
HAL Id: inria-00001270
https://inria.hal.science/inria-00001270

Submitted on 28 Apr 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Proving formally the implementation of an efficient gcd
algorithm for polynomials

Assia Mahboubi

To cite this version:
Assia Mahboubi. Proving formally the implementation of an efficient gcd algorithm for polynomials.
Automated Reasoning, Third International Joint Conference, IJCAR 2006, Aug 2006, Seattle, WA,
United States. pp.438-452. �inria-00001270�

https://inria.hal.science/inria-00001270
https://hal.archives-ouvertes.fr


Proving formally the implementation of an

efficient gcd algorithm for polynomials

Assia Mahboubi

INRIA Sophia-Antipolis
2204, routes des Lucioles - B.P. 93

06902 Sophia Antipolis Cedex, France,
Assia.Mahboubi@sophia.inria.fr

Abstract. We describe here a formal proof in the Coq system of the
structure theorem for subresultants, which allows to prove formally the
correction of our implementation of the subresultants algorithm. Up to
our knowledge it is the first mechanized proof of this result.

1 Introduction

Automation in formal proofs can greatly benefit from the marriage of proof
assistants and computer algebra tools. Unfortunately the languages of these
two kinds of tools, both intending to do mathematics on a computer, were not
designed to talk to each other and importing the art of computer algebra inside a
proof assistant can become a challenging problem. There is at least two different
approaches to bridge the gap either using (but not trusting) skillful oracles like
Maple and prove correct the result of each computation [11, 6] or integrating
computer algebra algorithms inside the proof assistant and provide a machine-
checked correctness proof of the procedures [17]. The work we present here goes
in this direction. We are using the Coq system [1], which is a proof assistant based
on type theory and therefore containing a strongly typed programming language
we use for computations. The recent introduction of a compiler [9] to the system
allows to expect a reasonable efficiency, taking into account that the average
user of a proof assistant does not seek for the same level of performances as the
one of a computer algebra system. The latter will expect from the system fast
computations that are beyond human reach because they involve large entries,
while the former will need a proof producing automated tool for small (but very
tedious and repetitive) goals.

We present here an algorithm for computing efficiently greatest common di-
visors (gcd) for polynomials with coefficients in a unique factorization domain
(UFD) (see [8]). A UFD is a ring where it makes sense to define gcd but may be
less than a field, like it is the case for integers or polynomial rings on a UFD.
Computing polynomial gcds is a fundamental concern of algebraic manipula-
tions: simplification of polynomial expressions, computation of partial fraction
expansions, mechanization of proofs in geometry...

The algorithms for polynomial gcd computations implemented in computer
algebra systems merely fall into three main classes : pseudo-remainder sequences



based algorithms whose most efficient variant is called subresultant algorithm
(introduced by [5]), sparse modular algorithms based on Hensel lemma (see
[8]), including probabilistic versions [20], and heuristics, like taking benefit from
trivial factorizations or tricks based again on finite field decompositions or on
reduction to integer gcds.

Choosing which algorithm will be the most efficient, even on a given entry, is
quite tricky and there is no decision procedure for that problem. Most systems
implement several methods, and define a default behavior while allowing the user
to customize it. According to the study made in [14], Maple will apply sparse
modular methods when its heuristic fails, and Macsyma as well as Mathematica
try a [20]-like procedure before calling a subresultant algorithm. This paper also
points out that the subresultant algorithm turns out to be the fastest in half of
the benchmarking problems. Moreover, a subresultants algorithm can be defined
and used on arbitrary UFDs, whereas the two other kinds of procedures apply
for polynomials with integer base constants. We have chosen to implement and
prove formally a subresultant algorithm.

Up to our knowledge the only directly related work has been the preliminary
study of Boulmé in [3], which did not lead to a formalization, and it seems that
there is not mechanized proof of this result available. However the motivations of
our work are strongly connected with the formalization of Buchberger algorithm
by Théry [17]. Our feeling is that this well-known algorithm of computer algebra
had not been formalized before because, despite an abundant computer algebra
literature on this topic (see for example the survey[18]), proofs are technical and
seemed to require a large amount of preliminary formalizations. One contribution
of this paper is to provide a tractable proof, combining the presentations of [4]
and [2] for the so-called structure theorem of subresultants. We also provide
an implementation in Coq of this algorithm (following [2]), on top of a library
for polynomial arithmetic we have certified in the system. We prove formally
the fundamental theorem of subresultants, which leads to the correction of the
algorithm implemented.

The paper is organized as follows : in section 2 we introduce our repre-
sentation of polynomials and defined pseudo-remainder sequences (PRS) which
generalize the euclidean remainder sequence. Then section 3, after pointing out
the complexity trade-off in polynomial gcd computation, defines polynomial de-
terminants, studies their links with PRS and describes the corresponding for-
malization. Finally, in section 4 we define subresultant polynomials, prove the
fundamental theorem and explain how it yields to the subresultant algorithm.
We also give an insight of the complexity and give an example of computation
in Coq, before concluding with section 5.

