line 5, the tag ofx contains⊤, thenx is reset to a default value (2 in this case, it could be what ever value is
desired). The idea behind the 5th line is thatif , at the beginning of line 5,x may have different values for two
executions having the same low inputsthen the tag ofx will be ⊤; so the test of the 5th line will succeed for both
executionsand then x will be reset to the same value (2 in this case) for both executions. This way, the program
has been corrected in order to respect the noninterference property.

The tag, as computed by the semantics given in Section 2, at the end of line 4 (i.e. just before the information
flow test) is given in Table 2 as a function of the input value ofl (horizontally) andh (vertically). In this program,

P
P

P
P

P
P

P
PP

σ(h)
σ(l)

True False

True ⊤ ⊥

False ⊤ ⊤

Table 2:[[P ]]Tσ,ρ(x)

if l is true it is possible to deduce the value ofh by looking at the value ofx before line 5. Ifx is 1 thenh is true,
and if x is 0 thenh is false. This is reflected by the tag ofx which is⊤ in both cases. Consequently, the value
of x will be reset in both cases; those two altered executions of the program will then respect the noninterference
property (i.e. the value of the output x is identical whatever the value of the high input is). Nevertheless, the
statement added for correction is troublesome in a situation which was safe without it.

If l is false thenx is equal to 0 whatever the value ofh is. This means that those two executions respect the
noninterference property before line 5. However, the tag ofx is ⊥ if h is true, and⊤ if h is false. Both tags are
correct because there is no flow fromh to x and the tag reflects only a “mayinfluence” relation. The problem with
those tags is that, in the case wherel is false, the correcting statement will change the value ofx if and only if h
is false. So, in the case wherel is false, the value ofx after the line 5 depends on the value ofh. This implies that
the set of all altered executions of the program does not respect the noninterference property.

3.1 A fully dynamic tag semantics

As shown in what precedes, in order for the equation (6) to holds, it is required that the predicateSafe returns
the same answer for two executions started in low-equivalent states. If and only if that is the case, it is possible
to secure programs based on the information flow computed dynamically. In our case, it means that the semantics
must compute the same output tag stores for any two executions having the same low inputs. It is not the case for
the semantics studied in Section 2.

Another semantics, whose rules can be found in Figure 4 page 8, has been developed. This semantics goes
through all possible paths in order to compute adequate tags. When it encounters a branching statement it evaluates
completely the branch that the condition designates (i.e. computes the new value store and tag store), and computes
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σ; ρ ⊢F e ⇓ v : T e

σ; ρ;T pc ∪ T e ⊢F Strue ⇓ σtrue : ρtrue

σ; ρ;T pc ∪ T e ⊢F Sfalse ⇓ σfalse : ρfalse

σ; ρ;T pc ⊢F if e then Strue else Sfalse end ⇓ σv : {|ρtrue, ρfalse|}
T e

v

(EF -IF)

σ; ρ ⊢F e ⇓ v : T e

σ; ρ;T pc ∪ T e ⊢F S ; while e do S done ⇓ σ′ : ρ′

σ; ρ;T pc ⊢F while e do S done ⇓ {|σ′, σ|}∅v : {|ρ′, ρ|}T e

v

(EF -WHILE)

σ; ρ ⊢F e ⇓ v : T e

σ; ρ;T pc ⊢F id := e ⇓ [id 7→ v]σ : [id 7→ T pc ∪ T e]ρ
(EF -ASSIGN)

σ; ρ;T pc ⊢F skip ⇓ σ : ρ
(EF -SKIP)

σ; ρ;T pc ⊢F S1 ⇓ σ′ : ρ′ σ′; ρ′;T pc ⊢F S2 ⇓ σ′′ : ρ′′

σ; ρ;T pc ⊢F S1 ; S2 ⇓ σ′′ : ρ′′
(EF -SEQUENCE)

σ; ρ ⊢F e1 ⇓ v1 : T1 σ; ρ ⊢F e2 ⇓ v2 : T2

σ; ρ ⊢F e1 op e2 ⇓ op(v1, v2) : T1 ∪ T2

(EF -OP)

σ; ρ ⊢F id ⇓ σ(id) : ρ(id)
(EF -VAR)

σ; ρ ⊢F ⊙ ⇓ ⊙ : ∅
(EF -VAL)

{|x, y|}T e

v =





x ∪ y if ⊤ ∈ T e

x if ⊤ 6∈ T e andv = true

y if ⊤ 6∈ T e andv = false

Figure 4: Rules of the full-paths semantics

the new tag store returned by the evaluation of the other branch. The tag store the semantics returns in such a
situation is the join of the two tag stores (one for each branch). Using this semantics, the following theorem has
been proved to hold.

