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Abstract

We describe an approach that we propose to model the electrome-
chanical behavior of the heart, and to use the model in a data assimila-
tion procedure in order to perform an identification of the parameters
and state. The modeling of the heart tissue is based on an electrically-
activated contraction law formulated via multiscale considerations and
is consistent with various physiological and thermomechanical key re-
quirements. The global heart system also incorporates a simplified
lumped modeling of the blood compartments. We report on numerical
simulations and on validations of our model in reference and patho-
logical conditions. Furthermore, the data assimilation procedure is
intended to give access to quantities of interest for diagnosis purposes,
and we present some promising results in this direction.

Keywords: Biomechanics; heart modeling; data assimilation; computer-
aided diagnosis

1 Introduction

The knowledge of the heart behavior and the power of data acquisition tech-
niques (ECG, ultrasound or MRI images,...) have greatly improved during
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the last decades. In-vivo measurements of the cardiac activity are very valu-
able for clinical purposes, but some crucial biological quantities are hardly
— or not at all — accessible, as for example stresses, pressures or constitutive
parameters that may reflect pathologies. In order to reach these quantities
modeling is required. On the other hand the complexity and diversity of the
physical phenomena involved in the heart behavior are a major challenge for
modeling. In particular the various data (constitutive parameters, bound-
ary conditions, and so on) necessary to perform accurate simulations of the
models cannot be determined a priori.

The work presented in this article has two objectives. The first is to model
the (distributed) electromechanical behavior of the heart and to perform
numerical simulations of the model, hence to obtain a physically-based “car-
diac simulator”. After adequate calibration and validation of the model us-
ing clinical data, the simulator can be used in particular to represent some
pathologies — e.g. an infarcted area as reflected in a dramatic decrease of
local muscular excitability and contractility — and further to assess the im-
pact of a given treatment (such as surgery or ventricular pacing) prior to
implementation. Therefore an important perspective of this approach is to
provide an assistance tool to medical decision-making.

The second objective is to “couple” the model with n vivo measurements,
i.e. to use the model in a data assimilation procedure in order to perform an
identification of the parameters and state, hence to give access to quantities
of interest for diagnosis purposes. Thus the challenge we pursue with this
objective is to build a “computer-aided diagnosis” tool useful in a clinical
environment,.

The state of the art regarding the heart biomechanical modeling is already
quite advanced and vast, see for example [22, 10, 20] and the references
therein. In the approach proposed in this paper we — of course — do not
intend to meet all the challenges and encompass the many aspects of the
field. Nevertheless, the focus and originality of our work mainly lies in the
following two ideas:

e We propose an active, electrically-activated, large displacements and
large strains model of cardiac tissue rigorously derived from physiologi-
cal multiscale considerations and consistent with key thermomechanical
requirements;

e The formulation and complexity of the proposed model is adjusted
to the nature and amount of available measurements necessary for its
calibration, with a view to data assimilation.



The outline of the paper is as follows. The forthcoming section presents the
formulation of the complete (3D) excitation-contraction model. The next
section is devoted to the description of discretization strategies. Section 4
then presents detailed simulation results of healthy and pathological behav-
iors. In Section 5 we describe our data assimilation approach and report on
some preliminary results obtained with it. Finally we give some concluding
remarks in Section 6.

2 The 3D heart model

In order to construct a model describing the three-dimensional (3D) elec-
tromechanical behavior of the heart, the following major ingredients are re-
quired:

e a constitutive law accounting for both the active and passive aspects
in the behavior of the muscle fibres;

e a representation of the electrical activation — the input in the constitu-
tive law — that can be obtained from modeling approaches of various
types and complexities;

e a geometrical (or “anatomical”) description of the myocardium incor-
porating the fibre directions;

e a model of the blood circulation inside and outside of the heart cavities,
and also a model describing the opening and closure of the valves that
separate the cavities from each other and from the external circulation.

We now discuss each of these items in details.

2.1 An excitation-contraction law for the myofibres

Most existing models of myofibre excitation-contraction mainly rely on heuris-
tic approaches and experimental testing, whether directly at the macroscopic
level [21], or in order to identify the attachment and detachment rates of the
actin-myosin bridges in the sarcomeres [56].

By contrast, our approach follows the path opened by Huxley [23| — who has
shown how actin-myosin bridge dynamics allows to describe the muscle con-
traction phenomena on the sarcomere scale — and Zahalak [57] — who used
the method of moments with bridge dynamics in order to describe muscle



contraction on the myofibre scale. Our model is based on a chemically-
controlled constitutive law of cardiac myofibre mechanics introduced in [5]
and consistent with the behavior of myosin molecular motors [24]. The result-
ing sarcomere dynamics — derived by applying the moment-scaling method
with the first two moments corresponding to active stiffness and stress, see
[5] — is in agreement with the “sliding filament hypothesis” introduced in
[23]. A particular choice of the attachment and detachment rates is made
so that Hill’s force-velocity relations for isotonic contraction become closure
equations for the method of moments. This choice is a slight modification of
that made in [23] or |[57]: here these rates are not only dependent upon the
sarcomere strain but also upon the strain rate. We recall this model briefly.

On a microscopic scale, the sarcomere is made up of thin and thick parallel
filaments. When ATP (the fuel of the cell) is available and the level of
intracellular calcium bound on troponin C (the control of the contraction
and relaxation in the sarcomeres) reaches a threshold (Car,c > C), the
myosin heads of the thick filament that are not too far from actin sites on
the thin filament (¢ € [0, 1] for some microscopic strain), become likely to
bind with the binding rate f.

Unbinding is due to the macroscopic strain rate €., or to the action of the
calcium pumps under the threshold C, or to large values of £. The unbinding
rate is g. The previous conditions are translated into the following formulae
(where I is the characteristic function of the set S) [5]:

f(§>t) = kATP'HCaTnCEC_"HEE[O,l]a

9(&t) = alée| + ksrlcar,c<c + karplcar,c>clego-
The parameter karp represents the rate of the chemical reaction providing
energy from the hydrolysis of ATP to the molecular motors in the sarcom-
ere, whereas kgr denotes the rate of bridge destruction due to sarcoplasmic

reticulum pumps removing calcium ions from the troponin. The parameter
« is dimensionless and positive.

