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Abstract: This document describes the establishment of a computational grid devoted to
fluid mechanics, using three clusters of PC localized respectively at INRIA Sophia-Antipolis,
CEMEF Sophia-Antipolis and TUSTI Marseille. We will expose the encountered problems
and the choices retained according to the computational ressources. In a first part Bl we
briefly describe the MECAGRID project that aims to set-up a computational grid devoted
to massivelly parallel computations in fluid dynamics. The starting points of the project
are several clusters localized in the PACA area already used by several teams working in
CFD. One of the main requirements of this project has been to be able to launch on this
grid several codes using MPI with no modification of these codes. Then, we present an
analysis of possible solutions for establishing this grid in chapter Bl and a description of the
selected system. The encountered problems are detailed throughout this chapter. We finally
show some preliminary results in chapter @l and some examples of computations in chapter Bl

Key-words: computational grid, GLOBUS, cluster, MPI, CFD, parallel computations,
message passing, Fluid Dynamics
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Mise en place d’une grille de calcul régionale dédiée a la
mécanique des fluides

Résumé : Ce document décrit la mise en place d’une grille de calcul régionale dédiée a la
mécanique des fluides, comprenant le cluster de 'INRIA Sophia, du CEMEF et de 'TUSTI.
Nous y verrons quels ont été les problémes rencontrés ainsi que les choix retenus en fonction
des moyens de calcul dont nous disposons.Tout d’abord nous allons briévement décrire le
projet MECAGRID dont le but est de mettre en place une grille de calcul dédié au calcul
paralléle en mécanique de fluides dans le chapitre B A l'origine de ce projet, il y a plu-
sieurs grappes de calcul situées en région PACA et déja utilisées par des équipes travaillant
en mécanique des fluides. L’un des principaux buts de ce projet était de pouvoir lancer
plusieurs codes de calcul utilisant MPI sans modification de ces codes. Par la suite, nous
présentons une analyse des solutions possibles pour établir cette grille dans le chapitre Bl ainsi
qu’une description du systéme retenu. Les problémes rencontrés sont détaillés & travers ce
chapitre. Finalement, nous présentons quelques résultats préliminaires dans le chapitre @ et
des exemples de calculs dans le chapitre

Mots-clés : grille de calcul, GLOBUS, grappe, MPI, éléments finis, parallélisme, passage
de message, mécanique des fluides



A computational grid devoted to fluid mechanics 3

1 Introduction

Network based computing has recently appeared as a new way to offer end-users a dra-
matic increase in available processing power. Beside deceptively parallel applications like
SETI@home that have made popular the concept of grid computing, the rapid pace of the
improvment of network connectivity and speed makes it possible to consider communication-
intensive parallel jobs (now currently run on dedicated supercomputers) as suitable for exe-
cution on “computational grids” consisting of geographically distributed compute-and-data
storage ressources connected by various communication links. The success of these so-called
computational grids relies on several factors : the rapid increase of the CPU power and net-
work connectivity improvment, the growing availability of middleware dedicated at building
grids of processors and storage ressources, the design or re-design of grid enabled parallel
algorithms and last, but not least, the participation and involvment of the end-user com-
munities.

Today, a lot of middlewares dedicated to grid computing are available but the set-up of
a computational grid requires a careful examination of the different possibilities and of their
limitations according to the needs of the end-users. A middleware is a general term for any
software that serves to "glue together" two separate and usually already existing programs.
A middleware dedicated to grid computing is the glue used to make parallelism on a set
of clusters or shared memory multiprocessor machines. The most widely known middle-
ware is certainly the Globus Toolkit developped at Argonne National Laboratory but many
others exist as Legion, Unicore or ORB implementations. This report contains a collection
of cogitations issued from the installation phase and a description of the installed system
dedicated to the execution of Computational Fluid dynamics (CFD) parallel applications
using the MPI message passing library.