For the sake of readability we try to avoid Coq syntax as much as possible
and present here the informal proof which underlies our formal development.
Coq files can however be retrieved from:

http://www-sop.inria.fr/marelle/Assia.Mahboubi/rech-eng.html



2 Preliminary definitions and formalizations

2.1 Polynomials

In the sequel, we will work with polynomials in D[X ], where D is a UFD with
characteristic 0. In fact, our motivation is to implement these algorithms for
polynomials in Q[X1, . . . , Xn], which are represented as univariate polynomials
in Xn with coefficients in Q[X1] . . . [Xn−1]. In this latter case, Q being a field,
the polynomial ring D = Q[X1] . . . [Xn−1] will always be a unique factorization
domain.

Polynomials of D[X ] are implemented in the sparse Horner representation.
Given the set D of coefficients, elements of D[X ] are inductively defined as being
either constants, built from an element of D, or of the form P × Xn + p where
P is an element of D[X ], n is a positive integer and p is an element of D.

The positive integer n in the non constant case allows more compact repre-
sentations for sparse polynomials, but at the same time enables even more terms
to represent the same mathematical object. For example, X2 can be represented
as ((1) × X) × X + 0 or as (1) × X2 + 0. It is however possible to choose as a
normal form the most compact of these representations : the one with no head
zeros and the one factorized as much as possible. Here is the Coq syntax for this
definition:

Inductive Pol(D : Set) : Set :=
|Pc : D → Pol D

|PX : Pol D → N → D → Pol D.

Now assuming that D is equipped with a ring structure, and a decidable
equivalence relation which is taken as an equality relation over D (we mean all the
operations on D will be compatible with it), it is possible to endow (Pol D) with a
decidable equality, equaling all the representations of a polynomial, together with
a compatible ring structure. We also implement usual operations on polynomials
like degree, leading coefficient...

We suppose now that a partial operation of division is available on D. Given
two elements x and y of D we suppose that if there exist a ∈ D such that y = ax

then div(y, x) = a. Partiality is a sensitive issue in type theory : we choose here
to make div total, and div(y, x) will be 0 if the division fails. Therefore div(y, x)
fails iff div(y, x) = 0 and y 6= 0. From now on it is possible to program a (partial)
euclidean division over D[X ], in the usual way, but again giving zero quotient
and remainder as soon as one of the divisions performed on coefficients fails.

Remark 2.11 A nice property of our representation is that it allows the defi-
nition of euclidean division by structural induction over the divisor, which leads
to a smooth formalization in Coq, which would otherwise require a termination
proof for such a recursive definition.



2.2 Pseudo-remainder and sequences

In the sequel, for P ∈ D[X ], the degree is denoted by deg(P ) and the leading
coefficient by lcoef(P ). In the process of the euclidean division of P by Q, the
only “denominators” we may introduce are powers of the leading coefficients of
Q and in fact the process of euclidean division of lcoef(Q)deg(P )−deg(Q)+1P by
Q, performed in D[X ], will never fail. This was already observed and used by
Jacobi in 1836 [12] and we call lcoef(Q)deg(P )−deg(Q)+1P the Jacobi factor.

Definition 21 (Pseudo-division) Let P = p0 + · · · + pnXn and Q = q0 +
. . . qmXm, with pn, qm 6= 0 and n ≥ m, be two elements of D[X ].

The unique remainder (resp. the quotient) of the euclidean division of qn−m+1
m P

by Q is called pseudo-remainder (resp. pseudo-quotient) of P by Q and denoted
by prem(P, Q) (resp. pquo(P, Q)). This operation is called pseudo-division of P

by Q, and prem(P, Q), pquo(P, Q) ∈ D[X ].

Example 2.21 P = X2, Q = 2X + 1: pquo(P, Q) = 2X − 1, prem(P, Q) = 1.
P = 2X2 + 2X, Q = 2X + 2: pquo(P, Q) = 4X, prem(P, Q) = 0.

Definition 22 (Similar elements) Let and P, Q ∈ D[X ]. P and Q are similar
(P ∼ Q) if there exists a, b ∈ D such that aP = bQ.

The Euclidean algorithm computes the gcd of two polynomials with coeffi-
cients in a field by a sequence of euclidean divisions. We can now generalize this
algorithm to the case of a ring. Here each step of euclidean division is replaced
by a step of pseudo-euclidean division, but since the correcting factors we have
introduced to be able to perform the division may not be the smallest possi-
ble, we introduce the possibility of scalar factorizations in the polynomials by
requiring only similarity to the pseudo-remainders:

Definition 23 (Pseudo-remainder sequences (PRS)) Let F1, F2 ∈ D[X ],
with deg(F1) > deg(F2). Let F1, . . . , Fk ∈ D[X ] be a sequence of non-zero poly-
nomials such that:

Fi ∼ prem(Fi−2, Fi−1) for i = 3 . . . k, prem(Fk−1, Fk) = 0

This sequence is called a pseudo-remainder sequence. From the definitions above,

∀i = 3 . . . k, ∃αi, βi ∈ D and ∃Qi ∼ pquo(Fi−2, Fi−1) such that

βiFi = αiFi−2 − QiFi−1 deg(Fi) < deg(Fi−1)

Informally, α ensures that we can perform a euclidean division inside D[X ],
and β is a scalar factor we know we can remove from the remainder. Again to
circumvent the problem of partiality, such sequences of polynomials are encoded
in Coq as infinite sequences in (D[X ])n∈N, whose elements are zero from a certain
k on (we even know thanks to degree decreasing that k ≤ deg(Q) + 2).



