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1 Introduction

Some averaging — or homogenization — properties for some elliptic or parabolic
partial differential equations (PDE) in a stationary, ergodic random media
are studied with probabilistic techniques.

This consists in finding constant coefficients which approximate in some
suitable sense highly oscillating coefficients that represent the random media.
In other words, we study the limit of the solutions of some PDEs when a
coefficient — which represents the scale of the heterogeneities — decreases
to 0.

Using the probabilistic representation of the solutions of parabolic and
elliptic PDE, this leads to establishing a Central Limit Theorem for the
stochastic process generated by a second-order partial differential operator.

More precisely, we are interested in PDEs with second-order partial dif-
ferential operators of the form

0 d
A% = L5 + bi(z /e, w) +C($/€7W)+M> (1)
aiL‘i €
2V(.Z’/€ w) o 0
here [#% = —— Vielew) — 2
where 5 o <aw(:v/5 w)e” (9xj> (2)

under the assumption that the coefficients are bounded stationary random
fields and that the matrix a is symmetric. The operator A*“ contains in
fact a lower-differential term of the form 0, (e;(z/e,w)-) = e;(x/e,w)0,, +
e 1(0y,e;)(x/e,w), assuming that e is differentiable.

The solution of the parabolic equation

ou(t, x)

g = ATt x) (3)

with the initial condition u®(0,-) = f is given by the Feynman-Kac formula

u(t, ) :]’Evli,,w [exp (i/ d(Xs/e,w d8+/ Xs/e,w ds) f(Xt)} ,
where E;w is the distribution of the stochastic process generated by the
operator L% = L& 4 by(z/e,w)d,,.

Studying of the convergence of the process Xe associated to L as e
decreases to 0 is equivalent to studying the convergence of (e - E>~(;"/€2)t;o,
where X“ is the process whose infinitesimal generator is

e2VEw) g ot O B
2 Ox; (ald( w)e 8@) + ebil=, w)axl
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As it will be shown in Section ] the Girsanov theorem allows to reduce this
problem, where the first-order coefficient of the operator is of order ¢, to the
study of the Central Limit Theorem for the process X' whose generator
is the self-adjoint divergence-form operator LY. A rather similar use of
the Girsanov transform in a different context to prove some homogenization
results may be found in [23].

A Central Limit Theorem for the process [;d(X%)ds has to be proved to
deal with our initial problem (i.e., with a highly-oscillating zero-order term).

The homogenization property for the divergence-form operator 9,,(a; ;(-/¢, w)0x,)
with random coefficients has been studied with analytical tools first by S. Ko-
zlov |17, 18] and G. Papanicolaou and S.R.S. Varadhan [34] (see also [35]).

The probabilistic method consists in finding functions which are solutions
of auxiliary problems, so that our process is transformed as the sum of a
local martingale and a process that converges to 0. Then, the Central Limit
Theorem for the local martingale is applied with the help of the Ergodic
Theorem. See e.g., [10} 3, [16] for various applications of this procedure.

The difficulty for homogenization in random media lies in the resolution
of the auxiliary problem, that has to be done on a suitable space.

For a general random media — in contradistinction to what happens in
the case of periodic media where the Poincaré inequality holds (see e.g., [24]
for results under weaker hypotheses in periodic media) —, the resolution
of the auxiliary problem cannot be considered in a direct way, because the
needed function is not a stationary random fields. Three strategies may be
used: 1) The solution is approximated by a sequence of stationary random
fields, and one studies the convergence of their gradients. This method is
especially well-suited to the case of an initial environment whose law is the
invariant distribution. (see e.g., [6, 29, 3], [31]). 2) The solution is directly
constructed using the spectral theory for the shift operators of the random
media (see e.g., [34,9]). 3) The gradient of the solution is given directly in
an appropriate space with the help of the Lax-Milgram Theorem (see [15] for
an analytical use of this method).

The two last approaches may be used to prove that the family of processes
converges for almost every realization. We have chosen here to use the third
method. Our approach is close to that used by S. Kozlov in [19] for random
walks.

Furthermore, this approach does not really relies on the idea of mean
forward velocity as in [30} 6, 13],31]. Our proof of the Central Limit Theorem
for the process associated to L'* is then rather different to that of [31], which
itself adapts to Dirichlet forms the ideas developed in [16, [6], 29, [13].

Solving the auxiliary problem or finding the invariant measure shows the
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difficulty to study the limit behaviour of the processes associated to

10 0 1 0
Eaixz (az,](l’/&?,w)ax> -+ gbl(fﬁ/g,w>8xz

J

for a general b, which so far remains an open problem. In fact, there exists
some counterexamples to the homogenization property for some stationary,
divergence-free random fields [I, 14]. We have also assumed that d is the
derivative of a bounded function.

Although some results may be given for general non-symmetric Dirichlet
forms [32] provided the mean forward velocity exists, two classes of problems
are generally considered: The first concerns the case where b is the derivative
of the skew-symmetric matrix which is a stationary random field [28] 9] 22|
34]. The second concerns the case where b is a gradient of a stationary
random field. In this case, the second-order differential operator is reduced
to a self-adjoint operator.