This paper is composed of three parts. First, we briefly describe the MECAGRID project
in chapter @ Then, we speak about its objectives (the setup of a computational grid de-
voted to CFD) and what we start from (several clusters in PACA area already used by local
scientists and several codes using MPI must be launched on this grid). Then, in chapter
this report presents an analysis of possible solutions for building this grid and a description
of the selected system. The encountered problems are detailed throughout this chapter. We
finally show some preliminary results in chapter Bl and examples of computation in chapter
with AERO3D and STOKES.
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4 P. Nivet

2 The Mecagrid project

Mecagrid is a project of the french ministry of research throught the ACI-GRID program.
It is a joint project between INRIA-Sophia, CEMEF of the ENSMP (Ecole des Mines de
Paris) localized in Sophia-Antipolis and TUSTI of the University of Provence localized in
Marseille. We present briefly the objectives of the project, the requirements of the end-
users, the existing computational ressources and we review the technical problems that we
have to solve. This reflexion is useful because it shows us the gap between the initial state
of the clusters and softwares, and what we have to obtain, revealing technical problems.

2.1 Objectives

The aim of the project is to build a computational grid devoted to fluid mechanics, using
a set of three clusters interconnected by a wide area network (internet). The total number
of processors is 166 which makes possible the computation of larger problems than on a
single cluster. Moreover, the availability of this number of processors can allow a user to use
distant nodes in the event that the number of processors needed to perform the computation
is not availabel locally.

To reach the objectives of the Mecagrid project, two different approaches can be choosen:

¢ TRANSPARENT SOLUTION: Build a computational grid that simulates one virtual
parallel computer as a single cluster: however, for this, we have to be careful of net-
work and node heterogeneity.

e COMPONENT ORIENTED ARCHITECTURE: Take advantage of the specificities
of the grid by using Object Request Broker technologies. In other words, re-write the
software in an ORB way.

2.2 Pre-existing softwares

At the beginning of this project, several application codes were existing as AERO3D from
INRIA or STOKES from CEMEF. These codes, written in FORTRAN and C++, have a
common characteristic: they use MPICH [GL96] library and probably it will be the common
point of most application codes thus it is an important information. Another code, AEDIPH,
is being written for two-phase flows problems. Initially, these codes were designed to run
on homogeneous clusters so, in a grid deployement perspective, it is planned to integrate
load-balancing capabilities.

As a significant characteristic of the application codes that that have to be run on the
grid, MPI [WD96| standard and MPICH implementation of MPI will be detailed:

INRIA
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o MPI [WD96] is a library specification for message-passing, proposed as a standard by
a broadly based committee of vendors, implementors, and users which specifications
are available as a “MPI standard”. MPI was designed for high performance on both
massively parallel machines and on workstation clusters. It is based on distributed
memory model and explicit control of the parallelism.

The advantages of MPI are:

— no data placement problems
— implicit synchronisation with subroutine calls

— portability to distributed and shared memory machines
however, this approach has also some drawbacks:

— no so easy development and debugging
— high level communications (performance)
— large code granularity often required to minimise latency

— global operations can be expensive

o MPICH [GL96] is a portable implementation of MPI, the Standard for message-passing
libraries.
The software architecture of MPICH pursues two main goals, portability and high per-
formance. For portability, the designers of MPICH wished to maximize the amount of
code that can be shared. In this way, many of the complex communication operations
can be written in terms of lower-level ones. For performances, they wished to provide
a structure whereby MPICH could be ported to a new platform quickly, and tuned
easily.
To achieve these goals, they designed MPICH around a central mechanism called the
Abstract Device Interface (ADI). All MPI functions are implemented in terms of the
macros and functions that constitute the ADI.
Thus, on one side of ADI, we have the portable part of the library, optimized for per-
formance, and on the other side, we have hardware-dependant implementation of the
device. MPICH contains many implementations of the ADI, which provide portability
and hardware optimizations.

2.3 Computational and network resources

Computational nodes available for this project are divided into 3 sets, 3 clusters located at
INRIA-Sophia, CEMEF and IUSTI. Each site is connected to the others two by classical
Internet network. Caracteristics of clusters are detailed in table [l The cluster of INRIA
has 19 biprocessors PIII at 933 Mhz (pf nodes) and 16 biprocessors XEON at 2Ghz. The
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cluster of CEMEF has 32 biprocessors PIIT at 1Ghz. The cluster of ITUSTI has 32 mono-
processors PIV at 2 Ghz.To summarize, all nodes are Intel processors under Linux OS, but
kernel versions, batch schedulers, processor speeds and network characteristics are different.