2.3 Reduction to primitive polynomials

Finally, for P ∈ D[X ], one defines its content (cont(P )) as a gcd of its coefficients.
It is unique up the multiplication by units of D. If the coefficients of P are
relatively prime, P is said to be primitive. If not, the primitive part pp(P ) of P

is defined by P = cont(P )pp(P ).
The gcd of two elements of D[X ] is the product of their contents by the

gcd of their primitive parts. Moreover, it two polynomials F1 and F2 in D[X ]
are primitive, so is their gcd, hence with the notations of the definition 23,
gcd(F1, F2) = pp(Fk). We will suppose that we are able to compute gcd on D

(again we are interested in the case where D is a polynomial ring Q[X1, . . . Xn])
hence from now on we will confine our study to the problem of computing the
gcd and subresultants of two primitive polynomials, with distinct degrees.

3 Polynomial determinants and PRS

In this section, we consider F1 = p0 + · · ·+pnXn and F2 = q0 + . . . qmXm where
pn, qm > 0 and n > m two polynomials in D[X ] and (Fi)i=1...k a PRS, such that
for i = 3...k :

βiFi = αiFi−2 − QiFi−1 deg(Fi) < deg(Fi−1) (1)
We denote ni = deg(Fi) and ci = lcoef(Fi) for i = 1...k and call (1) a pseudo-
euclidean relation.

3.1 Control over the growth of coefficients

Computing efficiently the gcd of two polynomials is computing efficiently the
last non zero element of their PRS. The naivest way of computing a PRS is
choosing Fi = prem(Fi−2, Fi−1). This PRS is called the Euclidean PRS (after
[5]). Unfortunately this may lead to a dramatical increase in the size of the co-
efficients of the polynomials in the PRS. In fact, the bit-size of the coefficient
grows exponentially: an exponential lower bound is given by Yap in [19] and
Knuth describes this phenomenon in [13]:”Thus the upper bound [...] would be

approximately N0.5(2.414)n

and experiments show that the simple algorithm does
in fact have this behavior, the number of digits in the coefficients grows expo-
nentially at each step!”. Moreover according to [18] : “In a single division, say
with random inputs, one cannot do much better than Jacobi’s pseudo-division in
trying to keep the remainder integral. But the results in Euclid’s algorithm are
so highly dependent that there are always large factors that can be extracted”.

On the other hand, choosing Fi = pp(prem(Fi−2, Fi−1)) minimizes the growth
of theses coefficients. This PRS is called the primitive PRS (again after [5]). But
recursive computations of gcds for each division step is in the general case too
expensive.

The Subresultant PRS algorithm were are going to present is a compromise
between the two preceding solutions, removing at each pseudo-division step a
significant factor which is easier to compute than the content. This means it



predicts suitable values for the αi’s and βi’s (using notations of 23), which ensure
a reasonable (bit-size quadratic) growth for the coefficients of the polynomials.

3.2 An example of computations

We reprint here the same example as in [18] to compare these three approaches.
The αi’s are always the Jacobi factor of the pseudo-division, and the βi’s are
factors we can extract from the pseudo-remainder.

i αi βi Fi

1 9X6
− 27X4

− 27X3 + 72X + 18X − 45
2 3X4

− 4X2
− 9X + 21

3 33 = 27 1 −297x2
− 729X + 1620

4 −26198073 1 3245333040X − 4899708873
5 10532186540515641600 1 −1659945865306233453993

Euclidean PRS : no factorization (βi = 1), exponential growth.

i αi βi Fi

1 9X6
− 27X4

− 27X3 + 72X + 18X − 45
2 3X4

− 4X2
− 9X + 21

3 33 = 27 3 −11X − 27X + 60
4 −1331 9 18320X − 27659
5 335622400 1959126851 −1

Primitive PRS : optimal factorization, expensive recursive computations.

i αi βi Fi

1 9X − 27X4
− 27X3 + 72X + 18X − 45

2 3X − 4X2
− 9X + 21

3 27 3 297X2 + 729X − 1620
4 26198073 −243 13355280X − 20163411
5 178363503878400 2910897 9657273681

Subresultant PRS : a compromise, we remove smaller factors than in the Prim-
itive case but computations are much cheaper.