The term V is a potential. If a and V are regular enough, then the
operator L** can be written

ew 1 62 1 8&1'7]‘ 1% 0
L% = —a <3Ij — 2ai’j3xj> (~/€,w)axi

2 i’j<'/67 W) 8@8% + 275
and a stochastic process may be associated to L** via the theory of stochastic
differential equations.

However, any regularity assumption on a and V' may be dropped if one
use the theory of Dirichlet forms as developed e.g., in [11] instead of Ito
stochastic calculus. Hence, our results generalize those of [0, Section 6] and
[29, Chapter 2]. In fact, our proofs use some considerations on the semi-group
associated to a divergence-form operator, but hardly require the theory of
Dirichlet forms.

Afterwards, we prove that the solution to the parabolic PDE (B]) converges
to the solution to the parabolic PDE

ou(t,z) —
— 2 =A
00~ utt, )

where the coefficients of the PDE operator A are constant and are averages
of the coefficients of A" with respect to the law of the media. We use the
method introduced by E. Pardoux in [33] to deal with the highly-oscillating
zero-order term, which also uses the Girsanov theorem.

In Section 5.2 we consider the case of the elliptic equations of the form
(v — A%“)u = f. We prove that o — A** is invertible for o greater to some
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value ag that does not depend on ¢ nor w. Provided that o > ag, the solution
u® converges to the solution of (v — A)u = f, with A as above.

The method to deal with first-order and highly oscillatory zero-order
terms may be easily used to solve some other homogenization problems (e.g.,
the operators of the forms A + 1b(-/e,w), where b is divergence-free).

In Section 2 we recall some generalities about random media and the
construction of the environment viewed from the particle. Section [3] contains
our proof of the homogenization property both for the operator L=* and the
additive functional f; d(Xs) ds. These results are extended to operators with a
first-order differential term in Section 4l The connection of the probabilistic
proof of the convergence and the parabolic or elliptic PDEs is studied in
Section Bl We conclude with some immediate generalizations of our results.

2 The environment viewed from the particle

2.1 Random media

A random media is a probability space (€2, G, 1) on which is defined a group
(Tz)zern of transformations acting on €2 such that

(MP) u(7,A) = u(A) for any A in G and any x € R™;
(ERG) if 7,A = A for any « € R”, then p(A) =0 or 1;

(MEAS) for any measurable function f on (2, G, ), the function (z,w) —
f(7,w) is measurable on (R" ® 2, Bor(R") ® G);

(SC) for any f in the space of square integrable functions L*(u) on

(Q7 g’ﬂ)?

pi |E(mhw) — f(w)[ =6} oo 0
for any 6 > 0. The group (7,)sern is said to be stochastically
continuous.

To any function f on (£2,G, i) is associated a stationary random field f,
which is a measurable function on (R" x G, Bor(R")®G) defined by f(z,w) =
f(r,w). We use bold letters to denote functions on €2, while their italic
counterparts denote stationary random fields.

If f belongs to LP(u) (p > 1), which is the space of random variables on {2
such that [, |f|P du is finite, then almost every realization of f belongs the

space L _(R™) of functions whose p-power is locally integrable.
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The group (T})zern of unitary operators on L?(j1) defined by by T,f(w) =
f(7,w) is strongly continuous, because of the stochastic continuity condition
(SC) of (74)zern- Its n infinitesimal generators D, ..., D,, are defined by

Thef — 1 e e
Dif = ]lzirr(l) th when this limit exists in L?(1),
where (eq,...,e,) is the canonical basis of R™. These operators are closed
and densely defined.

For any f in L?(x) and any smooth function ¢ with compact support, the

operation

fxpw) = /Rn f(row)p(z) dz

defines a function in L2(u). This operation x has to be seen as a convolution.
Let C be the set

C={frp|fcl?(n), p€C(R,R)}.

This space is dense in L?() (see e.g., [22]). Let us denote by (-, -), the usual
scalar product on L?(u1). Let H'(u) be the closure of C with respect to the
norm associated to the scalar product

<f7 g>7-(1(#) = <f7 g)p + <le7 ng>,u :

This space C plays the role of smooth functions for the set of functions on
(Q,G, ). Using the condition of invariance of (7,).ere With respect to pu,

(8 fx0), = [ 1) [ gla.w)p(—r)dvdp. 4)

This relation is particularly useful, because it allows to switch between for-
mulation given for random variables, and formulations given for stationary
random fields for almost every realization.

2.2 Divergence-form operator

We assume in first time that the first-order differential term b is equal to 0.
The following hypothesis are assumed on the coefficients of L** defined

by ([2).

Hypothesis 1. The matrix-valued function a = (a;;);_; is measurable on
(Q,G, ) and a(+) is a symmetric matrix. Furthermore, we assume that there
exist two positive constants A and A such that

vE € R, M < (a(w)g, §) < AEP, pras..

6
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The measurable function V is bounded by A on (2, G, 1) and we may assume
without loss of generality that

/ eV qu(w) = 1.
Q

Using our notations, the stationary random fields corresponding to a
and V are denoted by a = (a;;)7,—; and V.