CEMEF at Sophia-Antipolis

Nodes :
0S
Network
Parallel libraries :
Batch scheduler
Compilers

32 bipro Pentium IIT (1GHz) with private IP

: Linux Red Hat 7.1
: 2 networks : Myrinet 2 Gb/s + Fast Ethernet 100 Mb/s full-duplex
MPICH 1.2.8 Argonne Myrinet and MPICH 1.2.5 fast ethernet

: OPEN PBS

: Portland, f90 , 77, C, C++ and GNU {77, C, C++

INRIA at Sophia-Antipolis

Nodes(pf)
Nodes(nina)
0S
Network(pf)
Network(nina)
Parallel libraries :
Batch scheduler
Compilers

: 19 bipro Pentium IIT (933 Mhz) with public IP
: 16 bipro Xeon (2 Ghz) with public IP

: Linux Red Hat 2.2

: Fast-Ethernet Network 100 Mb/s full-duplex

: Gigabit-Ethernet Network 1 Gbps full-duplex

PVM 3.4.2, MPICH 1.2.5 and LAM/MPI 6.5.4

: LSF
: Portland, 190, {77, C, C++ and GNU {77, C, C++

TUSTI at Marseille

Nodes
0S
Network
Parallel libraries :
Batch scheduler
Compilers

: 32 Pentium IV monopro (2 GHz) with private IP
: Linux Red Hat 7.2 kernel 2.4.17
: Fast-Ethernet Network 100 Mb/s full-duplex.

MPICH 1.2.5

: OpenPBS
: INTEL {77, £90, C, C++ and GNU {77, C, C++

Table 1: Table of characteristics for each cluster

Due to this particular architecture, some points need a particular care. They are summa-

rized below:

e Using classical Internet network (i.e. not specialized or secure line) to interconnect
clusters is a security hole,

— during authentification, it implies the use of crypted certificates or strong pass-

words.

— during computations because packets will circulate through machines and routers
whose security integrity is unknown we have to use cryptographic protections.

INRIA



A computational grid devoted to fluid mechanics 7

e Two of the three clusters (CEMEF and IUSTI) are built on LAN (Local Area Network).
It implies that nodes are identified by a private IP address, but communication between
two nodes from different sites, as required by MPI, becomes impossible. Indeed, a
computer in a LAN is not known and not routable through the Internet.

o This set of clusters is a merge of 3 distinct authorities,and thus each user of the grid
will have several identities. In our example, 3 clusters implies 3 authorities and 3
identities per user. During submission and computation, the system must be able to
associate the right local user id to a request from another site (same physical person
but different logical id). The use of X.509 [I'C88| certificates seems to be a good
solution.

e The last thing to note is that we have different batch schedulers (OpenPBS [ope03]
for IUSTI and CEMEF, LSF [IstO1]for INRIA). These batch schedulers are unable to
cooperate. Two workarounds are possible: on one hand, as will be described in BT1]
we can make a specific request on each site and, on the other hand, we can use a tool (
sort, of parser) able to discuss with each batch scheduler. The use and interest of this
type of “meta-scheduler” will be discussed in section B4l

RT n°® 0318
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3 Establishment of the grid

3.1 Possible solutions

Now that we described the problem, holdings and outcomes, some possible solutions will
be discussed below. The first try consists in a “hand-made” solution using SSH for security
purpose. Then our interest will be focused on various MPICH overlayers able to modify
communication behaviour of processes to deal with the specificities of our grid. Then we
will speak about ORB technology and will finish with middleware solutions.

3.1.1 “hand-made” solution with SSH

The first try was to see if a very simple solution using only MPICH and SSH [YI096] for
security is possible.
Using SSH with MPICH is something very usual and simple. We just have to be aware of the
keys generation protocol (we must generate couples of private/public keys and put public
keys in right places) and agent mechanism (it allows an authentification proxy to answer to
multiple anthentification challenges automatically).
But it becomes more complicated during submission. On each site, we have an autonomous
and different batch schedulers (LSF, OpenPBS,...) so we are unable to make them work
together. Before a submission, we must be connected to each frontend, submit an interactive
request for nodes, get back FQDN name of furnished nodes and write a procgroup file for
MPICH. After that, we are able to launch all MPI processes on clusters.
Another problem is that it does not resolve the fact that MPICH devices need to open direct
connexions from node to node by using tcp connexion between two public IP adresses.

The attempt to elaborate an “hand-made” system shows us a lot of problems and what
should be characteristics of our solution.