3.3 Polynomial determinants

We now roughly follow the presentation of [2] to introduce polynomial determi-
nants. Let Fn be the set of polynomials in D[X ] whose degrees are less than n.
It is a finitely generated free module, equipped with the usual monomial basis
B = Xn−1 . . . X, 1.

Proposition 31 (Polynomial determinant definition) Let m ≤ n, two in-
tegers. There exists a unique multi-linear antisymmetric mapping, denoted pdet,
from (Fn)m to Fn−m+1 such that for every n > i1 > . . . im−1 > i:

{

pdetn,m(X i1 , . . . , X im−1 , X i) = X i if for every j < m ij = n − j

pdetn,m(X i1 , . . . , X im−1 , X i) = 0 otherwise



Proof. Uniqueness comes from antisymmetry and multilinearity, after decom-
posing the arguments on the basis B.

Let Mat′(P) be the square matrix whose m− 1 first lines are the m− 1 first
lines of Mat(P), and the last line is built with the polynomials P1, . . . , Pm:

Mat′(P) =



















p1
n−1 . . . pm

n−1

...
...

p1
n−m+1 . . . pm

n−m+1

P1 . . . Pm



















Now pdetn,m = det(Mat′(P)), where det is the usual determinant of matrices,
here with polynomial coefficients. ut

3.4 Formalization of multilinear applications in Coq

To date there exists no distributed contribution for multilinear algebra in the
Coq system. Building such a theory of multilinear algebra on top of the existing
Coq contributions on linear algebra finally appeared as a very intricate solution
for our purpose: first because of the complexity of the inheritance mechanisms in
formalized algebraic structures but also because we did not need the whole theory
leading to the construction of determinants over rings. We have hence chosen
to define determinants as (computable) functions and to prove on demand their
required properties.

To fit the usual definition of multilinear applications, like determinants, let us
consider a field K and EK a vectorial space over K. Let l be the list of elements
of EK , we will compute the multilinear application by recursion over the length
of l. We need to specify how to extract coordinates on the basis we have chosen,
and therefore assume an extra parameter coord : nat → EK → K. The recursion
will transform the problem into the same but with determinants of size one less.
Since our coordinate parameter is global, it also depends on an integer n, which
is the dimension of the vector space. Now we claim that if n is the length of l,
under the assumption that we know how to compute det for arguments of size
n − 1, we can compute (det l) recursively and this job will be performed by the
rec det function (whose description we postpone).

Definition det l := det aux (length l) l.
let rec det aux(n:nat)(l:list EK):K :=

match n with
|O ⇒ 1K

|n1 + 1 ⇒ rec det (coord n) (det aux n1) l nil
end.

To compute the determinant, we will develop along, say one line, and recur-
sively compute the cofactors, and finally build the appropriate linear combination
of the cofactors, with alternate signs. Cofactors are determinants of the sublists



of length n−1 of l. The line along which the development is performed is chosen
by the values of coord. Now rec det is defined by induction on the structure of l.

let rec rec det(f:EK → K)(rec : list EK → K)(l1l2:list EK):K:=
match l1 with
|nil ⇒ 0K

|a :: l3 ⇒ f(a)*[rec (app l2 l3)] - [rec det f rec l3 (app l2 (a::nil))]
end.

The assumptions we have made on K and EK were only for sake of clarity :
in fact the only requirements are that:

– K is a commutative integral ring
– EK is a set equipped with an internal additive law and an external linear

product EK → K → EK , and a linear coord operator.

Proving that we can develop a determinant along a line is granted from
the definition of det. We can now also prove formally that det is multilinear,
antisymmetric, and alternate, by proving it successively for det rec and det aux,
of course under the assumption that coord is linear. We can also formalize the
notion of triangular system, and obtain the value of such a determinant as a
product of diagonal values of coord.

Taking K = Z and EK = list Z, we can encode the usual determinant of a
square matrix of integers, just by taking:

Definition coord n l := nth (n - 1) l 0.
where (nth n l a) computes the n-th element of the list l and that the result is
a if n is out of bounds.

We would like to define the polynomial determinant as an application of type
(list D[X ]) → D[X ], and this definition of det allows us to do so. Here are the
signatures of the auxiliary functions:

coord : nat → D[X ] → D[X ]
det aux : nat → (list D[X ]) → D[X ]
rec det : (D[X ] → D[X ]) → ((list D[X ]) → D[X ]) → (list D[X ]) → D[X ]

We also need to precise the definition of coord. It corresponds to the develop-
ment of the matrix Mat′(P) along the penultimate line, because this is the way
to get a definition of pdet by induction on the number of polynomials. We also
need to give as a parameter max degree (it was n− 1 in definition 31) the max-
imal degree of polynomials involved, which determines the number of possible
zero lines on top of Mat′(P). This leads to the following definition:

Definition coord max degree j : → D[X ] → D[X ]:=
if max degree + 2 ≤ j
then (fun P : Pol ⇒ P0)
else
match j with
|O ⇒ (fun P : Pol ⇒ P0)
|1 ⇒ (fun P : Pol ⇒ P )
| ⇒ (fun P : Pol ⇒ (−1)j+1pmax degree−j+2))
end.



where pk is the coefficient of P on Xk, here viewed as a constant polynomial.
Now we are ready to define subresultant polynomials.

