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Abstract

We present a contribution on dynamic load balancing for

distributed and parallel object-oriented applications. We

specially target on peer to peer systems and its capabil-

ity to distribute parallel computation, which transfer large

amount of data (called intensive-communicated applica-

tions) among large number of processors. We explain the

relation between active objects and processors load. Using

this relation, and defining an order relation among proces-

sors, we describe our active object balance algorithm as

a dynamic load balance algorithm, focusing on minimizing

the time when active objects are waiting for the completion

of remote calls. We benchmark a Jacobi parallel applica-

tion with several load balancing algorithms. Finally, we

study results from these experimentation in order to show

that a peer to peer load balancing obtains the best perfor-

mance in terms of migration decisions and scalability.

1 Introduction

One of the main features of a distributed system is the

ability to redistribute tasks among its processors. This re-

quires a redistribution policy to gain in productivity by dis-

patching the tasks in such a way that the resources are used

efficiently, i.e. minimizing the average idle time of the pro-

cessors and improving applications performance. This tech-

nique is known as load balancing. Moreover, when the re-

distribution decisions are taken at runtime, it is called dy-

namic load balancing.

There are many definitions for Peer-to-Peer (P2P), in this

work we use the definition from [15] of Pure P2P: each

peer can be removed from the network without any loss of

network service.

We present an active object load balancing algorithm

based on well known algorithms [16] and adapted for a P2P

infrastructure. This algorithm is a dynamic, fully distributed

load balancer, which reacts to load perturbations on the pro-

cessor and the system. Our main contributions are: the rela-

tion between processors load and active objects balancing,

the use of an order relation (see section 4) to improve the

parallel application performance, and exploiting P2P to im-

prove the balance algorithm.

We believe our proposal is useful because the number of

messages it uses in a self organized environment like P2P

is limited by a constant independently of the number of ac-

quaintances. This allows us to obtain a scalable by defini-

tion, and experimentally efficient, load balancing algorithm.

Our algorithm has been implemented within ProAc-

tive [1], an open source Java middleware which aims to

achieve seamless programming for concurrent, parallel, dis-

tributed and mobile computing implementing the active

object programming model. Using this model, intensive-

communicated parallel applications are developed (see a

practical application example on [11]).

While many dynamic load balancing algorithms have

been presented and studied in depth [17, 16], previous work

[4] shows that, for intensive-communicated parallel appli-



cations, new constraints (like bandwidth) appear, and most

of those algorithms become not applicable.

This work is organized as follows. Section 2 presents

ProActive as an implementation of active object program-

ming model. Section 3 describes our Peer to Peer infras-

tructure. Section 4 explains the fundamentals of our active

objects load balancing algorithm. Section 5 shows imple-

mentation issues and benchmarking of our algorithm with a

Jacobi parallel application. Finally, conclusions and future

work are presented.

2 ProActive and the Active Object Program-

ming Model

The ProActive middleware is a 100% Java library, which

aims to achieve seamless programming for concurrent, par-

allel, distributed and mobile computing. As it is built on top

of standard Java API, it does not require any modification of

the standard Java execution environment, nor does it make

use of a special compiler, pre-processor or modified virtual

machine.

The base model is a uniform active object programming

model. Each active object has its own thread of control and

is granted the ability to decide in which order to serve the

incoming method calls, automatically stored in a queue of

pending requests (called service queue). When the queue

is empty, the active objects waits until the arrival of a new

request, this state is known as wait-for-request.

Active objects are remotely accessible via method invo-

cation. Method calls with active objects are asynchronous

with automatic synchronization. This is provided by auto-

matic future objects as a result of remote methods calls, and

synchronization is handled by a mechanism known as wait-

by-necessity [6].

Another communication mechanism is the group com-

munication model. Group communication allows triggering

method calls on a distributed group of active objects with

compatible type, dynamically generating a group of results

[2].

ProActive provides a way to move any active object from

any Java Virtual Machine (JVM) to any other one, this is

called migration mechanism [3]. An active object with

its: pending requests (method calls), futures, and passive

(mandatory non-shared) objects may migrate from JVMs to

JVMs through the migrateTo(. . . ) primitive. The migration

can be initiated from outside the active object through any

public method but it is the responsibility of the active ob-

ject to execute the migration, this is known as weak migra-

tion. Automatic and transparent forwarding of requests and

replies provide location transparency, as remote references

towards active mobile objects remain valid.