Let us consider the family of Dirichlet forms on L?(R", e=2V(@%) dz) de-
fined by

gs,w(u7 U) _ 1 am(x/g,w) au(l’) 8@(1‘) 6—2V(m/s,w) dx
2 Jrn Or; Ox;

with domain H!(R™). For each w € Q and each ¢ > 0, there exists a unique
self-adjoint operator (L=, Dom(L**)) such that

E7(u,v) = —(Lu, v)12®n), V(u, v) € Dom(L>) x H'(R™).

It is well known that there exists a weak solution, — called the funda-
mental solution, — to the equation

Op° (w, t
W = L#pf(w,t 1, y),
P(w, 0, 2,y) = 05—y, Vy € RY,

where J,_, is the Dirac mass at the point x — y. This solution p°(w,t, z,y)
corresponds to the density of the semi-group (P/*“);~¢ (see e.g., [2, 21]).

One remarkable results about the density is that it satisfies the Aronson
Estimate:

1 — M|z —y|? _ M —|z —y[?
Min2 &P ( t SPw oY) S GE e (g )

for any (¢,z,y) in Ry x R™ x R", where the constant M depends only on A,
A and n. It is also known that there exist two constants C' and « depending
only on A\, A and n such that for every § > 0,

¢ (\/It’—tIVIw’—ﬂVIy’—yl)a “

|p£(w7t,7$,7y/) —pa(w,t,x,y)| < 57 5

for all (¢',2',y'), (t,z,y) € [0%, +00) x R" x R" with |y —y|V |2/ — x| <. A
proof of these estimates may be found in [3§].
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Setting P, f(x) = [gn p(t, z,y) f(y)dy, it may be proved with (Bl) and ([@])
that P, maps L*(R") into the space of continuous functions that vanish at
infinity.

Hence, the semi-group (P;™)sso is a Feller semi-group, and there exists
a continuous conservative Hunt process (X, Pi7w)ze[@n whose generator is L&
with domain Dom(L%*)). Such a result is stated e.g., in Theorem 1.9.4 in [4]
or in [7, Theorem 2.7, p. 169].

The key tool for studying such a process is the Theory of Dirichlet forms:
see [111, 27] for example.

From now, we denote by X is the canonical process on the space of con-
tinuous functions, i.e., Xi(w) = w; for any w in C([0, +o0); R™).

2.3 The environment viewed from the particle

The aim of this paragraph is to construct the process

YUJ — wW, f t > 07
{ t TX% w or (7)

w __
Y§ = w,

where X' is the process with generator (L', Dom(L'*)) and such that
X1« = 0. We denote by P,, the distribution of Y¥. We also prove that Y is
ergodic for the distribution [, e 2V@P, [-] dpu.

Let (G¥)as0 be the resolvent of the Dirichlet form £'. For any a > 0,
the operator G¥ may be written G¥ f(x) = [gn go(w, z,y) f(y) dy for any f
in L2(R"), with g, (w,z,y) = [3"° e *p(w, t,z,y) dt.

If f is a stationary random field in L} (R") with p = 1,2, G¥f(z,w) is

also a stationary random field in LY (R™). As a result, we set

G.f(w) = /Rn Go(w, 0, y)f (Tyw) dy.
Let L2(7) be the Hilbert space equipped with the scalar product
(u,v) = / uve2Vdpu.
Q

The closed bilinear form and densely defined on L?(7) corresponding to
the Dirichlet form £ on (Q,G, i) is

EM(u,v) = / a;jDuD;ve Y dp Yu, v € H' (p).
Q

Lemma 1. The family (G, )aso0 is the resolvent of the process (Y¢, t >
O;Pw)weQ-
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Proof. For any u in L?(u),

(G w) )uw) dulw)

If p(z) = p(—x) and Gf(T,w) = G¥f(x,w), the former equation is equiva-
lent to
EN(Guf,ux@) +a(Guf,ux@) = (fuxp) .

The last equation is true for any smooth function ¢ with compact support
and any u in L?(x). By density of C in L?(11), (Ga)aso is the resolvent of
(€™, H (1)-

We also deduce that

O a1 Ot
G2 (0, w) = /0 e'EL [ f(X,w)] dt = /0 R, [£(Y9)] dt = Gaf(w).

Hence, (G,) is also the resolvent of the process Y¥. ] ]

Lemma 2. The process Y is ergodic with respect to the measure e 2Y .

Proof. We know that Y* is ergodic when the only functions in L?(x) such
that aG,f = f are the constants [20, Theorem 1.3.7, p. 22]. But if aG,f = f,
then clearly £7(f,f) = 0. This implies that D;f =0, p-as. fori=1,...,n.
The operator x allows to proves rigorously that f is constant. For any smooth

function ¢ with compact support and for i =1,... n,
0 0
0=—-Difxp=1f% LA / f(z,w) wlz) dz, p-a.s.,
o0x; R 0x;

which proves that for almost every realization, the function f(-,w) is just a
function of w. But, with the hypothesis of ergodicity (ERG), f is constant.
Clearly,

a(Gaou, 1) +E7(Gou, 1) =« <Gau, 6_2V> = <u7 6_2V>#, Yu € L2(p).

m
Hence, e~2Y dp is the invariant, ergodic measure for Y. O O

Remark 1. We choose here to use a bilinear form and the resolvent, but
we also may have construct a “differential” operator and the corresponding
semi-group as in [29).
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3 Homogenization of the divergence-form op-
erator

We still assume that the first-differential order term b is equal to 0. Let d
and ¢ be some bounded measurable functions on (€2, G, ). These terms give
the zero-order terms of the partial differential operator A*“ defined by ()
and an additional condition is required on d.