It will be convenient to define a new control variable

u(t) = kATP']ICaTnc(t)ZC' - kSR-HCaTnc(t)<C

so that f(&£,t) = |u(t)|4Lecpa) and f(&, 1) + g(&,t) = alé.| + |u(t)| where
luly = max(0,u) = karplcay, . @>c and |u| - = max(0, —u) = ksrlcg,, o)<
are ATP consumption rates during contraction and active relaxation respec-
tively.

The interaction potential W™ of the actin-myosin system is responsible for
muscle contraction corresponding to the negative values of the macroscopic

4



strain €. describing the relative sliding of the actin over the myosin filament.
Let n(&,t) be the density of cross-bridges with strain £ at time t. Then,
Huxley’s model is:

on . On o gyam ,
En + <. o (1=n)f —ng, o.(t)= —d(ac)/_oo o€ ndé + peEe.

A parabolic W™ is chosen in [5]: _avg% = koo + 00&. The parameters
ko and oy are related to the number and stiffness of available actin-myosin
cross-bridges in the sarcomere, p. is a viscosity parameter and &, is a strain
constant. The scaling technique to compute o, leads to introducing k. and

T., respectively proportional to the zero and first-order moments of n:

+00 +oo
k.(t) = ko / n(&,t)dé and 7.(t) = o9 / En(€, t)d¢.
The resulting constitutive relation is given by the following system of ordinary
differential equations:

7:—c = keée — (aléc] + [ul)me + Oo‘u‘_,_, TC(O) = Tcps
ke = —(aléc| + |ul)ke + kO‘“‘-ﬁ-a k.(0) = Ky (1)
O = d(e.)(Te + kebo) + peée,

where u denotes the electrical input — corresponding to a normalized concen-
tration of calcium bound on the troponin-C — with v > 0 during contraction
and u < 0 during active relaxation. The modeling of u is further elaborated
in Section 2.2 and the meaning of d(e.) is discussed in the next section.

2.1.1 Starling effect

The Starling effect is one of the most important regulatory mechanisms of the
heart activity. By this mechanism, when the preload increases the heart is
able to also increase its contraction. The preload corresponds to the stretch-
ing of the cardiac fibres at the end of the previous diastolic filling, hence
it is related to the veinous return and the pressure in the atria. Thus, in-
creasing the ventricular end-diastolic pressure leads to an increased stroke
volume, see Fig. 1. The Starling effect can also be interpreted by saying that
the heart adapts its contraction so that the stroke volume compensates the
end-diastolic volume.

The underlying physiological mechanism is as follows. When the stretching
of the sarcomere increases, the troponin-C calcium sensitivity also increases
leading to a growth of the cross-bridge attachment availability. This means
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Figure 1: The Franck-Starling curve (Vj: stroke volume, P.4: left ventricular
end-diastolic pressure).

that when the stretching of the sarcomere increases we move from point (a)
to (b) on the curve presented in Fig. 2-(i), in which / denotes the normal
range for the sarcomere length. This phenomenon is no more valid for very
large stretching of the sarcomere, as represented by (c) in the figure. These
various states of deformation are also schematically depicted in Fig. 3. It
appears that for large deformations fewer actin-myosin cross-bridges can be
created. This leads to the factor d(e.) introduced in [38]. This factor is
a function with values in the interval [0, 1] and behaving as represented in
Fig. 2-(ii).

2.1.2 Thermomechanical compatibility

The stress in the myofibre is o, as given in System (1). Taking 0 < £.(0) < ko,
Eq. (1-b) ensures that 0 < k. < kg at all times. In fact, k. can be seen as the
progress of the chemical reactions governing the creation (resp. destruction)
of cross-bridges via the calcium /troponin-C binding (resp. ATP hydrolysis).
For small values of k., few cross-bridges are fastened whereas for k. ~ kq the
majority of the actin-myosin bridges are attached.

Let us introduce the quantity r defined by
r=|u|l + alé,

homogeneous to a time rate. Then the first equation of (1) can be rewritten

in the form o
S (—050 T oolul TC) . 2)
r
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Figure 2: (i) the “length-tension” curve of a muscle with the three different

configurations of the sarcomere shown in Fig. 3 and (%) the corresponding
modulation d(e.) of the active stress o..
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Figure 3: Three different sarcomere deformations.



Assuming that &, is bounded (|¢.| < a), we can show that o, is also bounded
by using (2) to obtain

kC.C k
|kee +Uo‘u‘+‘7‘7_c(0)|}Smax{ao—i— 0’|TC(0)‘}.

7.l < max < su - —
I7el < {P aléd + |l a

Taking in particular |7.(0)| < oo + ko/a we see that |7.| < oo + ko/a always
holds.

We can further interpret the active constitutive law by considering 7. =
7. + kc&o, and rewriting System (1) as

m\]z
S
o
S~—
I

Te = kefe — (alée] + [u])Te + (a0 + koo |ul 4, Teo + Koo,
ke = —(aléc| + [ul)ke + kolul 1, ke(0) = ey,
Oc = d(Ee)Te + picke-

This shows that an appropriate redefinition of oy allows to consider & = 0
in (1), which we henceforth do consider. Introducing ¢ defined by 7. = k.e¢
— note that ¢ can be seen as the elastic part of €, — and substituting in the
first equation of (1) we obtain

e . 0o ko e
Ec=¢&cTt k:_c|u|+ - k—c|u|+5c- (3)
Now, defining . = € + €? we have
D 0o kO e
=—— + —|ul;eq. 4
€e kc‘u‘-l- kc‘u‘-l- c ( )

Consider first the case d(e.) = 1. The internal mechanical power correspond-
ing to the constitutive law (1) is given by

. 0(5)%) | o, ey (€
Ofe = — + pees + keetel — ke 5
0 (%(e2)?) ‘

5 : I
= G ey keter+ CO (ol + ik koful, ).