3 Peer-to-Peer Infrastructure

The goal of the Peer to Peer infrastructure is to use spare

CPU cycles from institutions’ desktop computers combined

with grids and clusters. Managing different sort of re-

sources (grids, clusters and desktop computers) as a single

network of resources with a high instability of them requires

a fully decentralized and dynamic approach. Therefore,

mimicking data P2P networks is a good solution for shar-

ing a dynamic JVM network, where JVMs are the shared

resources. Thereby, the ProActive infrastructure is a P2P

network, which shares JVMs for computation. This infras-

tructure is completely self-organized and fully configurable.

Main features and technical aspects are explained below.

The main characteristic of the infrastructure is the peers

high volatility because those peers are users’ desktop com-

puters. This is why the infrastructure aims at maintaining a

created JVMs network alive while available peer exists, this

is called self-organizing. When it is not possible to have ex-

terior entities, such as centralized servers, which maintain

peer databases, all peers should be capable of staying in the

infrastructure by their own means. A widely used strategy

for achieving self organization consists on maintaining, for

each peer, a list of its neighbors.

This idea was selected to keep the infrastructure up. All

peers have to maintain a list of acquaintances. At the be-

ginning, when a fresh peer joins the network, it only knows

peers from a list of potential network members. Because

not all peers are always available, knowing a fixed number

of acquaintances is a problem for peers to stay connected in

the infrastructure.

Therefore, the infrastructure uses a specific parame-

ter called Number of Acquaintances (NOA): the minimum

number of known acquaintances for each peer. Peers up-

date their acquaintance list every Time to Update (TTU),

checking their own acquaintances’ lists to remove unavail-

able peers, and if the longer of the list is less than NOA, dis-

cover new peers. To discover new acquaintances, peers send

exploring messages through the infrastructure. Availabil-

ity is verified by sending a heartbeat to the acquaintances,

which is sent every TTU.

As previously said, the main goal of this P2P network is

to provide an infrastructure for sharing computational nodes

(JVMs). The resource query mechanism used is similar

to the Gnutella [8] communication system: Breadth-First

Search algorithm (BFS). The system is message-based with

application-level routing. Messages are forwarded to each

acquaintance, and if the message has already been received,

it is dropped. The number of hops that a message can take

is limited with a Time-To-Live (TTL) parameter. Message

transport is provided by ProActive group communication in

an asynchronous way.

The Gnutella BFS algorithm received many justified crit-



ics [14] on scalability and bandwidth usage. ProActive

asynchronous method calls with future objects, provides an

enhancement to the basic BFS. Before forwarding a mes-

sage, computation available peer waits for an acknowledg-

ment from the requester. After an expired timeout or a non-

acknowledgment, peers do not forward the message. How-

ever, the message is forwarded until the end of TTL or until

the number of asked nodes reaches zero. The message con-

tains the initial number of requested nodes, decreasing its

value each time a peer shares its node. For peers, which are

occupied, the message is forwarded as normal BFS.

A long term infrastructure with INRIA lab desktop com-

puters was deployed, and we have experimented massive

parallel applications for one year. In our experiments, with

a network of 250 machines connected at 100 Mb/s Ethernet

connections the message traffic has not yet posed problems.

4 Active Objects Balance Algorithm

Dynamic load balancing on distributed systems is a well

studied issue. Most of the available algorithms (see algo-

rithms compilations on [4, 16]) focus on fully dedicated

processors with homogeneous networks, using a threshold

monitoring strategy and reacting to load imbalances. On

P2P networks, heterogeneity and resource sharing (like pro-

cessor time) are key aspects and most of these algorithms

become inapplicable, producing poor balance decisions to

low capacity processors and compensating with extra mi-

grations.

Moreover, due the fact that processors connected to a

P2P network share their resources not only with the network

but also with the processor owner, new constraints like reac-

tion time against overloading and bandwidth usage become

relevant.

In this section, we present an adaptation of a well known

load balancing algorithm for P2P active object networks.

First we present the relation between active object service

and processing time, followed by the algorithm details.