4 Structure of subresultant polynomials

4.1 Definition and first properties

Definition 41 (Subresultant polynomials) Let P, Q ∈ D[X ] be two polyno-
mials with deg(P ) = n, deg(Q) = m and n > m. Then for i = 0 . . . n, the i-th
subresultant polynomial Si(P, Q) is defined by:

– Sn(P, Q) = P

– Si(P, Q) = 0 for m < i < n

– Si(P, Q) = pdetn+m−i,n+m−2i(X
m−i−1, . . . , XP, P, Q, XQ, . . . , Xn−i−1Q) oth-

erwise

Going back to the interpretation of pdet as a determinant of a matrix of
polynomials (section 3.3), we can observe that:

Si(P, Q) = det Mni
where Mni

=

























pn 0 qm 0
...

. . .
...

. . .

pn−m+i+1 . . . pn

qm−n+i+1 . . . qm

...
...

...
...

p2i+2−m . . . pi+1 q2i+2−n . . . qi+1

Xm−i−1P . . . P Xn−i−1Q . . . Q

























Using the notations of section 3 and considering a PRS F1, . . . , Fk, from the
relation (1) we can obtain Bezout-like relations by induction on i. Indeed for all
i = 3 . . . k, there exists γi ∈ D and Ui, Vi in D[X ] such that :

Ui × F1 + Vi × F2 = γiFi deg(Ui) < m − ni−1, deg(Vi) < n − ni−1

Reversing the problem, this relation can be seen as a system of linear equations
in the coefficients of Ui and Vi, considering the relations equaling coefficients of
like powers on both sides. Gathering the last ni + 1, inhomogeneous, equations
in a single linear polynomial equation, this system can be described by

Mni
× V =











0
...
0

γiFi











where V is the column vector of the coefficients of Ui and Vi in decreasing
order of subscript. There are in fact relations between the subresultant poly-
nomials of two polynomials P and Q and the polynomials of a PRS starting



with P and Q. From now on, we will drop both subscripts of pdet ; unless other-
wise specified, n + 1 will always be the maximal degree of polynomials given in
arguments.

The following lemma (see [4]) establishes that Sj(P, Q) is a multiple of
Sj(Q, prem(P, Q)), and this shift will be the elementary step of our main proof.

Lemma 4.11 Let F , G, H, B be non zero polynomials in D[X ], of degree
φ, γ, η, β, respectively, such that :

F + BG = H with φ ≥ γ > η and β = φ − γ

Then,

(i) Sj(F, G) = (−1)(φ−j)(γ−j)gφ−η
γ Sj(G, H) 0 ≤ j < η

(ii) Sη(F, G) = (−1)(φ−η)(γ−η)gφ−η
γ hγ−η−1

η H

(iii) Sj(F, G) = 0 η < j < γ − 1
(iv) Sγ−1(F, G) = (−1)φ−γ+1gφ−γ+1H

Proof. Recall that for j < γ:
Sj(F, G) = pdet(Xγ−j−1F, . . . , XF, F, G, XG, . . . , Xφ−j−1G)

In the right hand side, replacing each F by H is adding to each one of the γ−i

first arguments a linear combination of the φ−i last ones. Indeed XkF+XkBG =
XkH with β + k ≤ φ − j − 1. The polynomial determinant being multilin-
ear and alternate, this replacement does not alter the value of the pdet. Notice
that these operations mimic the euclidean division of F by G. We have then:

Sj(F, G) = pdet(Xγ−j−1H, . . . , XH, H, G, XG, . . . , Xφ−j−1G)
We now come back to the matrix representation of this pdet. We denote gk (resp.
hk) the coefficient of G (resp. H) on the monomial Xk and swap the two blocks
of columns:

Sj(F, G) = (−1)(φ−j)(γ−j)det

































gγ 0 hφ 0
...

...
. . .

...
. . .

...
... hφ

...
...

...
...

gγ−φ+j+1 . . . gγ hj+1 . . . hγ

...
...

...
...

g2i+2−φ . . . gj+1 h2j+2−γ . . . hj+1

Xφ−i−1G . . . G Xγ−j−1H . . . H

































If j ≥ η, then the matrix is triangular, and
Sη(F, G) = (−1)(φ−η)(γ−η)gφ−η

γ hγ−η−1
η H for η ≤ j ≤ γ − 1

This proves (ii) − (iv). Now if j < η, the determinant has the block form:

Sj(F, G) = (−1)(φ−j)(γ−j)det

[

A 0
B Sj(G, H)

]

where A is a triangular square block of size φ− η, with all elements on its main
diagonal equal to gφ, which proves (i). ut



Remark 4.11 The formal proof of this lemma relies on the fact that every poly-
nomial in D[X ] of degree less than d is equal to a linear combination of monomi-
als of degree less than d. Due to the choice of our representation (see section 2),
we had then to provide a theorem of equivalence of representation. Hereafter we
can switch at any moment to the most convenient representation for the current
goal to be proved.