By (4) we have
keecel = koluly.(€5)® — oolul e,
hence the following expression holds for the mechanical power:
9 (5(=0)?)
ot
(e6)?
2

. ]
OcEec + e,

+52 (kofuly + (@léc] + [ul)ke ) — olulet. (5)
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We have the following thermomechanical interpretation: %k:c(ai)Q appears as
a free energy, whereas u.£2 + alé.|k. (53)2 is a nonnegative pseudo-potential
of dissipation. Therefore the second principle of thermodynamics is satisfied.
Furthermore the terms (ko|u|; + |u|k.) (53)2 — 0plu| €5 represent “exogenous
energy” due to the electrical input. More precisely, since e = 7= we can
rewrite (5) as

0 (Ee(0)? )2 ko 72 ;
ot~ PO et B e+ (275 -0 ) ks @
where it appears that some energy can be supplied to the system only when
u>0and 0 < 7. < 200k0’fﬁkc.

Taking into account the Starling effect, (6) becomes

0 (dle) 5 (£9)%)
ot

d(e.) (TC)2
2k,

Ucéc - = :ucgz + (Q‘EC‘ + |U|)
ko 72 T, 2

e ¢ A / 7—6
v (75 = ot ) ks~ et Gy, ()

where in order to satisfy the second principle of thermodynamics d(e.) is
chosen so that ad > |d'|. In the sequel the variations of d(e.) correspond to
those depicted in Fig. 2-(ii).

2.2 Electrical activation

The propagation of the action potential v in the cardiac tissue results from
the diffusion of calcium, sodium and potassium ions in the extracellular space,
from ionic currents through the cell membrane and from reactions of these
ions in the intracellular space. There are many different types of ionic chan-
nels (and corresponding current models), some of them having an open /closed
state modeled by gate variables. Let I, be the total equivalent electrical
current through the membrane. In the intracellular space the reactions in-
volve the concentrations of calcium bound on various proteins, in particular
troponin-C that regulates Ca®* induced muscle contraction, as already men-
tioned. Let w be the vector of all concentrations and ionic gating variables
involved in the intracellular reactions and ionic channels. Then the general
monodomain models for v is a reaction-diffusion equation for v coupled with
an ODE for w (see e.g. [|29] and references therein), as represented in the
following system where I.,; denotes a stimulation current, ¢,,, g,,, are some



(scalar) capacitance and (tensor) conductivity:

Cm% — div(gm.-Yv) + Lion(v,w) = Loy in Qy,
% — R(v,w) =0 in Qp, ®)
v (¢, Vv) = 0 on 9Qy,

where )y denotes the heart tissue domain and 0€)y its boundary with unit
outward normal vector v. Remark that in bidomain models an external
potential and an external conductivity are also considered, leading to a slight
modification of (8), see [29, 42].

In our simulations we have used a very simple monodomain model, a variant
of the two-variable FitzHugh-Nagumo model proposed by Aliev and Panfilov
[1], where w is a scalar “repolarization potential”, viz.

chion(Uv w) = k,‘U(U - Cl)(’U — 1) + vw,
{ R(v,w) = e(v,w)(—w — kv(v — a — 1)), 9)

with e(v,w) = g+ pyw/(v+ p2) and oy, /cm, k, a, €9, i1, po positive param-
eters. This model is able to generate v-traveling waves sufficiently realistic
for our purpose, i.e. simulating isolated heart beats in various conditions.
For a series of heart beats it would be necessary to consider a more realistic
calcium dynamics than the simple w-repolarization dynamics. Nevertheless,
we need an output variable similar to C'ar,c, an output available only in
models with higher dimensional w, as e.g. in [13|. Note that, given a realis-
tic v-traveling wave — e.g., generated by (9) — it is possible to use it as the
input of a more complete ODE of the form %—1" — R(v,w) = 0 to generate
a w-traveling wave and then to estimate the desired output. Remark also
a drawback of this heuristic approach: it is difficult to take into account
possible mechano-electric feedback loops, as e.g. the dependence of the rate
of Ca-detachment from troponin-C upon the sarcomere tension (or stretch
rate) [19], which we do not consider here. In fact, in our heart model we have
used (9) with a simple affine relation between u and v: u = h(v — v). This
approach is substantiated by the similitude of the v and C'ar,c waveforms
obtained with the more refined model of [13], as shown in Figure 4.

Finally, we have considered several types of activation models:

e A uniform activation without propagation, u(M,t) = u(t) for all points
M of the muscle.

e A simplified propagation mechanism with u(M,t) = h(v*(t —IIM/c) —
v) where v* is an action potential template, [IM is the projection of M
along the apex to the base axis and c is the velocity of the wavefront.
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Figure 4: Responses of the action potential v and concentration of calcium
buffered on troponin-C (Car,¢) for an external stimulation current I.,; mod-
eled as an impulse at time 0 (taken from [13]).

e A traveling wave generated with a reaction-diffusion model as described
above.

2.3 3D mechanical modeling of the cardiac tissue

In this section, we describe how the electrically-activated contraction law
presented above is used in a 3D continuum mechanics framework formulated
for large displacements and strains — as is observed in the actual behavior of
the heart.

2.3.1 Definitions and notations

The definitions and notations used for the description of the mechanical
model are the following:

e y denotes the displacement field,

e [ the deformation gradient, namely,

F=1+Vy,
e (' the right Cauchy-Green deformation tensor, viz.

C—F"-F,
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e L the Green-Lagrange strain tensor, i.e.

e Y the second Piola-Kirchhoff stress tensor, namely, the stress tensor
which is energy-conjugate to E.

We recall that the three classical strain invariants are defined by

L=TrC, L=-((TtC)>-TrC?), I3=det(.

N —

We will also use the so-called reduced invariants given by

(NI

L=LJ3 L=5LJ3, J=):.