Hypothesis 2. There exists some some bounded functions 81, e ,an in
H'(u) such that
e ?Vd = Dyd, + -+ D,d,. (8)
This hypothesis implies that [, d(w)e™2V®) du(w) = 0.
We set
tr1
Ve o) = [(Zd0xee o) + X o)) ds, )

We prove now the joint convergence of X*¢ and V¢ (X=¢).

Proposition 1. Under Hypothesesl and[Z, there exist some symmetric ma-
triva = (a; ;); j—1n together with some reals ¢ = [ ce”*V dp and D depending
respectively on the coefficients of L= and A* (see formula (I6])) such that
for almost every environment w € €,

LXY L X VEX) [Py — LM, My M et t > 0| P),

e—0

where (M,P) is a (n + 1)-dimensional non-standard Brownian motion M
characterized by

<W,Mj>t': a; ;t, if1<i,j<n,
(M MY, =0, ifl1<i<n,
<mn+1> :Et

Let us defined the auxiliary problems. For that, we need to work on some
appropriate space.

Let V2, be the Hilbert space
0 0
2 2 /fidHZQ fi*7%0:fj* 90,
Vpot = (fh o 7fn) e L (M)n Q axj al’l

Vo € C°(R™R), i,j=1,...,n
={(D:f,....,D,f)|f € C}”'HL%‘)"_

10
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This space is equipped with the scalar product (-, '>L2(u)n. The second iden-

tification for the space V2, follows from the fact that, if

pot

)
P fx ot =0, Yy € C°(R™R) }

L2 =< (f,....f L2 (p)™
b= { e o

then L2(p)" = V2, & L2,. This is the Weyl Decomposition [15] p. 230].

pot sol*

Let G be the bilinear form defined by

G7(1,8) = 5 [ 2V a; (@) ()gs(w) du(w)

for f = (fy,...,f,) and g = (g1,...,8n) in V2.
that for any u, v in C,

G"(Vu,Vv) = £™(u,v) where V = (Dy, ..., D,).

The choice of G™ comes from

Now, G™ is coercive and continuous on V2 .. From the Lax-Milgram The-

pot*

orem, there exists for ¢ = 1,...,n a unique solution (f{,... f}) in V2 to
| 1
G (f',u) = T/Qai,je_wuj dp, Y(uy,...,u,) € V2. (10)
Let (g1,...,8n) be the solution in V3, of
gw(g7 u) = /Q(Aizuz d,u, ‘v’(ul, R ,'Lln) c V}?ot' (11)
Remark 2. The elements (81, . ,an) are defined up to an element (uy, ..., u,)

T2
in L.

Definition 1 (Auxiliary problems). The problems ([I0) and (III) are called
auxiliary problems.

We set v;(z) = [y z; fi(tz,w)dt, in order that d,,v;(z,w) = f!(r,w). The
function u (¢, z) = x; + ev;(x/e,w) is harmonic for L%, i.e., L¥“u°(-,w) = 0
in the weak sense.

We set h(z,w) = [} z;g:(tx,w) dt and h*(z,w) = eh(x/e,w), so that

But the Weyl decomposition implies that g is unique.

e (w)9) = [ Sln/ewlola) da

1
= —g/ d(z/e,w)p(x)e 2V @/ew) dg

(12)

for any smooth function ¢ with compact support on R".

It is known (see e.g., [12], Theorem 8.24, p. 202] for example) that there
exist some continuous version of z — h®(z,w) and z — u°(x,w). So, we
choose these continuous versions of u® and h®. We assume that u®(0,w) = 0
and h®(0,w) = 0 for any € > 0.

11



A. Lejay / Homogenization of divergence-form operators in random media

Proposition 2. For almost every realization w, the families of functions
(he(-,w))es0 and (V5 (-, w))eso0 converge uniformly to 0 on each compact of R™.

Proof. For almost every realization w, the functions v and h have a sublinear
growth. More precisely, for any R > 0, let B(0, R) be the closed ball of
radius R and centered on 0. Hence u°(-,w) = ev(-/e,w) and h(-,w) =
eh(-/e,w) converge to 0 in L2(B(0, R)) (see e.g., [I8] or [9, {]).

In fact, standard results on elliptic PDE (see e.g., [I12] Theorem 8.24,
p. 202]) implies that A and u® are Holder continuous on the ball B(0, R/2)
for some coefficient o that depends only on A, A and n. Furthermore,

Hhs('vw)HCa(B(O,R/Q)) < C(Hh5<'7w)”L2(B(O,R)) + ld[l),

and [|[v°(-,w)llca(po.r2) < €'+ C[v°(-, W)l 2(p(0.r)): Where the constants C
and C” depend also only on A\, A, R and n. With the Ascoli Theorem, (v°).~
and (h®).s are relatively compact on the space of continuous function on
B(0, R). Hence, some subsequences of (v°).s¢ and (h%).s¢ converge in this
space. But, due to the sublinear growth of h® and v°, and the choice of
v¥(w,0) = h®(w,0) = 0, any limit of possible convergent subsequences is
equal to 0. Il O

Corollary 1. The quantities sup,cp 7y [v; (X;,w)| and supcp 7y [h* (X7, w)
converge to 0 in probability.