3.1.2 Wrappers as PACX-MPI, MADELEINE III

Wrappers solve problems about multiple network devices on a grid and optimize the choice
and use of a collection of devices. Two examples of wrappers are PACX-MPI and MADELEINE
PACX-MPI [pac03] is an MPI-compliant library used for heterogeneous grid environnement
and is developped in the High Performance Computing Center of Stuttgart. This library has
an interesting feature: daemons, running on each frontend, are used to merge all connections
between two clusters in one connection. The first motivation was to reduce the number of
connections between SMP but this feature makes possible MPI programs to communicate
from or towards nodes with private IP which is very interesting for our configuration. But
this solution is also a disadvantage because it requires to launch 2 daemons per submission,
as user, on each frontend which does not constitute a regular use of the frontend and batch
scheduler.

MADELEINE III [AM], is used to optimise communications between several clusters of
workstations. In spite of using standard protocol stack (for example TCP with MPICH-G2
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A computational grid devoted to fluid mechanics 9

[Kar] or PACX-MPI), MADELEINE is designed to exploit, to its maximum, the characteris-
tics of specialized networks between clusters as like as Myrinet or SCI. Today, no assumption
is possible on the nature of inter-cluster links, thus we are unable to use MADELEINE speci-
ficity.

These wrappers, solve the problem of private IP adresses because it allow us to modify
the inter-cluster connexions. The main drawback of all these wrappers is the same as “hand-
made” solution: we have to deal with one different authority and batch scheduler on each
site. It implies a manual launch and coordination of processes.

3.1.3 Using an ORB

An object request broker (ORB) is a middleware technology that manages communication
and data exchange between objects. In this approach, distinct features are encapsulated in
objects localized somewhere on the grid. The broker has in charge to connect requests to
services. This solution is very natural for code coupling but it is not totally suitable for
massively parralell applications. Moreover, in the Mecagrid project, this solution should
have required an important re-engineering of each software and was not found practical due
to the large number of codes that the end-users want to run on the grid.

3.1.4 Using a middleware

Concerning middlewares, a lot of solutions are possible. Here we will discuss about Globus
which is the most popular, Unicore, Legion, Sun Grid Engine and Condor.

GLOBUS [FK97] is a middleware for grid computing designed on three elements neces-
sary for computing in a Grid environment. The first is Resource Management and it involves
allocating resources provided by a Grid. The second is Information Services and it provides
information about Grid resources. The third is Data Management and it involves accessing
and managing data in a Grid environment.

Resource Management involves the allocation and management of Grid resources. For ex-
ample, it contains facilities to make different batch schedulers cooperate as LSF or OpenPBS.
Information Services provides information about Grid resources. Data Management involves
the ability to access and manage data in a Grid environment. For example, it includes com-
ponents such as GridF'TP, which is used to move files between Grid-enabled storage systems.

Globus contains a lot of tools useful for grid computing. Moreover, a specific device for

MPICH was implemented and could explain it’s popularity. We just have to notice that it
does not solve our problem of communication between nodes using private IP adresses.

RT n°® 0318



10 P. Nivet

Unicore[ES01] was developped at Offenbach in Germany by UNICORE Forum associ-
ation. This project aims the following main goal: developing a middleware for a seamless
secure, and intuitive access to distributed resources for german university and research lab-
oratory. The set of tools provided by Unicore is the most complete as it goes from low-level
routines to end-user applications such as GUI, plug-ins for scientific codes. But not all
low-level tools needed by grid computing are implemented. It seems to be an interesting
alternative to Globus and should be studied more precisely.

Legion[CKKG99] falls into the same category as Globus. The main goal of Legion is to
generate the illusion of a single, distributed computer. The LEgion Project was, initially,
a project of the University of Virginia. Unfortunately, this project became a commercial
product named AVAKI from AVAKI Corporation, located in Massachusetts.

Sun Grid Engine|gri03|, Condor[TTL02]| are not, actually, grid middleware. They
can be seen as metaschedulers and can do the same job as LSF or PBS in a distributed
environnement.

3.2 Description of our solution

We decided to build a computational grid that simulates one virtual parallel computer, more
precisely one virtual cluster. The biggest advantage is we just have to put all our efforts on
one thing: the elaboration of a virtual cluster to minimize software adaptation. In spite of
spending a lot of time on modifications, re-engineering, for each software we want to use on
this grid, we spend a finite amount of time once for all MPICH based software. Potentially,
all FORTRAN, C, C++ codes based on MPICH library are executable on the grid (keep in
mind the heterogeneity of this grid). This has been found to be a decisive advantage over
ORB Technology. The chosen solution is constituted by a middleware (Globus) over a VPN
[Conl.