2.3.2 The rheological model

The myofibre constitutive law described above is now incorporated in a rhe-
ological model of Hill-Maxwell type |7, 16, 46|, as depicted in Fig. 5-a. The
element FE. accounts for the contractile electrically-activated behavior gov-
erned by (1) and all symbols appearing with index c¢ refer to this element.
An elastic material law is used for the series element E, and a visco-elastic
behavior is considered for the parallel branch £,. The stress-strain law for
E; — which plays an important role during isovolumetric phases — is generally
assumed to be linear [37], and we follow this assumption in our modeling.
The role of E,, described in details in Section 2.3.3, is — in particular — to
prevent the heart from overstepping certain limits during filling or ejection.

(Es) (Ec)

M Es Ec

R E ‘JWWP (E)

(a) (b)

Figure 5: (a) Hill-Maxwell rheological model and (b) strains in the active
branch.
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In the active branch the only relevant deformations are those occurring along
the direction of the muscle fibres, namely 1D deformations. Denoting by n
the unit-length vector that represents the fibre direction at any point in the
reference configuration, we thus define

E1p — ZEUTLZTL] (10)
'7j

Because of large deformations, the individual deformations within the active
branch (depicted in Fig. 5-b) compose according to a multiplicative — not
additive — rule, viz.

14 2e1p = (14 2e.)(1 + 2¢4), (11)

and thermodynamical considerations entail that the resulting generated ten-

sion is [32]
O, O

T 142, 142,

(12)

01D

2.3.3 Description of the parallel branch

We now focus on the description of the parallel element E,. Considering an
isothermal process, the satisfaction of the Clausius-Duhem inequality [53] in
the absence of dissipation leads to

aM}e
Y = pp——
=p pO ag 7
po being the density expressed in the reference state and W*¢ a hyperelastic

strain energy potential. When viscosity is considered, the Clausius-Duhem
inequality becomes

awe\ . .
X — B> E. B
(ZP £o ag ) = = 07 V_7 =

and a viscous pseudo-potential W*(E g) accounting for energy dissipation

ought to satisfy - -

—:E>0, VE. (13)
0L

Jles8

This holds — in particular — when W is a convex function of g with % 0) =0,

which are natural assumptions.

13



Taking dissipation into account we thus have
: owe  ow"
Y (EE) = .
—p (:7 :) pO ag + 8E
= Z(E)+SUE B).

Two families of material laws are frequently used in the literature for the
modeling of soft tissues, namely, Mooney-Rivlin materials and Veronda-
Westmann materials [15, 18, 28, 54]. In this context W€ appears as a linear
combination of the following terms

We =k (I, — 3) ... mneo-Hookean term
W§ = ko(I, — 3) ... Mooney-Rivlin term (14)
W$ = k3(e"=3) —1) ... Veronda-Westmann term.

We point out that several authors do not restrict the choice of elastic consti-
tutive law to hyperelastic materials and focus on fitting stress-strain curves
with experimental data. The most widely used experimental-based stress-
strain law is called the “pole-zero law” and has been introduced by Hunter
[50, 39], see also [33] for an alternative approach. This remark also prevails
for the design of the active constitutive law describing the muscle fibres, see
[56].

In our simulations we have considered a Mooney-Rivlin material, namely,
We = lil(jl - 3) + Iﬁg(ig - 3)
Regarding the viscous part of the behavior, we used

v 1’, .
W'=-FE:FE
2: =’

see also Pioletti et al. [45] for a more complex viscous pseudo-potential
function.

The calibration of the parameters appearing in W*° and W will be discussed
in Section 4.1.

2.3.4 3D constitutive equations and equilibrium

In the model, we do not consider exact incompressibility and instead the vol-
ume variations of the muscle are penalized. The rheological model described
above leads to

S=-—pJC +E(E) + UL E) +opn@n, (15)

pu— :p

14



where the symbol ® denotes tensorial product, hence the term o1p n ® n
expresses that active stresses arise along the fibre directions. The first term
in Eq. (15) corresponds to the volumetric behavior described by

vol
W = K(J—1)— KlnJ, %LE = —pJCY,

with p = K(l%]), K being a large bulk modulus ensuring an approximate
incompressibility of the cardiac tissue, see [32|. Note that, when the coro-
nary microcirculation is considered — which is not the case here — changes of

volumes must instead be related to internal fluid flows.
In addition, in Eq.(15) the quantities ;;(E) and ;Z(g, g) represent the

elastic and viscous parts — respectively — in the parallel branch as described
above.

Finally, the material behavior is completely described by (15), where:

e 01p can be expressed as a function of E (through ¢,p, see (10)) and &,
using Eqgs. (11), (12), and the series element elastic law, namely,

_ Og _ Es[(ng _EC)/(1+2€C)]
1+ 2. 1+ 26,

, (16)

01D

e L and ¢, are related by the equilibrium equation in the series branch,
Viz.
. 1+2e.  Eleip —eo)/(142¢.)]
‘1+2p 1+ 2e,

: (17)

e 0. being related to e, through the dynamical system (1) (where we
recall that v is seen as an input).

2.4 Coupling with the blood compartments

Considering the complexity of the heart muscle behavior alone, modeling
the complete fluid-structure interaction phenomena relative to internal fluid
flows is largely out of reach, particularly with a view to estimation — namely
solving inverse problems. Therefore we approximate the blood inside each
ventricle by a simplified system described by a global volume and a uniform
pressure.

The successive phases of the cardiac cycle are distinguished in the coupling
conditions between the various blood compartments — inside the ventricles
and in the other parts of the cardiovascular system. With P, denoting the

15



blood pressure inside a ventricle, P,, the pressure in the corresponding artery
outlet and P,; the pressure in the corresponding atrium, ejection occurs when
P, > P, whereas the valve between ventricle and atrium opens when P, <
Py, see Fig. 6-a.