Theorem 3.1 For any commandC, value storesσ1 andσ2, and “well-tagged” tag storeρ, such thatSafe([[C]]Tσ1,ρ)

and [[C]]Vσ2,ρ 6= ⊥, if σ1 =Li
σ2 then[[C]]Vσ1,ρ =Lo

[[C]]Vσ2,ρ and [[C]]Tσ1,ρ =Lo
[[C]]Tσ2,ρ.

This is sufficient to be able to safely alter the behavior of programs in order to ensure the respect of the nonin-
terference property. Nevertheless, the semantics used is highly inefficient. For any execution of a program, the
semantics evaluates all paths which are accessible by any execution started in a low-equivalent initial state. More-
over, as soon as the semantics encounters awhile-statement branching on a condition influenced by a high level
input (but not if the condition depends only on public inputs), the semantics loops forever. This is quite disturbing
and the reason for the current development of another semantics.
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4 Related Works

The vast majority of information flow analyses are static andinvolve type systems [18]. In the recent years,
this approach has reached a good level of maturity. Pottier and Conchon described in [16] a systematic way
of producing a type system usable for checkingnoninterference. Profiting from this maturity, some “real size”
languages including a security oriented type system have been developed. Among them are JFlow [11], JIF [14],
and FlowCaml [19, 17]. There also exists an interpreter for FlowCaml. This interpreter dynamically type data,
commands and functions which are successively evaluated. Nevertheless, it types commands the same way the
static analysis does. And then, the interpreter merges the types of both branches of anif -statement without taking
into account, when possible, the fact that one branch is executed and the other one is not.

One of the drawbacks of type systems concerns the level of approximation involved. In order to improve the
precision of those static analyses, dynamic security testshave been included into some languages and taken into
account in the static analyses. The JFlow language [11, 12],which is an evolution of Java, uses thedecentralized
label modelof Myers and Liskov [13]. In this model, variables receive a label which describes allowed information
flows among the principals of the program. Some dynamic testsof the principals hierarchy and variables labels are
possible, as well as some labels modifications [26]. Zheng and Myers [27] include dynamic security labels which
can be read and tested at run-time. Nevertheless, labels arenot computed at run-time. Using dynamic security
tests similar to the Java stack inspection, Banerjee and Naumann developed in [2] a type system guarantying
noninterference for well-typed programs and taking into account the information about the calling context of
method given by the dynamic tests.

Going further thantestingdynamically labels, there has been research on dynamicallycomputinglabels. At the
level of languages, Abadi, Lampson, and Lévy expose in [1] adynamic analysis based on the labeledλ-calculus
of Lévy. This analysis computes the dependencies between the different parts of aλ-term and its final result in
order to save this result for a faster evaluation of any future equivalentλ-term. Also based on a labeledλ-calculus,
Gandhe, Venkatesh, and Sanyal [8] address the information flow related issue ofneed. It has to be noticed that
even some “real world” languages dispose of similar mechanisms. The language Perl includes a special mode
called “Perl Taint Mode” [23]. In this mode, thedirect information flows originating with user inputs are tracked.
It is done in order to prevent the execution of “bad” commands. None of those works take into accountindirect
flows created by the non-execution of one of the branches of a statement. At the level of operating systems,
Weissman [24] described at the end of the 60’s a security control mechanism which dynamically computes the
security level of newly created files depending on the security level of files previously opened by the current job.
Following a similar approach, Woodward presents itsfloating labelsmethod in [25]. This method deals with the
problem of over-classification of data in computer systems implementing the MAC security model. The main
difference between those two works and ours lies in the granularity of label application. In those models [24, 25],
at any time, there is only one label for all the data manipulated. Data’s “security levels” cannot evolve separately
from each other. More recently, Suh, Lee, Zhang, and Devadaspresented in [20] an architectural mechanism,
calleddynamic information flow tracking. Its aim is to prevent an attacker to gain control of a system by giving
spuriousinputs to a program which may be buggy but is not malicious. Their work looks at the problem of security
under the aspect of integrity and does not take care of information flowing indirectly throw branching statements
containing different assignments. At the level of computers themselves, Fenton [7] describes a small machine,
in which storage locations have afixeddata mark. Those data marks are used to ensure a secure execution with
regard to noninterference between private inputs and non-private outputs. However, the fixed characteristic of
the data marks forbids modularity and reuse of code. As Fenton shows himself, his mechanism does not ensure
confidentiality withvariable data marks. At the same level, Brown and Knight [4] describe amachine which
dynamically computes security level of data in memory wordsand try to ensure that there are no undesirable
flows. This work does not take care of non-executed commands.As it has been shown in this paper, this is a
feature which can be used to gain information about secrets in some cases. For example, Table 1 shows that it
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is possible to deduce the value ofh when l is true and[[P ]]Vσ,ρ(x) is 0; even if no assignment tol or x has been
executed. With a program similar to the one used as example inpage 6, their machine does not prevent the flow
from h to x whenl is true andh is false.