VPN To solve the problem of the clusters in private classes of IP, the communications will
be routed through a virtual network (VPN) installed between all frontends.

Some of the clusters constituting this grid are built on LAN. Thus communication between
two arbitrary nodes from different sites, as required by MPI becomes a problem. Indeed, a
computer in a LAN is not known and not routable through Internet; TCP packets cannot
circulate on the global network if one of the addresses (source or destination) is private.
Thus, we have to find a way to enable the communication between nodes. Three solutions
are possible:

e assigning public IP addresses for each node

INRIA
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o using a middleware for the grid which integrates a proxy running on each frontend.

e using a workaround applied to the network in order to enable the routing between all
nodes.

The first one has not been found possible by system administrators since it generates more
potential security holes and requires more attention. The second one reduces the possibili-
ties for the choice of the middleware. The third one can be implemented with techniques of
port forwarding or VPN (Virtual Private Network). So which one between port forwarding
or VPN is better? The solution consisting in using the port forwarding is very heavy to im-
plement and seems to be incompatible with the use of libraries such as MPI which manages
connections between the nodes in an autonomous way. On the opposite, the installation of
a VPN is fully compatible with the use of MPI because it provides a totally transparent
routing for message-passing libraries. It gives us a maximum of possibilities to change and
experiment other middlewares or ORB solutions, and avoids the stacking of MPICH layers.
This is thus the chosen solution.

The definition of a VPN, given by the Virtual Private Network Consortium (VPNC) is

‘;‘ II\ITERI\IEE o )

\EF'N Tunnel

'f: Egsﬂw ——EQUJ

NODES

Figure 1: A VPN connexion between two frontends.

the following. It is a private data network that makes use of the public telecommunication
infrastructure, maintaining privacy through the use of a tunneling protocol and security
procedures. See Figure [1

During the installation of the VPN, no new private IP address has been given to each
node but we simply established routes through the grid and tunnels between frontends in
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order to provide connectivity between each couple of nodes. This implies that any private
IP address has to be unique amongst the whole nodes. This can be guaranteed by the use
of different subnet numbers on each site (here, we use the class B private subnet). More

7 e Vit Vi s Vi e V|
b
M A

L

CEMEF frontend

IUSTI frontend

71 bi-processors nodes

[0 mono-processors nodes

~—~ CIPE tunnels

IUSTI

Figure 2: Interconnection of the frontends: a tunnel for each couple of frontends is used to
carry TCP packets from or to private IP address.

specifically, as we can see in Figure 2l we have three frontends with public IP addresses. The
INRIA cluster consists of nodes with public IP addresses but the CEMEF and IUSTI clusters
are made of nodes with private IP addresses. It means that each couple of frontends needs to
be connected by a tunnel, in which crypted and encapsulated packets are transmitted. For
this, we use CIPE [Tit03], a very simple tunneling software where IP packets are transmitted
in encrypted UDP packets on user-defined ports. Furthermore, a compression on the payload
of our packets can be applied to improve the flow rate of the connection.

The VPN needs to be completed by the addition of routes. A node must be able to send
a packet to another node of our grid and see each frontend as a default gateway for external
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addresses (i.e. not on the same LAN). For instance, a packet from an INRIA node to a
CEMEF node is sent to the INRIA frontend. On the frontend, special routes are set up to
send the packet in the appropriate tunnel. In our example, the packet is sent to the virtual
interface of the INRIA/CEMEF tunnel. Then the packet is received by CEMEF frontend
and distributed on the LAN.

The VPN provides a set of 166 nodes locally connected in a virtual way but it does not
resolve other problems such as scheduling, authentification, unicity of storage space. This
second part is taken care by the Globus middleware and is described in section B4l

The Globus middleware Over this VPN, Globus middleware (see BIl) was installed
and works as if all nodes were on WAN. We chose to use Globus. This middleware enables us
to make some preliminary tests with a cluster located at the INSA Lyon and already using
Globus. The installation of Globus reveal us some problems that were fixed during the first
tests. In fact, a big part of our specific problems have been solved during the installation
of the VPN. A specificity of our installation is the managing of packets routing. As we saw
with MPICH, connexions between nodes (private IP adresses) must use CIPE tunnels but
all connexions between frontends are performed outside this tunnel and require to adjust
filtering rules.