2.4.1 The phases of the cardiac cycle

The cardiac cycle can be decomposed into four successive phases: isovolu-
metric contraction; ejection; isovolumetric relaxation; filling. The first two
phases constitute the systole; the last two phases make up the diastole. From
a mechanical point of view, the formulations of the complete problem arising
during the isovolumetric phases — namely, with closed valves — and the non-
isovolumetric phases are quite different as to how the pressure and volume
of the blood in the ventricles are governed. Denoting by V® the volume of
the ventricle cavity at a given time ¢, during isovolumetric phases we have
v =0 - namely, a constraint to be enforced on the tissue displacements
— and the internal pressure P, corresponds to the Lagrange multiplier as-
sociated with this constraint. By contrast, during non-isovolumetric phases
(ejection and filling) we have P, = P, where P equals P, or P, according
to which external compartment communicates with the ventricle. Moreover,
during all phases the internal pressure gives a natural boundary condition in
the form

J—l(E Y- ET) 'Z(t) =P, Z(t), (18)

on the part of the (deformed) boundary corresponding to the endocardium,
v®) denoting the unit-length normal vector pointing outward with respect to
the tissue.

2.4.2 Valve opening and closure

In our simplified view of the blood compartments we model the opening and
closure of the valves by relations similar to those arising in the Signorini
contact problem. For a more detailed modeling of the valve mechanics, see
in particular [43]. Namely, considering the blood flow leaving a ventricle
q= —V we write

g <0 when P, =P, (filling),
qg=0 when P,y < P, < P,, (isovol. phases), (19)
g >0 when P, = P,, (ejection).

However, relation (19) is not regular, hence it is not practical from a compu-
tational point of view and a regularized version is needed (see Fig. 6-b). We

16



thus instead use

q:Kat(Pv_Pat> WheanSPata
q= K, (P, — Py) when Py < P, < P,,, (20)
q:Kar(Pv_Par)+Kp(Par_Pat> when PVZParu

which is depicted by the solid curve in Fig. 6-b. This system defines

q= .f(PV7 Par> Pat)a (21)

namely, the blood flow as a regular function of the pressures in the three
compartments. During ejection and filling (20) corresponds to linear laws
where the coefficients are related to the radius of the valves, see [35]. During
the isovolumetric phases, the constraint “¢ = 0” is relaxed using relation
q = K,(P, — P,;) with K, much smaller than K, and K,;, which can be
interpreted as a penalization strategy.

Atrium Artery

Valves

Ventricle

(a) (b)

Figure 6: Aortic and mitral valves model, (a) mechanism and (b) formulation
as a double contact problem, (- -) relation (19) and () relation (20).

2.4.3 Windkessel models

In order to obtain an accurate response of the model during non-isovolumetric
phases — and particularly during ejection — we also need to model the external
blood circulation, which accounts for the variations of P,, along the cardiac
cycle. An extensive literature exists on the formulation and calibration of
arterial pressure-flow relations in the form of time-dependent ODEs, often
called “Windkessel models”. We have also experimented with 1D arterial
models — namely, with one space variable in addition to time — of the type
described in [14], but the scarcity of calibration data and results makes such
models presently inadapted to estimation purposes and we do not further
report on the corresponding simulations in this paper.
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Windkessel and similar lumped models are often used to represent blood flow
and pressure in arteries. These models can be derived from electrical circuit
analogies where current and voltage represent arterial flow and pressure, re-
spectively. The original ideas for such models were first proposed by S. Hales
in 1733 and further developed by O. Frank in 1899. For more detailed infor-
mation and references on Windkessel models, we refer to e.g. [2, 38, 51, 55].

In our simulations, we used the three-element Windkessel model depicted in
Figure 7. The corresponding pressure-flow relation reads
Par - Pve _

R, :
= (14 5-)g + Ry, (22)
Rp

CP, + IE
P

where P, denotes the venous pressure. This relation is only valid during
ejection, namely when ¢ > 0. During isovolumetric phases and ventricular
filling, arterial pressure is instead described by

Cpy 4 L e (23)

RP

Note that we use two such models to represent both the systemic and pul-
monary circulations. This three-element Windkessel model has been found
to be in excellent agreement — after proper adjustment of the resistance and
capacitance parameters — with clinical measurements, see [51]. In Figure 7
the arrows for C' and R, indicate that these quantities can also be varied to
account for nervous system regulation.

P e % P
Wy —F
q 1

C

Figure 7: The 3-element Windkessel model.

2.4.4 Modeling of the atria

Unlike for the ventricles, we do not consider a continuum mechanics model of
the atria and instead account for atrial compartments by assuming that they
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create a (prescribed) low blood pressure allowing ventricular filling during di-
astole. The prescribed value of atrial pressure is increased before ventricular
systole to represent atrial contraction. Note that — in order to obtain a more
complex behavior — the modeling of atrial contraction could be performed
using a 0D model (namely, a time-dependent ODE).

2.5 Boundary conditions

The boundary conditions used for the structure take into account the follow-
ing two phenomena:

e the base of the myocardium is fastened to the arteries and the veins;

e the apex of the myocardium is almost still along a cardiac cycle whereas
the base moves.

The previous requirements are satisfied using springs and dashpots located
at the base, see Fig. 8, and a translation is applied on the computed dis-
placements to obtain a still apex.

Let us consider a point A belonging to the curve A (solid part) of Fig. 8, if
A® denotes the position of A at time ¢ then the force acting on A is

FA — B(AQ — AD) — A0

The velocity term A® is discretized as A®) ~ E(A(t) — At

However, it is necessary to allow the base to undergo significant displacements
in the transverse (7, ) directions, in particular during ejection and filling.
Hence, for a point B belonging to the dashed part of A we prescribe the force

PP = KIL(BO — BY) — 11,BY,

II, being the projection on the 2 axis.