Proof. With the Aronson estimate (&),

2
P:  [X exits from the ball B(0,r) during [0,T]] < xexp (Z)
? K

for some constant x that depends only on A\, A and n (¢f. [38, Lemma I1.1.2,
p. 330]). Hence, for any x > 0 and any R > 0,

Pg,w sup |vf(Xt,w)\ > K

<P5, [ sup |vi(Xs,w)| = k; sup [Xi| = R

te[0,T] te[0,7] te[0,T]
+ 5, l sup |v5(Xg, w)| = k; sup [X¢| < R|.
" L tefo,T) t€[0,T)
Corollary [1lis then proved using Proposition 2. ] ]

Before proving Proposition [I we state a Lemma which allows us to pass
to the limit.

12
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Lemma 3. If k is a function in L'(u) and if Xg¥ = 0, then

the? w dist. —92V
[, B/ ds, > 0) L (t»—>t/ke d/L)

2 e—0

on the space of continuous functions for almost every environment w € 2.

Proof. Assuming that X5 = 0, it follows from the Ergodic Theorem that

e—0

t . t/e?
/ R(X5®fe)ds B / k(Y9)ds — ¢ [ ke 2Vdp, Po-as..
€ 1 Q

for almost every w in 2. In fact, the convergence holds uniformly in ¢ on some
compact interval [0, T, because k may be decomposed as the difference of two

non-negative functions k™ and k=. Thus ¢ — flt/ e k*(Y¥)ds is increasing
and according to the Dini Theorem, it converges uniformly for any fixed
environment. [ [

Proof of Proposition[d. With the It6-Fukushima decomposition [I1, Theo-
rem 5.5.1, p. 228 and Theorem 5.2.3, p. 206], [P ,-almost surely,

X — X2 ]+l (R w) =0 X2 )| e | Re i > 2 (13)

Vit () = VR 0] T [AE(X, w) = B (X2, w)
where M** is a (n + 1)-dimensional local martingale and

0 ifi=1,...,n,

Ry¥“ ={ ft . (14)
/2 c(Xe¥[e,w)ds ifi=n+1.

Remark 3. We start at time 2 to be sure that decomposition (I3)) holds really

under P§ ,, which is not ensured by the results in [IT] when the dimension n

is greater than 1, since {0} is a set of zero capacity.

The cross-variations of M are

t ov; ov;
/2 (p,q <5p,i + (9]7) <6q7j + 81’]) (Xs/s,w) ds
€ D q

ifi,j=1,....n

t ov; \ Oh
, . , ‘ X
<Mlv‘57w’ M]787w>t — »/5'2 ap7q <5p77/ + 8$p> 8$q( 5/87 w) dS (15)
if (¢,7) and (j,7) in {1,....,n}x{n+1},
t oh Oh
/52 ap’qai%ai%(xs/é‘?w) ds

ifi=n+1land j=n+1.

13
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The Central Limit Theorem for the martingales (see e.g., Theorem 7.1.4
in [7, p. 339]), implies that M** converges to a (n + 1)-dimensional Gaussian
process M whose cross-variations are

t /Q apyq <6p,i —|— f;) (5%]’ —|— fg) 6_2V d,u = tam
ifi,j=1,....,m,
% -2V —
t/Qap,q <5p,i + fp) g, e -V dp =0 from (I0),

v

(M W), = (16)
if (4,7) and (j,72) in {1,....,n} x{n+1},
t/ a,,8,8.¢ 2 du=1tD
Q
ifi=n+4+1land j=n+1.
Since R®* converges in distribution to the function ¢ — (0,...,0,¢¢) with
¢ = [oce 2V du, Proposition [l is proved, and the coefficients @ and D are
identified by formula (I@l). O O

4 Addition of a first-order term

We add now a first-order differential term to the operator A%“.

Hypothesis 3. The function b be a measurable function on 2 bounded
by A.

The stationary random field corresponding to b is denoted by 0.
Let (L#*,Dom(L**)) be the operator

e bi(x/s,w)ai, Dom(L#*) = Dom(L*).
(2
There exists also a Feller semi-group associated to this operator, and this
semi-group admit a density which also satisfies the Aronson estimate ()
and is Holder continuous. But, in this case, these estimates (B]) and (@)
are only valid on any compact interval [0,7] of time, for some constants
that depend also on T' (see e.g., [38]). Thus, there exists a conservative,

continuous strong Markov process (X, P ,),cr» whose infinitesimal generator
is (L5, Dom(L**)).

For any point z, the Markov process X under P, , may be decomposed
as the sum of a martingale MX™ and a continuous process N*“ locally of
zero-quadratic variations [37].