Timing The installation of the VPN and Globus middleware started in June 2003, after
a test and cogitation phase from February to May 2003. The first run on the complete grid
has been performed in the middle of January 2004. Since this date we work to improve
performances, robustess and usage of our grid.

RT n°® 0318
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4 Measure of performances of the grid architecture

In order to evaluate the performance of the grid, a measure tool was implemented as part of
the DEA of Rodolphe Lanrivain [Lan(03]. Below, we report on the results obtained by the
use of this tool during performance of 24 hours where the periodicity of the measures was
of 30 minutes. These tests show us the level of heterogeneity and possible variations along
time for network and processor speeds.

Acknowledgements This results were provided by Olivier Basset.

4.1 Processor performances

Measured processor speeds in table Blmatch with processor characteristics but FigureBlshows
us significant variations for INRIA-nina nodes. A mean standard deviation of 3% for these
processors was observed while it is only of 0.2% for the other nodes. This particularity was
not observed during other tests. It probably has been generated by a problem of scheduling
(we noticed sometimes processes continuing to run even if the corresponding job is finished
for the batch scheduler. This biaises measures). We chose to keep this “bad” test to highlight
the interest of an adaptative load-balancing along time in real computations.

1400.00
N e N N e ey

1200.00 l \f TAVA \/
~g 1000.00
g. — INRIA nina
2 600.00 IUSTI
= INRIA pf
£ 400.00

200.00

0.00 ; . ; :
0 20000 40000 60000 80000 100000

TIME (s)

Figure 3: Processor speeds along time.
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Processors

INRIA nina

INRIA pf | CEMEF | IUSTI

Average processor speeds (Mflops) 1257.01

444.51 475.95 | 1275.24

CPU frequencies

2 Ghz

993 Mhz 1 Ghz 2 Ghz

Table 2: Measured processor speeds (average) and CPU frequencies

4.2 Network performances

External network performances

load-balancing during the job.

Variations of speed on external links are important
along time and we can see on Figure @l that the mean standard deviation reaches 15%. The
fact that these links are not dedicated to the grid (other users are present on each site and
use some bandwidth) explains these variations. Again, it shows us the necessity to adapt

1.20
1.00
w
¥ 0.80 -
2 = |NRIA-CEMEF
3 i~Th =
= 0.60 o \/ \ INRIA-IUSTI
o CEMEF-IUSTI
SEELE A AN -
A
7
0.20
0.00 T T T T 1
0 20000 40000 60000 80000 100000
TIME (s)
Figure 4: External network speeds along time.
External links INRIA/CEMEF | INRIA/IUSTI | CEMEF/IUSTI
Average network speeds (Mo/s) 0.86 0.6 0.44

Table 3: External network speeds (average)
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16 P. Nivet

Internal network performances: If we look at the speed of internal networks for INRIA-
pf, CEMEF and TUSTI, values match with theoretical specifications.We obtain a mean speed
superior to 10 Mo/s on 100 Mbit/s networks (see table H). Concerning INRIA-nina nodes,
performances compared to theoretical characteristics are not so good. We have a mean
speed of 60.76 Mo/s on a 1 Gbit/s network and variations (see Figure Hl) are very important
(about 40 Mo/s to 80 Mo/s). It gives a mean standard deviation of 28%, to compare to
0.5% for the others. It confirms that a problem of processor availability during computation
is possible.

90.00
. 70.00 \/
3 /60:00 4 —INRIA nina
g 50.00 A \/ —CEMEF
< 40.00 IUSTI
LS 30.00 INRIA pf
& 20.00

10.00 : —

0.00 : : [ .

0 20000 40000 60000 80000 100000
TIME (s)
Figure 5: Internal network speeds along time.
Internal links nina/nina | pf/pf | nina/pf | CEMEF | IUSTI

Average network speed (Mo/s) 60.76 10.29 | 10.64 10.02 10.33

Table 4: Internal network speeds (mean)

Internal network topology The INRIA’s cluster mixes Fast-Ethernet and Gigabit-
Ethernet interconnections technologies. “pf” nodes are connected at 100 Mbps and “nina”
machines are connected at 1 Gbps. Frontend machine is connected with “nina” nodes. These
two network switches are interconnected at 2 Gbps using two 1 Gbps aggregated links. Ac-
cess to the outside world is done via a 1 Gbps link to Internet (RRTHD or RENATER).
RRTHD link provides a speed connexion up to 100 Mb/s and RENATER link provides a
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speed connexion up to 2.5 Gb/s.