2.6 Initial conditions

Adequate initial conditions need be prescribed, although in practice they are
very difficult to estimate. We considered an initial time ¢, corresponding to
the end of the fillingi.e. ¢ = —V=0and u= 0, and we prescribed “realistic”
initial values for the displacements y(M,ty) = yo(M), the contractile strains,
stiffnesses and stresses (namely, e.(M,ty) = c.0(M), k(M. ty) = keo(M)
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Figure 8: Springs and dashpots fastening the myocardium.

and 7.(M, ty) = 7.0(M), respectively). Since the system is supposed to have
reached a static equilibrium, we also have P, (ty) = P (to)-

Nevertheless, it is to be noted that the system is meant to behave in a periodic
manner, and in fact rapidly reaches an attractor (limit cycle), whether after
initialization or modification of the parameters, see section 4. Hence, since
the initial conditions are “forgotten” by the system after a few cycles, their
precise specification is not a crucial issue.

2.7 Geometrical model

We generated a “generic” anatomical model of the myocardium with a simple
geometry. In a first step we use truncated ellipsoids to define a simplified
geometry of the epicardium and endocardium, with fibre orientations featur-
ing an elevation angle varying linearly from +90° to -90° across the wall. We
point out that this is consistent with experimental data as provided by dif-
fusion tensor imaging and dissection analysis [17, 36]. Then, this simplified
geometry is modified by an adjustment procedure to closely fit the segmented
geometry of a heart acquired using MRI, see [48| for details on this proce-
dure. The resulting mesh considered in our simulations is shown in Fig. 9,
with the fibre orientations displayed in Fig. 10.

As seen in Fig. 9, the anatomical data considered correspond to a truncation
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Figure 9: Mesh of the heart.

(b)

Figure 10: Fibre orientations: (a) on the epicardium; (b) across the walls.

(¢)
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of the heart below the valve rings. We then defined the ventricular inter-
nal volumes using contour lines of the endocardium in each ventricle near
the truncation and the barycenters of the contour lines in order to construct
the surfaces needed to close the volumes, see Figure 11. Hence each ven-
tricular volume considered corresponds to the volume enclosed within the
endocardium Fg) and this additional surface Fg).

F(t)

or') ot
t
e

(a) (b)

Figure 11: (a) left ventricle with surfaces F(Ot; and Fg; (b) the geometrical
model including the closures F(Ot% and F(Ot)T.

2.8 Principle of virtual work and summary of governing
equations

We use a total Lagrangian formulation and denote by 1y the reference do-

main corresponding to cardiac tissue, while the part of the boundary corre-

sponding to ventricular endocardium is denoted by I'g; U ', (referring to
the left and right ventricles). The principle of virtual work then gives

/pg<f>~yd9+/;:5gdﬂ+ / POy F 1 uJdl =0 YueV, (24)

Qy Qp Ul gy

where 1 denotes a suitable space of displacement test functions and 0 £ the
linearized strain variation corresponding to the virtual displacement v, viz.

1
5EU(£’ Q) = 5 (Ui,j + Vji + gﬂ' . y’] + gvjyﬂ)
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Note that P, takes two different values in the two ventricles. In addition,
according to (21) for each ventricle the outgoing flow is related to pressures
by

VO — —f(P\Et) pP® P(t)), (25)

y S ar »+ at

and intraventricular volumes are computed using the Ostrogradsky formula
on the closed surface T® = I'Y UTY (see Fig. 11), transported to the
corresponding reference surface I', viz.

1 1
v = 3 /z'z(t)dr(t) = g/z-g‘l -z JdT, (26)
r® T

where x = X + y are the updated position vectors.

Finally, the global problem we solve has — essentially — three unknowns:
e the displacement field y;
e the field of contractile strains e, (an internal variable);

e the four-component vector P containing the values of the blood pres-
sures in the ventricles and in the corresponding arterial outlets (the
atrial pressures being considered as an input).

Accordingly, the major governing equations are the following:
e the equilibrium equation (24);

e the constitutive equation (15) which — together with (16) — relates the
stress tensor to the strains £ and e;

e the contraction law (1) which — together with the series balance equa-
tion (17) — provides a relation between £ and e.;

e the “valve laws” (25) — one equation for each ventricle — relating ventric-
ular pressures and volumes with arterial (and prescribed atrial) pres-
sures;

o the Windkessel models, see (22)-(23), relating ventricular volumes and
arterial pressures — for the left and right ventricles separately.

3 Discretization of the heart model

In this section, we outline the numerical procedures used to discretize the
heart model and to solve the resulting finite-dimensional problems.
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3.1 Time and space discretization

The equilibrium equation (24) is time-discretized using the Newmark scheme,
the stress ¥ given by (15) being discretized in the form

Z(E(tJr%), E(H%), 6&“%)7 u(t+%)).

Z(H—%) —

All other equations describing state variables are discretized using a mid-
point scheme i.e.

() % [0 1 ()0 72
(/.S(H'%) ~ [(.>(t+At) _ (.)(t)] /At.

In particular, the flow is related to the internal volume (hence to displace-
ments) by

At
= (@20 +¢Y) =0, (27)
Likewise, the mid-point scheme used for the Windkessel model given in (22)
and (23) leads to equation

V(t+At) o V(t) 4

LpETA 4 PYY - Py
RP

R. g2 +¢  CR. (iay
—Hpéﬁ%zpf%) ((1 + ﬁp) 9 + Al (q —q”) )| =0,
(28)

At
pl+al) _ p(t) + =
ar ar C

(t+4t

) > Py 2 ) and 0 otherwise. At ¢t = ¢,

here T is 1 when P77
whnere PV(H—%)ZP;H%) 1S 1 when r~
we assume a steady state (end of diastole), where P,, = 9310 Pa and ¢\® = 0.

The numerical scheme allows to obtain explicit expressions of all state vari-
ables appearing in the contraction law (1) as functions of ¢., namely, 7., k.
and o, at time step t + At are expressed in terms of . at time step t + At
and of the state variables at time step t. Therefore, the time discretization
leads to a non-linear problem in y, €. and P for each time step.

For the spatial discretization we use the finite element method [4] with Equa-
tion (24), while e, is solved for each numerical integration point.

3.2 Solution of discrete problem

We thus obtain — for each time step — a nonlinear system to be solved by
a Newton-type procedure. The tangent linear system exhibits the following
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structure:

Ky K2 1L Ay f
Ky Koo O Ac, = g ) (29)
11, 0 TII; AP h

where the first row corresponds to (24), the second row to (1) combined with
(17), and the third to the valve equations (25) together with the Windkessel
equations.

