Skip to Main content Skip to Navigation
Other publications

The Distribution of Patterns in Random Trees

Abstract : Let~$T_n$ denote the set of unrooted labeled trees of size~$n$ and let~$T_n$ be a particular (finite, unlabeled) tree. Assuming that every tree of~$T_n$ is equally likely, it is shown that the limiting distribution as $n$~goes to infinity of the number of occurrences of~$M$ as an induced subtree is asymptotically normal with mean value and variance asymptotically equivalent to~$\mu n$ and~$\sigma^2n$, respectively, where the constants $\mu>0$ and~$\sigma\ge 0$ are computable.
Complete list of metadata

Cited literature [14 references]  Display  Hide  Download
Contributor : Frédéric Chyzak Connect in order to contact the contributor
Submitted on : Friday, May 5, 2006 - 11:25:55 AM
Last modification on : Thursday, February 3, 2022 - 11:14:24 AM
Long-term archiving on: : Saturday, April 3, 2010 - 9:19:22 PM




Frédéric Chyzak, Michael Drmota, Thomas Klausner, Gerard Kok. The Distribution of Patterns in Random Trees. 2006. ⟨inria-00001281⟩



Record views


Files downloads