Remark 4.12 This kind of polynomial identities, like properties of determi-
nants, are proved formally mainly by two kinds of small steps:

(i) Rewriting of previously established lemmas on polynomials and/or coeffi-
cients;

(ii) Reasoning modulo the ring axioms of both polynomial and coefficient struc-
tures.

In Coq, a carrier equipped with an equivalence relation is called a setoid (see [7]).
Such a relation can be rewritten, provided that the occurrence concerned is under
only morphisms, which are functions proved compatibles with the equivalence
relation.

These rewritings (i) may become tedious because of the interweaving of setoids
and many-arguments morphisms and this is now very smooth thanks to the recent
major improvements of equational reasoning made available in the Coq system
(see [16]).

Automatizing (ii) has been made possible by the introduction of a re-shaped
tactic for automating proofs and normalization of ring identities ([10]), which
enhances the previously available tactic, specially by providing an efficient and
convenient tool on abstract (axiomatically defined) structures.

4.2 Subresultants and PRS

In all the sequel F1, F2, . . . , Fk is a PRS in D[X ] with notations of section 3.
The lemma 4.11 was detailing the behavior of subresultants when combined with
euclidean division. We carry on this result and study the link between subresul-
tants and PRS. As we use here multilinearity of pdet, we have no longer multiple
but similar polynomials. The following lemma is a straightforward corollary of
the preceding one:

Lemma 4.21 For i = 3 . . . k,

(i) For 0 ≤ j < ni,

Sj(Fi−2, Fi−1)α
ni−1−j

i = Sj(Fi−1, Fi)β
ni−1−j

i c
ni−1−ni

i−1 (−1)(ni−2−j)(ni−1−j)

(ii) Sni
(Fi−2, Fi−1)α

ni−1−ni

i = Fiβ
ni−1−ni

i c
ni−1−ni−1
i c

ni−2−ni

i−1 (−1)(ni−2−ni)(ni−1−ni)

(iii) Sj(Fi−2, Fi−1) = 0 for ni < j < ni−1 − 1

(iv) Sni−1−1(Fi−2, Fi−1)αi = Fiβic
ni−1−ni−1+1
i−1 (−1)ni−1−ni−1+1.

Proof. This is exactly lemma 4.11 for F = αiFi−1, G = Fi−1, H = βiFi, B =
−Qi, using the multilinear property : Sj(aF, bG) = aγ−jbφ−jSj(F, G). ut



We are now ready to state and prove the fundamental theorem describing
the structure of the sequence of subresultant polynomials, telling that once the
possible zero polynomials occurring in the subresultant polynomials sequence
have been removed, polynomials in the sequence obtained are pairwise similar
to ones of the PRS. For sake of readability, we give the exact values of the
similarity coefficients only in the proof.

Theorem 4.22 (Fundamental theorem) With the same notations as above,

(i) Sj(F1, F1) = 0, for 0 ≤ j < nk

(ii) Sni
(F1, F2) and Fi are similar.

(iii) Sj(F1, F1) = 0 for ni < j < ni−1 − 1
(iv) Sni−1−1(F1, F2) and Fi are similar, for i = 3, . . . k.

Proof. The exact formulas we are going to prove for (ii) and (iv) are respectively:

(ii) : Sni
(F1, F2)

∏i

l=3 α
nl−1−ni

l =

Fic
ni−1−ni−1
i

∏i
l=3[β

nl−1−ni

l c
nl−2−nl

l−1 (−1)(nl−2−ni)(nl−1−ni)]
and:
(iv) : Sni−1−1(F1, F2)

∏i
l=3 α

nl−1−ni−1+1
l =

Fic
1−ni−1+ni

i−1

∏i
l=3[β

nl−1−ni−1+1
l c

nl−2−nl

l−1 (−1)(nl−2−ni−1+1)(nl−1−ni−1+1)]
Iteration of lemma 4.21(i) for 0 ≤ j < ni−1 and 3 ≤ i ≤ k+1 lead to Sj(F1, F2) ∼
Sj(Fi−2, Fi−1) with the following coefficients:

(2) Sj(F1, F2)
∏i−1

l=3 α
nl−1−j

l =

Sj(Fi−1, F1−2)
∏i−1

l=3 [β
nl−1−j

l c
nl−2−nl

l−1 (−1)(nl−2−j)(nl−1−j)]
When i = k + 1, it means Sj(F1, F2) ∼ Sj(Fk−1, Fk). For 0 ≤ j ≤ nk, lemma
4.11 proves that Sj(Fk−1, Fk) = 0 hence (i).