In order to solve (29) we exploit the structure of Koo which is diagonal (since
the equation in . is written independently for each integration point), hence
€c can be easily eliminated. Although II3 can also be easily inverted, its
Schur complement IT, 15 *II, would change the pattern of nonzeros of Ky,
leading to time-demanding memory reallocations, hence we do not eliminate
AP. Finally for each Newton iteration we solve

Ki1 — Ki2Kop 'Kay 1T Ay _ f—Ki2Koe g (30)
I1, 113 AP h ’

using a multifrontal sparse solver (UMFPACK package [12]), followed by

Ac. = Koy '(g — K21 Ay). (31)

4 Numerical simulations

In the results presented hereafter, the time step is taken constant with At =5
ms. This value is largely determined by the isovolumetric phases durations
(roughly 50 ms each). Considering the ejection and filling phases a larger
time step could be used, hence an adaptative time step procedure could be
introduced.

4.1 Calibration of the 3D model

A correct calibration of all the parameters used in the model is — of course
— very important in order to obtain realistic simulations. The parameters to
be calibrated can be divided into three groups:

e The parameters used in the arteries models can be estimated from
data concerning pressure variations and phases lengths during a cardiac
cycle. For more detailed considerations regarding the calibration of
these parameters, see in particular [51, 55| and the references therein.
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e The main two parameters appearing in the contraction law (1) are kg
and oy. The quantity oy represents the asymptotic value for 7. and
can be estimated knowing the range of intraventricular blood pressure
reached during muscle contraction. In our simulations we used oy = 300
kPa and ky = 150 kPa.

e Concerning the calibration of the viscous and passive behaviors of the
cardiac tissue, literature data are not as widely available as for soft
tissues such as skin and tendons, see [54, 44, 18|.

4.2 Simulation results

We now present some results of simulations carried out with the complete
heart model previously described. For animated versions of these results see
[49].

These results have been obtained after a simulation of several cardiac cycles
so that the approximate initial conditions are of no significance. Indeed, the
stability of the model is demonstrated by results obtained over a sequence of
cycles, which shows that the system rapidly reaches an attractor (limit cycle),
whether after initialization or following a modification of the parameters, see
Fig. 12.

Fig. 13 shows some classical indicators characteristic of the cardiac function.
The quantities displayed are (from left to right and from top to bottom):
left ventricle volume variations, blood pressure variations (with P, P,, and
P, denoting the pressures in the left ventricle, aorta and left atrium, respec-
tively), aortic flow and mitral flow, mitral annulus displacement along the
apex-base axis, contractile stress, strains in the fibre direction for a given
point of the myocardium. Fig. 14 illustrates the Starling effect. Namely, two
P-V cycles for the left ventricle, obtained with two different mitral pressures
are plotted demonstrating how the stroke volume increases with the mitral
pressure.

We also point out that — since we do not use a mixed displacement-pressure
formulation — we only obtain approximate incompressibility of the cardiac
tissue by penalizing the volume variations, see Section 2.3.4. Fig. 15 shows
the typical volume variations for a sample of tetrahedra during a cardiac
cycle.

We finally present simulation results representing a pathological case. As a
simplified model of an infarcted heart, we considered reduced values of the
contraction parameters kg and oy in two given areas corresponding to regions
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Figure 12: Blood pressure P, in the left ventricle over 6 cycles; a modification
of P,; in the left compartment is introduced before the fourth cycle.

of interest specified by the American Heart Association, see Fig. 16. The
strains at the end of the ejection are shown in Fig. 17. We note that the tissue
stretches — instead of contracting — within the affected areas, as expected.
The global indicators of the cardiac function for the pathological case are
presented and compared with the reference case in Fig. 18. We observe
that the ejected volume and maximum ventricular pressure are significantly
reduced in the impaired organ.

5 Data assimilation for the heart

In this section we further discuss the objectives and challenges of data assim-
ilation in association with heart modeling, and we present some preliminary
results obtained in this direction.

5.1 The aim of data assimilation

The aim of data assimilation is to incorporate measurements into the model
of a dynamical system in order to obtain accurate estimates of the past,
current — and possibly future — state variables, parameters, initial conditions
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Figure 13: Global indicators of the cardiac function for the left ventricle.
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Figure 16: Areas with reduced contractility: oy = 100, 200 kPa, instead of
the reference value oy = 350 kPa (ko = 0¢/2 in all areas).
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Figure 17: Strain ¢, (end systole), (a) reference situation and (b) patholog-
ical case.
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and input of the model.

Data assimilation is particularly valuable when the various quantities (pa-
rameters, initial conditions, inputs...) that need be prescribed in order to
solve the model equations cannot be fully determined a priori. A data as-
similation procedure is designed to combine actual measurements with model
simulations in order to estimate these quantities jointly with the state vari-
ables of the model. Data assimilation is — for example — widely used in
meteorology and oceanography, in order to process the abundant measure-
ments received in real time from a variety of sensors (e.g., satellites, aircraft,
ships and land stations).

The various forms of data assimilation methodologies use ideas originating
from different branches of mathematics, and in particular from probabilities,
optimization and control theory. These methodologies can be divided into
two main categories, namely, the variational and sequential approaches which
we now summarize. Denoting by H the observation operator, {Y;, }xer the
available measurements and X; the model response, data assimilation seeks
the minimization of a cost function such as

1
J = 5 Z ||Y;5k - HthH?)H'

kel

Minimization is performed over the set of quantities to be estimated: state
variables constrained to satisfy the model equations, parameters, ... The
symbol ||.||q,, denotes a suitable norm associated with the problem formula-
tion and ¢, € J for all £ € I. Note that the cost function written here in a
discrete time framework could also be expressed as an integral in continuous
time. If the set of time steps J covers the complete simulation time interval
[to, T'], the assimilation technique is said to be wvariational and corresponds
to an optimal control problem, see e.g. [11, 31, 34, 52|. By contrast if at
each time step ty, J = [to, 1], then the assimilation procedure is said to be
sequential and corresponds in general to a filtering technique. This approach
has been introduced by Kalman in the 1960’s [25, 26] and is widely used in
various domains [8, 27, 30].