5 Conclusion

In this paper, we refine the notion of noninterference, concerning all possible executions of a program, to a
notion of noninterfering execution. All possible initial states of a program are partitioned in equivalence classes.
The equivalence relation is based on the value of the public inputs of the program. Two initial states are equivalent
if and only if they have the same values for public inputs. An execution, started in the initial states, is said to be
noninterfering if any execution, started in an initial state belonging to the same equivalence class thans, returns
the same values for the public outputs of the program.

Refining the notion of noninterference to the level of execution offers two main advantages. The first one is that
it is now possible tosafelyrun noninterfering executions of a program which is not noninterfering. The second
benefit is a better precision in the analysis of some programs. A static information flow analysis has to take into
consideration all the potential paths of all the executionsof the program. Using the method presented in this paper
to ensure the respect of confidentiality, only the potentialpaths of executions low-equivalent to the current one are
taken into consideration. This feature results in a better precision towards possible execution paths. For example,
in the following program,h is a secret input,l a public input,tmp a temporary variable which is not an output,
andx is the only public output.

1 if ( (cos l)ˆ2 < 0.1 ) then { tmp := h } else { skip } end
2 if ( (tan l) < 3 ) then { x := tmp } else { skip } end

It is likely that a static analysis would conclude that the program is not noninterfering because of a bad flow from
h to x . However, the programis noninterfering. As “(cos x)2 + (sin x)2 = 1” and “tan x = sin x

cos x
”, there is no

l such that(cos l)2 < 0.1 and(tan l) < 3. It follows that there is no execution of the program which evaluates
both assignments. Consequently, there is never a flow fromh to x . The mechanism proposed in this paper would
allow all executions of this program. The reason is that, forany low-equivalent class of executions, there is exactly
onepossible path. And so, only the current execution path is taken into consideration when determining if a given
execution is noninterfering or not.

Concerning the capacity of the attacker, this work considers an attacker which is only able to get information
from the low outputs of the program at the end of the computation. Another limitation concerns termination of
programs. The mechanism developed here does not prevent information leakage from the study of the termination
behavior of programs (neither does it take care of timing covert channels either). The system proposed in this
paper could prevent those flaws using a technique similar to the one found in [5]. In short, the authors of this
paper track the security level of variables appearing in while-loop conditions and other statements influencing the
termination. This is efficient but restrictive since it forbids any loop conditioned by a secret. That is the reason
why those types of covert channels are not taken into consideration at first.

We propose a special semantics and a predicate on the final state of an execution which, together, are able to
detect noninterfering executions. This semantics mixes dynamic mechanism and static analysis techniques. When
the semantics encounters a branching statement, the branchdesignated by the value of the condition is evaluated
and the other branch is analyzed. The aim of the analysis is toextract the information flow created by the fact
that the given branch is not executed. The result of the analysis and the evaluation of the other branch are merged
together to build the resulting information flows corresponding to the evaluation of the branching statement.

The next step of this work consists in altering programs behavior in order to ensure an appropriate behavior
of programs towards confidentiality. However, the first semantics presented does not necessarily return the same
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result about noninterference for two executions whose initial states belong to the same equivalence class. This
prevents the use of this semantics for the programs behavioralteration in order to ensure confidentiality. In
Section 3 we describe succinctly a first attempt at improvingthe semantics. The resulting semantics is proved
sufficient to ensure the respect of confidentiality by all altered execution of any program. However, this semantics
does not terminates for programs containing a while-statement conditioned by a “secret” data.

Future work will involve the development of a semantics having a precision enabling the insertion of dynamic
tests, but having better termination properties. This semantics will use an analysis of non-executed branches based
on the model of flow logic [15] in a way similar to [5] since thismodel seems to have a good precision. In
particular, it does not require that a variable keeps the same security level in all the statements. The precision of
this model will be improved by taking into account the knowledge (i.e. the value store) gathered by the semantics
up to the starting point of the analysis.

Acknowledgment. Discussions with David Schmidt and Anindya Banerjee duringthe development of this work
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