Then let 0 ≤ i ≤ k. For j = ni, lemma 4.21 (ii) combines with (2) to prove
(ii). When ni < j < ni−1 − 1, lemma 4.21 (iii) together with (2) proves (iii).
And finally 4.21 (iv) and (2) yield (iv). ut

4.3 Subresultant polynomials as a pseudo-remainders chain

By definition, every subresultant polynomial is in D[X ]. The fundamental theo-
rem establishes that, up to deletion of some zeros, subresultant polynomials are
pairwise similar to the polynomials of a PRS. Now the idea of a subresultants
algorithm is to choose αi’s and βi’s such that the non zeros subresultant poly-
nomials are exactly the Fi of a PRS, the subresultant PRS. Fine customizations
are possible in the choice of these αi’s and βi’s and this leads to several algo-
rithms, which are all called subresultant algorithms. The structure theorem for
subresultants describes this situation and the choice of αi’s and βi’s. Here we
follow the presentation of [2] and implement the corresponding algorithm, com-
puting successive subresultant polynomials by euclidean divisions, and using the
following, recursively defined, αi and βi:

Theorem 4.31 (Structure theorem for subresultants polynomials) Let P

and Q be two polynomials in D[X ] and deg(P ) = p > q = deg(Q). We denote:
tj = lcoef Sj(P, Q) and sj the coefficient of Sj(P, Q) on Xj (which may be
zero). Let 0 ≤ j < i ≤ p + 1. Suppose that Si−1(P, Q) 6= 0 and is of degree j.



– If Sj−1(P, Q) = 0 then Si−1(P, Q) = gcd(P, Q) and for l ≤ j−1, Sl(P, Q) = 0
– If Sj−1(P, Q) 6= 0 and k = degSj−1(P, Q), then there exists Q ∈ D[X ] such

that:
sjti−1Sk−1(P, Q) = QSj−1(P, Q) + sktj−1Si−1(P, Q)

– If j ≤ q, k < j − 1, then:
Sl(P, Q) = 0 for k < l < j − 1 and tj−1Sk(P, Q) = skSj−1(P, Q)

Notice that unlike in the example given in 3.2, we do not choose the Jacobi
factor for αi. To prove formally the correctness of our procedure we still need to
show that this procedure satisfies the properties of 4.31 (but it was implemented
on purpose) and also to instantiate 4.22 with the appropriate values of αi’s and
βi’s, to prove theorem 4.31.

4.4 Implementation and complexity issues

In particular, the unique factorization domain can be instantiated by integers,
and we can go back to our example in the section 3.2. Defining P := 9X6 −
27X4 − 27X3 + 72X + 18X − 45 and Q := 3X4 − 4X2 − 9X + 21 , here is the
output (instantly) computed by our Coq implementation:

Eval compute in (Pol_subres_list P Q).

= PX (PX (PX (PX (PX (Pc 9) 2 -27) 1 -27) 1 72) 1 18) 1 -45

:: PX (PX (PX (Pc 3) 2 -4) 1 -9) 1 21

:: PX (PX (Pc -33) 1 -81) 1 180

:: PX (Pc 18320) 1 -27659

:: Pc -1471921 :: nil

: list Pol

Note that this result is slightly better than the one given in the former example,
we are indeed here not do far form the primitive PRS, thanks to the efficient
choice of αi’s.

One can find in [2] a detailed complexity analysis of the algorithm yield by
theorem 4.22. To summarize it, we cite the Prop. 8.43 ([2] p.298)

Theorem 4.41 (Size of the remainders) If P and Q have degree p and q

and have coefficients in Z[Y1, . . . , Yk], which have degree d in Y1, . . . , Yk and are
of bit-size τ then the degree of Sj(P, Q) in Y1, . . . , Yk is at most d(p+q−2j) and
the bit-sizes of the coefficients of Sj(P, Q) are at most (τ + ν)(p + q − 2j) + kµ

where ν is the bit-size of p + q and µ is the bit-size of (p + q)d + 1.

The theoretical (word operations) runtime complexity is O(n6), for input
polynomials of degree ≤ n and bit-size of coefficients ≤ n. Benchmarking Coq’s
output to get runtime results is not easy, because Coq’s time measurement tool
is not precise enough. Anyway, our implementation running in Coq is never
slower that 20 times the implementation of [14] on the 4 case problems where
the subresultant algorithm wins the competition. This means for example that
gcds of relatively prime polynomials of degree 10 with 5 variables are computed
in less than one second.



5 Conclusion

The benchmarks of the previous section give very satisfying results for a proof
assistant system purpose. Computations are made by the reduction engine of
Coq, with binary encoded integers but not machine integers. This tends to show
that the experiment done in [6], where the algorithm rests on gcd computations
performed by Maple, could be transposed in a decision procedure, using this kind
of implementations (and proofs) to compute inside the system. The main asset
of such a self-contained approach is that time of computing is time of proving
(the correction proof of the algorithm is done once and for ever). Computations
of subresultants are in fact heavily used in a decision procedure for real num-
bers we have implemented in Coq as well (see [15]). It is a cylindrical algebraic
decomposition algorithm (see [5],[2]), for which numerous gcd computations are
performed, even in the univariate case, and which relies on algebraic properties
of subresultants for projections of multivariate problems. This formal proof is
a piece of the (much larger) correction proof we would like to provide for this
decision procedure.