14
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Proposition 3. For any x in R", the distribution ﬁ”;w 15 absolutely contin-
uous with respect to P2, and

T,w’

dIF’;w
dPe

T,w

£,w
:Zt7 )

Fo
where £ is the exponential martingale
1

Z;% = exp (Mf” —5

. . ¢ .
<M5’”)t) and M = [ (a710)" (X, /2, ) AMX.
0

Here M is the martingale part of X** under P .-

Sketch of the proof. As a=' and b are bounded respectively by A and A, we
deduce easily that K [exp (%(Mfﬂt” < e for any t > 0, where A is
the upper bound of a and b. Hence Z°* is an exponential martingale.

It can be proved that ]Efw [ f(X;)] is equal to P= f(z) for almost every =
in L2(R™) (see [26] or [5]). But, we know that P7*f(x) is continuous, and
using Proposition 3.7 in 5], z +— IE;W [ f(X¢)] is also continuous. Hence, for

any r € R", Iﬁ’;,w is the distribution of the process associated to the operator
(L&, Dom(L%)). O O

Proposition 4. For any bounded function f on [0,t] x C([0,t]; R™)

1/2

B, [Z55()] < AR, [ (%] (17)

where X is the ellipticity constant of a, and A is the bound of the coefficients a
and b.

Proof. Using the Cauchy-Schwarz inequality, it is standard that

B (259 ()] < e [ et ] g [ e pg2]?
x,w[tf()]\ x,w € x,w € f()

which proves (7)), since Z%“ is an exponential martingale and (M=“), is
bounded by AZ\t. O O

Proposition 5. Under Hypotheses[l, [ and[3, there exists a (n+1)-dimensional
non-standard Brownian motion (M,P) with the same cross-variations as as
in Proposition[d], such that for almost every environment w € €2,

LXK X VEC(X) | B )
— L (M, + by, .. M 4 thy, M, D0+t 1 > 0\1@) :

15
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where
b=y (18)
i8¢ s 1
0

Proof. We may now consider the process (X, V(X)) under the distribu-
tion Pg . It follows from the Girsanov transform that under P§ ,, Equation
(I3) becomes

Xt_X52 US(Xtaw)_UE<X€27W) _ £,w £,w £,w
[vtwoo— W<><>1*[hff(xt,w)—m(xg?,w) =MS R U

2

where R®“ has been defined previously by (I4]), M= is a local martingale
whose cross-variations are given by (IH]), and

t 8’02' cw P
' /2bj 5i,j+% (Xs¥/e,w)ds ifi=1,...,n,
Ui,é,w — Et 8h i
/52 by (X5 ) ds ifi=n4tl.

With (1), it is clear that the convergence in probability under IPj , to
some deterministic function implies the convergence in probability to the
same function under I@g’w.

Hence, M5 converges to some Gaussian process M whose cross-variations
are given by ([I6]), since we use the almost sure convergence of its cross-
variations. Furthermore, with Lemma [B] R®“ converges in probability to
t— (0,...,0,tc), and Us* converges to t ~— tb.

Finally, we remark that

P | sup [v° (X w)| + sup |h°(Xew)| = 0| — 0,
0<t<T 0<t<T e—0
for any 1 > 0 and for almost every realization w. Proposition [l is proved by
combining all the previous convergences. O ]

5 Application to PDEs

Let O be an open, connected subset of R™. We assume that the boundary of
O is regular enough.

From the Theory of Dirichlet form, the process associated to the strong
local, regular Dirichlet form

B Ou(@) O(T) oview) 1. [ 1 du(z)
/Oam(x/s,w) o ije dz; /Ob,(x/g,w) oz, v(x)dx,

16
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defined on HL(O) x H}(O), is the process X killed when it exits from O
([I1, Theorem 4.2.2, p. 154] for the case where b = 0. The Girsanov theorem
also holds in this case).

Since the boundary of O is regular, the set of discontinuities for the
function that gives the exit time of a path is of null measure with respect to
the distribution P and P. In other words, if O belongs to O and

t9=inf{t>0|Xg0O},

then L£(X,Ve#(X),t9 | I@S,w) converges in distribution to £(X,V,t° | P),

where
e

V=M 41,4y + et

5.1 Parabolic PDE

We are first interested in the behaviour of the solutions of the parabolic PDEs
ous (t
U(a’tx,u)) - AevWUE(t,$7w)’ (t7 -1') S RJr X 07
UE(O,:L') = f(l‘) c L2(O)’ (19)
us(t,-) € H3(0), vt >0,

as € goes to 0.

Theorem 1. We assume that Hypotheses[d, [4 and[3 are satisfied. Let O be
a domain of R™ with reqular boundary, and f a function in 1L2(O). Let A be
the operator on O defined by
— 1 0? - 0 =
A=t ;—— +bj— +d,
2a " 81‘18"13] + 8@ * (20)
Dom(4) = { f € Hy(O) | Af € L*(0) |,

where fori,7=1,...,n+ 1,
Ei?j = /Qanq (5p,i -+ f;) (5%]’ + f(,]?) 672V d/j,, Ez = /Qb] ((LJ -+ f;) 672V d/lx,
- 1
and d = / (231"]' g:8; +c+ bz gl> 6_2V d,u
Q

for £ and g; defined in (I0) and ([II). Then a version of the generalized
solution to the parabolic equation ([I9) converges pointwise for any (t,x) €
R, x O to the solution @ of the parabolic PDE

8ugf£ ?) = Au(t,z), (t,z) e Ry x O,

u(t,z) € HY(O), vt > 0,
u(0,z) = f(x).