As regards the heart behavior, although data acquisition techniques (ECG,
ultrasound or MRI images,. .. ) have greatly improved during the last decades
and are very valuable for clinical purposes [41], the available measurements
are still relatively scarce and noisy. In addition, some crucial biological quan-
tities are hardly — or not at all — accessible in the data, as e.g. for stresses
and pressures. Also, of course, a priori experimenting cannot be used to
determine accurate values of constitutive parameters for the heart of a given
patient and — indeed — the estimation of some such parameters can be of
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utmost clinical value for diagnosis purposes, for example to determine the
extent and localization of an infarct. Therefore, resorting to data assimila-
tion is particularly attractive in this context, and we now report on some
preliminary results obtained within this perspective.

5.2 Data assimilation procedure and results

Of course, due to the complexity of the model and to observability consid-
erations it is not possible to estimate all the quantities entering the model
equations.

We emphasize that, with the proposed model, many different cardiac patholo-
gies can be potentially characterized by varying — for each pathology — a
limited number of parameters only. In the sequel, we focus on the estimation
of parameters that are of particular clinical interest in the case of ischemia
or post-infarct situations, namely, the contractility coefficient oy featured in
(1).

Classical sequential data assimilation techniques leading to prohibitive com-
puting costs, we consider the variational approach. Thus, since oy is to be
estimated, we want to solve the problem

odim — argmin {J(UO) | 00 = {0, }?:1 < Rn} ’ (3
with constraints

(I)(ti)(XtiaXtifwo—O):O ) i:l,...,N, (33)

min max

op, " < 0o, <og ", forj=1,...,n,

where ®)(X,,, X;, ,,00) = 0 represents the 3D model discretized in space
and time. In (32), n denotes the number of unknown in oy i.e. the number of
areas in the myocardium associated with unknown values of the contractility
0p. The extended state vector X in our case is

X=[y e P]

Note that time instants with index 7 correspond to the discretized time for
the simulation whereas time instants with index k& correspond to the instants
for which a measurement is available. The gradient of J is

0X,,
80'0

Vool ==Y (Y, — HX,, H—*), (34)

kel
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0X1,

where — & can be obtained by differentiating (33), which gives
o0t 9ot 9x,  9dt) 9X,
i L0 ji=1,.... N, 35
doy T OX,, Doy | 0X,. doq ' (35)
0Xo _ 0,
60'0
see also [46, 47] for a similar approach. Denoting & = 83’;:), o) = %‘I_’;gi),
@g?g = C,?)i(z)l and S;, = %, we can write:
SO =

B, = —(@f) + Sy i =1, N.

An outline of the data assimilation algorithm is as follows:
e for time steps i =1,..., N:

— solve state problem &%) (o, X;., X; ) =0
— from @S, = —(@F" + @) S¢-1)) obtain S,
— if observation Y}, exists:

* evaluate observation function H(Xy,)

., X
* compute gradient -~

e employ V,,J in a gradient method (we use the reflective Gauss-Newton
method available with Matlab) to update oy = {00, }}_, until the gra-
dient is sufficiently small.

The results that we now present have been obtained using numerically simu-
lated measurements assimilated with the complete 3D problem. More specif-
ically, the test problem considered is constructed in the following manner.

e The 3D problem is simulated with given parameters oo = {0, }’_, as
considered in Section 4.2, see Fig. 16. The measurements {Yu, 1, }p.x
are generated using

YMp,tk - HXMp,tk + /U(M]H tk)?

H being the chosen observation operator and v a noise in the mea-
surements. Each v(M,, t;) is chosen from a uniform distribution on the
interval 0.05 maxy, (| Xy, 4, |)*[—1, 1]. Here we consider only displace-
ments for 20 points {Mp}ff;l randomly located at the epicardium and
endocardium of the muscle and recorded at time steps t, = tg + 3kAt,
At =5 ms.
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e Starting from given parameters 6y = {d, }3?:1 different from the orig-
inal values, the data assimilation is carried out. The objective is to
obtain 6y =~ oy.

The variations of the 3 values of oy along the identification steps are illus-
trated in Fig. 19 where it appears that an accurate estimation of the pa-
rameters {0, };’?:1 characterizing the impact of an infarct is obtained after 6
iterations.
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Figure 19: Convergence of 0y, along iterations of the data assimilation, (- -)
reference value and (—) estimated value.

6 Conclusions

We have proposed an electrically activated 3D mechanical model of the heart
muscle. The modeling, the numerical implementation and the simulations
were presented in this article. The main conclusion is that, even if more
complete validations have to be carried out, our model seems to be able to
reproduce some behaviors of a pathological or healthy heart as measured in
clinical data. We have also presented preliminary results concerning data
assimilation techniques in order to detect contraction troubles.

We are currently pursuing and extending this work in the following directions:

e complete validation and calibration of the model,
e mathematical analysis of the model,

e data assimilation in 3D with real data, see 48],
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e modeling of blood perfusion in the muscle, see [9].

Another perspective is to estimate APD (action potential duration) and DT
(depolarization time) from measurements of the mechanical activity synchro-
nized by standard ECG. If this could be achieved, a complete estimation of
the electrical traveling wave, useful to detect conductivity trouble, would be
possible from the mechanical response of the system.

One of the major difficulties to be confronted in this approach lies in the con-
flict between the complexity of the model to be used (number of quantities
to estimate) and the features (scarcity, quantities measured,...) of the mea-
surements available in a clinical environment. Current techniques provide
data on the electrical activity and the ventricular wall displacements. Even
if the identification results presented here only used displacements measure-
ments, in practice complementary data pertaining to stresses in the muscle
or blood pressures — especially during isovolumetric phases — may be needed.
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