One of the main difficulties of this work was to first write a pen-and-paper
proof, which would be adapted to formal proof, and though the presentation we
adopt here is not new (it mixes [4] and [2]), both papers we have used presented
bottlenecks to formal treatments. The historical paper [4] does not not use the
convenient definition of polynomial determinants and [2] use the fraction field of
a UFD, which requires further development in Coq. We hope that this description
is general enough to help the user of another interactive proof assistant wanting
to prove this correction theorem and also that our work on formal definition of
determinants will be reusable.

This work is still in progress : the correctness proof of the implemented
algorithm is not finished and we rely on axiomatic specifications of our euclidean
division. The code also needs to be cleaned up in order to be reusable as a stand-
alone library for polynomial arithmetic.

We think that despite the large size of the formal proof, this work contributes
to the construction of a certified platform in proof assistants enabling the user
to forget about the basic manipulation of algebraic expressions. Recent improve-
ments of the system (equational reasoning, automation, tactic metalanguage)
have been decisive in the feasibility of such a proof. In [10], an efficient simpli-
fication tool was provided for ring expressions, which has now been integrated
to the development version of Coq, this work should contribute to be able to
enhance rational fraction handling and hence automation in the simplification
of field expressions.

Acknowledgments: We would like to thank Laurent Théry for very fruitful
discussions and in particular for his suggestions in the formalization of determi-
nants, Laurence Rideau for her significant help in the pedestrian proofs of the
ring axioms for polynomials and Marie-Françoise Roy for her detailed explana-
tions on subresultants and elimination theory.



References

1. The coq system. Technical report. http://coq.inria.fr.
2. S. Basu, R. Pollack, and M.-F. Roy. Algorithms in real algebraic geometry,

volume 10 of Algorithms and Computation in Mathematics. Springer Verlag,
2003. draft for snd edition available at http://name.math.univ-rennes1.fr/marie-
francoise.roy/bpr-posted1.html.

3. S. Boulmé. Vers la spécification formelle d’un algorithme non trivial de calcul
formel : le calcul de pgcd de deux polynômes par la châıne de pseudo-restes de
sous-résultants. Master’s thesis, SPI team, Paris VI University, September 1997.

4. W. S. Brown and J. F. Traub. One euclid’s algorithm and the the theory of
subresultants. Journal of the ACM, 18(4):505–514, 1971.

5. G. E. Collins. Subresultant and reduced polynomial remainder sequences. Journal

of the ACM, 14:128–142, 1967.
6. D. Delahaye and M. Mayero. Quantifier Elimination over Algebraically Closed

Fields in a Proof Assistant using a Computer Algebra System. In Proceedings of

Calculemus 2005, 2005.
7. V. C. G. Barthe and O. Pons. Setoids in type theory. Journal of Functional

Programming, 13(2):261–293, March 2003.
8. K. Geddes, S. R. Czapor, and G. Labahn. Algorithms for computer algebra. Kluwer

Academic Publishers, 1992.
9. B. Grégoire and X. Leroy. A compiled implementation of strong reduction. In

International Conference on Functional Programming 2002, pages 235–246. ACM
Press, 2002.

10. B. Grégoire and A. Mahboubi. Proving ring equalities done right in coq. In
TPHOLs’2005, LNCS. Springer Verlag.

11. J. Harrison and L. Théry. A skeptic’s approach to combining HOL and Maple.
Journal of Automated Reasoning, 21:279–294, 1998.

12. C. Jacobi. De eliminatione variablilis e duabus aequationibus. J. Reine Angew.

Math, 1836.
13. D. Knuth. The Art of Computer Programming, Semi-numerical algorithmms, vol-

ume 2. Addison-Wesley, 1998.
14. H.-C. Liao and R. J. Fateman. Evaluation of the heuristic polynomial gcd. In

ISSAC ’95: Proceedings of the 1995 international symposium on Symbolic and al-

gebraic computation, pages 240–247. ACM Press, 1995.
15. A. Mahboubi. Programming and certifying a cad algorithm in the coq system. In

Mathematics, Algorithms, Proofs, number 05021 in Dagstuhl Seminar Proceedings.
IBFI, Schloss Dagstuhl, Germany, 2006.

16. C. Sacerdoti. A semi-reflexive tactic for (sub-)equational reasoning. In TYPES

2004, volume 3839 of Lecture Notes in Computer Sciences, pages 98–114. Springer
Verlag, 2006.

17. L. Théry. A machine-checked implementation of buchberger’s algorithm. Journal

of Automated Reasoning, 26:107–137, 2001.
18. J. von zur Gathen and T. Lücking. Subresultants revisited. Theoretical Computer

Science, (297):199–239, 2003.
19. C. K. Yap. Fundamental Problems of Algorithmic Algebra. Oxford University

Press, 2000.
20. R. Zippel. Effective Polynomial Computation. Kluwer Academic Publishers, 1993.