4.1 Active Objects and Processing Time

When an active object waits idly (without processing), it

can be on a wait-for-request or a wait-by-necessity state (see

figure 1). While the former represents a sub utilization of

the active object, the latter means some of its requests are

not served as quickly as they should. The longer waiting

time is reflected on a longer application execution time, and

thus a lesser application performance. Therefore, we focus

on a reduction in the wait-by-necessity time delay.

Even though the balance algorithms will speed up appli-

cations like figure 1 (b), we will not consider this kind of

behaviour, because the time spent by message services is so
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Figure 1. Different behaviours for active ob-

jects request (Q) and reply (P): (a) B starts

in wait-for-request (WfR) and A made a wait-

by-necessity (WfN). (b) Bad utilization of the

active object pattern: asynchronous calls be-

come almost synchronous. (c) C has a long

waiting time because B delayed the answer.

long that the usage of futures is pointless. In this sort of ap-

plication design, asynchronism provided by futures will un-

avoidably become synchronous. This is the same behaviour

experienced when using an active object as a central server.

Migrating the active object to a faster machine will reduce

the application response time but will not correct the appli-

cation design problem.

Therefore, we focus on the behaviour presented by figure

1 (c), where the active object on C is delayed because the

active object on B has not enough free processor time to

serve its request. Migrating the active object from B to a

machine with available processor resources speeds up the

global parallel application. This happens, because C wait-

by-necessity time will shorten, and B will decrease its load.

4.2 Active Objects Balance Algorithm on a Cen­
tral Server Approach

Suppose function called load(A,t) exists, which

gives the usage percentage of processor A since t units of

time. Defining two threshold: OT and UT (OT > UT), we

say that a processor A is overloaded (resp. underloaded) if

load(A,t) > OT (resp. load(A,t) < UT).

The load balancing algorithm uses a central server to

store system information, processors can register, unregister

and query it for balancing. The algorithm is as follows:

Every t units of time

1. if a processor A is underloaded, it registers on the cen-

tral server,

2. if a processor A was underloaded in t-1 and now it

has left this state, then it unregisters from the central

server,



3. if a processor A is overloaded1, it asks the central

server for an underloaded processor, the server ran-

domly choose a candidate from its registers and gives

its reference to the overloaded processor.

4. The overloaded processor A migrates an active object

to the underloaded one.

This simple algorithm satisfies the requirements of min-

imizing the reaction time against overloadings and, as we

explained on section 4.1, speeds up the application perfor-

mance. However, it works only for homogeneous networks.

In order to adapt this algorithm to heterogeneous (in pro-

cessing capacity) computers, we introduce a function called

rank(A), which gives the processing speed of A. Note that

this function generates a total order relation among proces-

sors.

The function rank provides a mechanism to avoid pro-

cessors with low capacity, concentrating the parallel appli-

cation on the higher capacity processors. It is also possible

to provide the server with rank(A) at registration time,

allowing the server to search for a candidate with similar

or higher rank. This would produce the same mechanism,

with the drawback of adding the search time to reaction time

against overloading. In general, all search mechanism of the

best unloaded candidate in the server will add a delay into

server response, and consequently in reaction time.

Before implementing the algorithm, we studied our net-

work and selected a processor B2 as reference in terms of

processing capacities. Then, we modified the previous al-

gorithm to:

Every t units of time

1. If a processor A is overloaded, it asks the central

server for an underloaded processor, the server ran-

domly choose a candidate from its registers and gives

the reference to the overloaded processor.

2. If A is not overloaded, it checks if load(A,T) <

UT*rank(A)/rank(B), if true then it registers on

the central server. Else it unregisters from the central

server.

3. Overloaded processor A migrates an active object to

the underloaded one.

4.3 Active Object Balancing using P2P Infras­
tructure

Looking for a better underloaded processor selection, we

adapted the previous algorithm, using a subset of peer ac-

1On a previous work [4] it was shown that overloaded initiated algo-

rithms have the best reaction time on load balancing
2Choosing the correct processor B requires further research, but for

now the median has proved reasonable approach.

quaintances from the P2P infrastructure (defined on section

3) to coordinate the balance.