17
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A version of the generalized solution u® of this equation is given by the
Feynman-Kac formula:

u(tmw) = o, [exp(V (X)) f(X0); t < t€]

where V¢ has been defined in ([@). From the stationarity of the coefficients
of the operator A, the density transition function p*(w,t,z,y) satisfies

P (w,t,z,y) = p*(Tp/ew, 1,0,y — x), Ve >0, Va,y € R".
As (7,)zern is stationary,
u(t,x,w) = ]ES " {exp(Vf’Tw/Ew(X))f(Xt +x); t< tofx}
RS, [exp(VU (X)) f(X + a); £ <t

We first remark that the family (exp(V,;“(X®*)))c>0 is uniformly inte-
grable.

Lemma 4. Under the probability [, I@aw [-] du(w), the family (exp(Vi* (X59)))es0
is uniformly integrable. In fact,

sup EOW [exp (2 /Ot id(Xs/s,w) ds)} dp(w) < +oo. (21)

e>0

The following Lemma will be used.

Lemma 5. There exists some constant C depending only on the bounds
ofdy,...,d, such that

/Qe_wdu2 d,u‘ < Clluflizg, Vullieg,

for any bounded function u in H(u).

Proof. Let u be a bounded function in H'(1). A straightforward calculation
implies that
D;(u?) =2uD;u, fori=1,...,n

So,

n

‘/Qdewu2 du’ = ‘/QalDZ d,u‘ 2 sup |d; oo >

=1

/ uD;u d,u‘
Q

and the Lemma is proved with the Cauchy-Schwarz Inequality. n n

18
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Proof of Lemma[4 To prove (21I]), we use an argument borrowed from Chap-
ter 3 in [29].
Let u®(¢,w) be the solution to the parabolic equation

out(t,w) eV
o 2

Di(eVa, ;D;juf)(t,w) + dedu(t,w) (22)

with the initial condition u®(0,w) = 1. This solution u®(, -) belongs to H! (1)
for any t > 0, and is given by the Feynman-Kac formula:

u’(t,w) =E, {exp <4€ /Otd(Y;J) ds) ] ,

so that w — u®(t,w) is bounded for any ¢ > 0 and any ¢ > 0.
We know that £™(u,u) > & ||Vu||ig(u)n for k = Ae 22, Tt follows from

[22)) that

a 2 2 2
57 105t e < sup { =R IV V12 +C IV V20 1107 () g
veL=(u),
||VHL2(H):1
0252 A 2
< Ak 64 Hua(tv ')HLQ(W) :

The Gronwall inequality [7, Theorem A.5.1, p. 598] yields

2 2
c 2 e“tC
o 1) < 0 (S5 ).

so that, from the Feynman-Kac formula applied to the solution of (22]) and
the Cauchy-Schwarz Inequality,

t/e? tCZ
w < — .
Ve > 0, /QE“’ [exp (5/0 4d(Y%) ds) ] dp < exp ( o ) (23)

With (IT), there exists some constant C' depending only on A\, A and ¢ such
that

I~E§’w {exp (i /Ot d(Xs/e,w) ds) }

< CE;, {exp (;l /Ot d(Xs/e,w) ds) }1/2. (24)

Hence (21]) is satisfied. O O
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~ With Hypothesis 2], there exists some bounded stationary random fields
dy,...,d, such that

AT =[5 bi(x/S,uJ)ai - @(ﬁ/&w)ai +c(z/e,w)

+ ezv(x/s’“’)(ii (e’w(’c/s’”)di(x/e, w)) . (25)
We may assume that €2V and dj, ..., d, are bounded by A.

The expression (25) is in fact particularly suitable, since in this case, the
semi-group of infinitesimal generator A>* (which is in general not Markovian)
also has a density transition function satisfying the Aronson estimate similar
to (B) with some constants depending only on A and the upper bound of the
coefficients (see [2]).

Proof of Theorem [1. If f is continuous, bounded with compact support on O,
then f(X; +2)1{ict0-=} = f(Xipo—= + 1) PG -a.s. because f is equal to 0 on
the boundary of O. It is now clear that

J

B [exp(V7 () £ (X, + )5t < 19 ]

— B [exp(M; ™ + it + 2 (X, + );t < t077)] ‘ dji(w) — 0.

e—0

It remains to remark that, using the Girsanov Theorem with the density
= —n+1 —n+1
d]P)/de:t = exp(Mt - l<'\/I >t)>

2

E [exp(W“ + byt +¢t) f(Xe + )5t < to_f”}
= 1 —n _
=K {exp <2<M +1>t + bn+1t +Ct> f(Xt + x),t < tO—x s

where, for any ¢ > 0 and for i =1,...,n,
X! = Mi + tb; + (Mi,WH)t, P-almost surely.
But we have seen in ([I6]) that (W,W+l>t =0 for any t > 0. So it has been
proved that
Y(t,2) € Ry x O, / U (t, 7, w) — 1(t, 7)| dp(w) — 0.
0 e—

Let (Pf*);s0 be the semi-group whose infinitesimal generator is A®*.
According to Lemma 4.1 in [36], p. 147], For any function f in L*(O), a sub-
sequence of (P f).so is convergent in L2(]0, T[xO) for any ¢ > 0. If more-

over f is a smooth function with compact support, then (¢, z) — P& f(z)
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converges uniformly on each compact of |0, T[xO. Using the Aronson esti-
mate for the density transition function of P=¥_ it is clear that this sequence
is bounded on O for any fixed t by some constant that does not depends on
w. Let u(t, z,w) be the limit of a converging subsequence of (P f(z))es0.
Then the convergence also holds in LY(€, i), and u(t, z,w) is almost surely
equal to the limit (¢, ) when the initial condition of the parabolic PDE (20)
is f.