100 Hbds Eiajij
ff}fff;f*’#f?;;ia—rrthd

[ gaa
gga
B30 s
pf nodes hina nodes  clyster,incia,fr
100 Hb=s 1 Gbi= 1 Ghi's
T>{T 2 Gbis T><T 1 Gb/s
zwlparal swZparal

sophia—gw EiaEET

2.5 Gbds

nird-renater

Figure 6: Internal network at INRIA.

The CEMEF’s cluster uses Fast-Ethernet interconnection between nodes and frontend.
Access to the outside world is done via a 1 Gb/s link to RRTHD router. The RRTHD link

provides a speed connexion up to 20 Mb/s and is shared with other ENSMP’s laboratories

i

LML
PO
LHLHL
nodes sarek-cluster,cma, fr
100 MbAs 100 Mbés
-><- 1 Gbis= -><- 20 Hbf=
cluster-su cemnef-ou

r2thd-gu

Figure 7: Internal network at CEMEF.

Currently, the internal network topology concerning ITUSTI’s cluster is unknown.
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Problems to resolve Network capabilities are very important for grid computing and we
should work on the quality of connections between the 3 sites by reviewing all the devices
which establish these connections and improving the worst ones. Network performances
between the 3 sites are very poor, see chapter @l Several explainations can be provided: an
internal device on LAN;, slows down communications, the connexion to WAN is too slow or
this connexion is shared between several laboratories.

After investigations, problems can be summarize as follows:

o INRIA: None, we use a complete 100Mb/s connexion to WAN. Preformances are good.

o CEMEF: We use a low connexion to WAN (20Mb/s), shared between several labora-
tories.

e TUSTI: We have an Internal problem on LAN between frontend and WAN connexion
that slows down communications and WAN connexion (100Mb/s) is shared between
several laboratories.

For CEMEF, the upgrade of the connexion (currently 20 Mb/s) consists in the increase
of speed connexion to RRTHD or the rent of a specialized line between CEMEF and INRIA.
First, an upgrade of RRTHD connexion was considered: the cost (June 2004) of connexion
to RRTHD at 1 Gb/s is 15319 EUR per month (6250 EUR, per month for CEMEF and
9000 EUR per month for CGO06 if accepted). Financially, this solution is impossible. For
the second solution (June 2004), a specialized line (Completel) between CEMEF and INRIA
costs 1 500 EUR per month for 100 Mb/s and 3 000 EUR per month for 1 Gb/s. It is yet
too expensive for CEMEF.

The problem of ITUSTI was solved by analysing local area network to find the deficient
device. For information, we used a 100 Mb/s connexion but maximum speed measured is
4.8 Mb/s. Since 12/13/2004, the problem is solved and the maximum speed is 76.8 Mb/s.
New computations should be faster between INRIA and IUSTI.

INRIA
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5 Example application

AERO3D The AERO3D code is a Fortran code which solves the 3D compressible Euler
or Navier-Stokes equations on unstructured tetraedral meshes using a mixed Finite Ele-
ment /Finite Volume method. Features of the code include turbulence modelling (by the
k- model), mesh deformation, explicit and implicit timestepping. The code is second-
order accurate and is fully parallelised using the MPI message passing library. Its range
of applicability goes from subsonic flows to hypersonic ones. This code is mainly used for
aerodynamical computations for complex geometries in internal or external flows.

The following example is a wing mesh of 22.000 vertices. The final solution was computed
in 128 steps on a set of 8 processors.

Figure 8: Mach number and Rho for wing example.