Suppose the number of computers on the P2P network

is N , large enough to suppose them independents on their

load. If p is the probability of having a computer on

an underloaded state, and the acquaintances subset size is

n << N , then the probability of having at least k responses

is
n∑

i=k

(n
k )pi(1 − p)n−i

Therefore, having an estimation of p, a good selection of the

parameter n permits a reduction on the bandwidth used by

the algorithm with a minimal addition on reaction time. For

instance, using the pairs (p = 0.8,n = 3) or (p = 0.6,n =
6), one has a response probability greater than 0.99.

The algorithm for P2P networks is: Every t units of time

1. If a processor A is overloaded, it sends a balance re-

quest and the value of rank(A) to a subset n of its

acquaintances (using group communication).

2. When a process B receives a balance request, it

checks if load(B,T) < UT and rank(B) ≥

rank(A)-ǫ (where ǫ > 0 is to avoid discarding sim-

ilar, but unequal processors), if true, then B sends a

response to A.

3. When A receives the first response (from B), it mi-

grates an active object to B. Further responses for the

same balance request can be discarded.

4.4 Migration

A main load balancing algorithm problem is the migra-

tion time, defined as the time interval since the processor

requests an object migration, until the objects arrives at the

new processor 3. Migration time is undesirable because the

active object is halted while migrating. Therefore, minimiz-

ing this time is an important aspect on load balancing.

While several schemes try minimizing the migration

time using distributed memory [7] (not yet implemented in

Java), or migrating idle objects [10] (almost inexistent on

intensive-communicated parallel applications), we exploit

our P2P architecture to reduce the migration time. Us-

ing a group call, the first reply will come from the near-

est acquaintance, and thus the active object will spend the

minimum time traveling to the closest unloaded processor

known by the peer.

The migration time problem is not the only source of dif-

ficulty. There is a second one: the ping pong effect. This ap-

pears when active objects migrate forwards and backwards

3In ProActive, an object abandons the original processor upon confir-

mation of arrival at the new processor.



between processors. This trouble is conceptually avoided

by our implementation by choosing the migrating active ob-

ject as the one with shortest service queue. During the mi-

gration phase, the active object pauses its activity and stops

handling requests. For a recently migrated active object, all

new requests are waiting in the queue, and will only begin

to be treated after the migration has finished. Therefore, a

freshly migrated object generally has a longer queue than

similar objects on the new processor, thus a low priority for

moving.

By experimentation (see section 5), we have observed

that these migration problems are not present when using

this approach.

5 Experimentation

Algorithms were deployed on a set of 25 of INRIA lab

desktop computers, having 10 Pentium III 0.5 - 1.0 Ghz,

9 Pentium IV 3.4GHz and 6 Pentium XEON 2.0GHz, all

of them using Linux as operating system and connected by

a 100 Mbps Ethernet switched network. With this group

of machines we used the P2P infrastructure to share JVMs.

Using our previous experiences (see section 3), we config-

ured the P2P infrastructure with: TTU at 10 minutes, NOA

at 10 peers and TTL at 5 hops. At first only one peer

was chosen, and other peers used it to join the infrastruc-

ture. Functions load() (resp. rank()) of section 4.2

and 4.3 were implemented with information available on

/proc/stat (resp. /proc/cpuinfo). Load balanc-

ing algorithms were developed using ProActive on Java 2

Platform (Standard Edition) version 1.4.2.

In our experience, using our knowledge of the lab net-

works, we experimentally defined the algorithm parameters

as OT = 0.8 (to avoid swapping on migration time), and UT =

0.3; in order to have, in normal conditions, 80% of desktop

computers on underloaded state 4urther research on how to

define this parameters, besided experimentally, is required.

Since the cpu speed (in MHz) is a constant property of

each processor and it represent its processing capacity, and

after a brief analysis of them on our desktop computers, we

define the rank function as: rank(P ) = log
10

speed(P ),
with ǫ = 0.5.

When implements the algorithm, a new constraint came

to light: all load status are checked each t units of time

(called update time). If this update time is less than mi-

gration time, extra migrations which affects the application

performance could be produced. After a brief analysis of

migration time, and to avoid network implosion, we assume

a variable t̃ which follows an uniform distribution and ex-

perimentally define the update time as:

tupdate = 5 + 30 t̃(1 − load)[sec], (load ∈ [0, 1])
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Figure 2. Impact of load balancing algorithms

over Jacobi calculus

This formula has a constant component (migration time)

and a dynamic component which decrease the update time

while the load increase, minimizing the overload reaction

time.