Again with the Aronson estimate (B) and with the Cauchy-Schwartz in-
equality, | P f ()| is bounded by e £l 20y /2. So, by density, P f(x)
converges pointwise to u(t, z) for any f in L?(0), assuming we have chosen
the version of P f given using the density transition function. O O

Corollary 2. For any starting point x and for almost every realization w,
P; ., converges weakly to P [z + -].

Proof. See Theorem 4.2 in [36] p. 148]. O O

5.2 Elliptic PDE

Let us start with the definition of some convergence on a family of operators.

Definition 2 (G-convergence). A family (B¢)..q of operators from V to
V'’ satisfying uniformly in &

(Bu, u)r2(0) 2 C HuHHé(O) (26)
and (B*u,v)12(0) = C' ||U||H(1)((9) ||U||H(1](O) (27)

for some constants C' and C” is said to be G-convergent to some operator B
if the family of solutions (u%).~q of

u® € Vand Bu®(z) = f(x), feV (28)
converges weakly to the solution u € V of the problem Bu = f.

In fact, a family (B®).~o of operators satisfying (26) and (217) has a con-
vergent subsequence in the G-topology. (see e.g., [39, 40] or [15, Chapter 5.3,
p. 160]).

Remark 4. In the cited articles or books, the G-convergence is defined when
the domain O is bounded. But the results may be generalized to unbounded
domains (see Theorem 20 in [39] p. 108]).
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In view of (), it is not clear that the operator a — A** is invertible
for some « larger than some oy independent from ¢ and w. Again under
Hypothesis 2 the form (25]) is suitable for elliptic PDEs; since it allows to
assert that there exist some constants C' and C’ depending only on A, A
and « such that (26]) and ([27) are true for « — A% [36]. Hence a — A** is
invertible when « is greater than some oy depending only on the ellipticity
constant A and the bound A of the coefficients.

In particular, the family (a—A®“).~q is relatively compact of G-convergence,
when a > «y.

Theorem 2. Under Hypotheses [, [4 and[3, for almost every random envi-
ronment w, (o — A%%).~o G-converges as € goes to 0.

Proof. See Theorem 5.4 in [36]. O O

Using the results in [5], it is also possible to prove the convergence of the
solutions of the non-homogeneous Dirichlet problem. In fact, when b = ¢ =
d = 0, the Convergence of Arbitrary Solutions Theorem [I5, Theorem 5.2,
p. 151] yields that the solution of (o — A*“)u® = f will converges to the
solution of (& — A)u = f, whatever the boundary condition is, assuming that
O is bounded.

It is also possible to define similarly as the previous one a notion of G-
convergence for the parabolic operators % + (o — A%¥). The G-convergence
of the elliptic operators (o — A*%). ,, implies the convergence of the parabolic

operators [40].
Remark 5. In the cited article [2, 39] 40l 38| [36], it is assume that V = 0,

but all the results may be easily adapted to the case of V' # 0.
6 A few variations of the above results

Slow variation in the coefficients. It is clear that our results may be
easily extended to deal with some operators of the form

L5 + b(x /e, x)ai

+o(z,z)e) + id(x/s),

where the functions b(w,z,y) = b(r,w,y) and c(w,z,y) = c(rw,y), and
Yy b('a y) and y — C(-, y) are equi-continuous.
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Influence of the first-order term. Let f(¢) be a function such that
f(g) converges to 0 with . The homogenization property for the family of
operators

L + f(e)b(z/e,w)

is reduced to the homogenization property of the family of operators (L=*).~.

Influence of the highly oscillatory zero-order term. Let d be a bounded

measurable function, and (d) = [, de™2Y du. We assume that d—(d) satisfies

the Hypothesis 2l Let u®(¢,w, x) be the solution to the parabolic equation
ous(t,z,w)

o = (LW + f(;)d(m/s, w) + c(x/s)) ut(t, z,w),

where f(¢) is a function that converges to 0 with . Hence, it is clear that

exp (‘tf (€) <d>> Wt 7, w)

€

converges in p-probability to the solution uw of the parabolic PDE

@ﬂ(t,l‘) o Q; 0? — 0 _9V _
TR ( 2 w0, —i—blaxi—i-/gce du | a(t, x).

Hence, the speed f(g) = 1 is the first at which the highly-oscillatory zero-

order term @d(m /e,w) change the operator in the limit.

Acknowledgment. The author wishes to thank the referee and Professor
Etienne Pardoux for the attention they paid to this article, and Fabienne
Castell for her fruitful remark on the highly oscillating zero-order term.
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