We tested the impact of our load balancing algorithm

over a concrete application: the Jacobi matrix calculus.

This algorithm performs an iterative computation on a

square matrix of real numbers. On each iteration, the value

of each point is computed using its value and the value of

its matrix neighbors in their last iteration. We divided a

3600x3600 matrix in 36 workers all equivalents, and each

worker communicates with its direct matrix neighbors.

We randomly distributed Jacobi workers among 16 (of

25) machines, measuring the execution time of 1000 se-

quential calculus of Jacobi matrices. First, we used the cen-

tral server algorithm defined on section 4.2 (having a cpu

clock of 3GHz as reference) and then using the P2P version

defined on section 4.3 (having n = 3). Measured values of

these experiences can be found in figure 2.

Looking for lower bounds in Jacobi execution time, we

measured the mean time of Jacobi calculus for 2, 3 and 4

workers by machine, using the computers with higher rank

and without load balancing. Horizontal lines on figure 2

are the values of this experience. Applying the information

from the non-balanced experience, we tested the number

of actives objects as a load index, defining UT=3,OT=4 to

have around 3 active objects per machine. Measured values

for this experience are represented by the x symbol in figure

2.

While using the information from the non-balanced ex-

perience seemed to be a good idea, the heterogeneity of the

P2P network produced the worse scenario: large number of

migrations and bad migration decisions, therefore poor per-

formance on Jacobi calculus. Using CPU usage as load in-



dex had better performance than the previous case: while

the central server oriented algorithm produced low mean

times for low rate of migrations (an initial distribution near

to the optimal), P2P oriented algorithm presents better per-

formance while the number of migrations increase. More-

over, considering the addition of migration time on Jacobi

calculus performance, P2P balance algorithm produces the

best migration decisions only using a minimal subset of its

neighbors. The use of this minimal subset produces also a

minimization in number of messages for balance coordina-

tion. This fact and the neighbor approach of our P2P net-

work provide automatically scalability conditions for large

networks.

6 Related Work

While dynamic load balancing is a well studied issue

for distributed systems (see algorithms compilations on

[4, 16]), their applications over P2P networks are still on

exploratory phase. Most of the research on load balancing

for P2P networks are based on a structured approach using

a distributed hash tables (DHT) [13], where each machine

can be represented by several keys, and parallel applications

are mapped into this DHT. Load balancing becomes now a

search problem on key/data spaces [9]. Our P2P infrastruc-

ture is not an another distributed hash table (DHT), because

the shared resource is computational node (a JVM) it is not

necessary to identify resources as unique as in P2P data.

The infrastructure intents to provide an overlay network of

JVMs and to supply nodes for applications.

Another approach for load balancing on P2P environ-

ments is the use of agents which traverse the network equal-

izing the load among them. Those agents follows a model

of an ant colony [12, 5], carrying load among computers,

and making the system eventually stable. This schemes fo-

cus on a load equalization more than a minimization of the

reaction time against overloading. Therefore, they are not

comparable against our scheme.

7 Conclusions

We have introduced a P2P dynamic load balancer for ac-

tive objects, focusing on intensive-communicated parallel

applications. We started introducing the P2P infrastructure

developed for ProActive and the relation between active ob-

jects and CPU load. Then, an order relation to improve the

balance was defined. The case study showed that, if the

number of migrations increase (this can occurs due an non-

optimal distribution or due the dynamic behaviour of the

P2P network), the performance (on reaction time and mi-

gration decisions) increases for P2P the P2P algorithm and

decreases for the central server approach. Also, the load

balancing algorithm exploits the P2P architecture to provide

scalability conditions for large networks.

As future work, for the P2P infrastructure we will design

solutions with dynamic TTL, to avoid network flooding due

to BFS algorithm. Concerning load balancing, further pa-

rameter (thresholds, update time) fine tuning is required to

obtain faster reaction time and lower bandwidth usage, in

order to speed up the parallel application.
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