Used clusters INRIA-pf INRIA-nina TUSTI CEMEF
Number of processors 8 8 8 8
Communication time(s) 94 21.9 63.8 90.6
Total simulation time(s) 380.4 96.7 116.9 245.8
Used clusters INRIA-CEMEF | INRIA-IUSTI | CEMEF-IUSTI

Number of processors 4-4 4-4 4-4

Communication time(s) 1296.8 1337.3 1542.5

Total simulation time(s) 1570.6 1438.4 1990

RT n°® 0318

Table 5: 22.000 vetices example
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Acknowledgements This results were provided by Steve Wornom.
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STOKES The Stokes code simulates stationary flows for Newtonian fluids in a given
meshed cavity. A mixed finite element method of type (P1+/P1) is used (i.e. continuous
interpolations for pressure and velocity at the nodes). There are 4 unknowns (Vx, Vy, Vz
and P) for each node in a 3D case, and 3 unknowns (Vx, Vy and P) in a 2D case. Once as-
sembled, the global matrix is pre-conditioned by PETSc using ILU(0). Then, PETSc solves
the linear system using a conjugate residual method. The meshed cavity is partitioned, then
each processor computes the flow inside its own part of the cavity. Communications between
processors mostly happens at the interfaces of the partition (i.e. at the nodes that belong
to several processors).

Figure 9: Extrusion

This example is is a 3D extrusion of a profile. The Figure [ is the result of extrusion
on th 65.000 vertice mesh. The table Bl shows the results for 65.000 vertices mesh. The
second one [ shows results for 500.000 vertices mesh. Poor performances of inter-cluster
communications are visible in these tables and make necessary to use more larger tests.

RT n°® 0318
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Used clusters INRIA | IUSTI | CEMEF | INRIA-CEMEF-IUSTI
Number of processors 3 3 3 3 (1-1-1) | 9(3-3-3)
Number of iterations 653 650 653 651 657
Total simulation time(s) | 87.56 | 173.66 | 455.57 649.52 495.37

Table 6: 65.000 vertices example
Used clusters INRIA | TUSTI | CEMEF | INRIA-CEMEF-TUSTI
Number of processors 6 6 6 6 (2-2-2)
Number of iterations 1075 1069 1069 651
Total simulation time(s) | 692.78 | 1903.78 | 1357.1 2995.01
Table 7: 500.000 vertices example
Acknowledgements This results were provided by Olivier Basset.
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AEDIPH AEDIPH 3D solves interface problems between two immiscible fluids as well as
some two-phase flow problems. The two fluid model is the one described in ref : Guillard-
Murrone. The numerical method of the AEDIPH code is an extension of the one used in
AERO3D. This code is still in an early stage of developpement and up to day has been
mainly used for the computation of some model interface problems.

Figure 10: Shock passing 3D bubble, time step 360 and 720

Used clusters INRIA-pf INRIA-nina TUSTI CEMEF
Number of processors 8 8 8 8
Total simulation time(s) 564.7 3314 341.2 759.6
Used clusters INRIA-CEMEF | INRIA-IUSTI | CEMEF-IUSTI

Number of processors 4-4 4-4 4-4

Total simulation time(s) 563.4 629.6 828.5

RT n°® 0318

Table 8: 262.000 vertices example
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Used clusters INRIA-pf INRIA-nina IUSTI CEMEF
Number of processors 16 16 16 16
Total simulation time(s) 760.1 547.3 450.0 1039.8
Used clusters INRIA-CEMEF | INRIA-IUSTI | CEMEF-IUSTI

Number of processors 8-8 8-8 8-8

Total simulation time(s) 1313.5 1204.0 2079.7

Acknowledgements

Table 9: 568.000 vertices example

This results were provided by Steve Wornom.
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6 Conclusions and future works

At the sight of our measures of performances, load-balancing and, more generally fault toler-
ant properties appear essential and should be the main improvements in the future. We plan
to carry out some tests with MPICH-V [BBCT02], a fault tolerant layer for MPICH to add
this functionnality in our grid. Another effort will be focused on improving the network per-
formances between sites. Some current equipements such as routers and switches have poor
performances (10Mbit/s) and we should gain in speed communications by replacing them
with 100Mbit /s ones. Then, integration of new clusters (at CEMEF and INRIA, new nodes
will be added) in this grid and running of progressively bigger computations are planned.
This document can be seen as a starting point for grid computing on the cluster of INRIA-
Sophia and, probably, will be completed later by other technical or research reports from
this project or others. We hope that the set of found solutions will evolve with time and, in
the future, we will use a flexible and totally integrated middleware for grid computing.

On this topic, we hope to see a lot of improvements in grid computing from the “Grid5000”
project whom INRIA-Sophia is a partner. We hope this project, which have a similar ap-
proach, could be the starting point of a French alternative middleware for grid computing.
Moreover, it could be an appropriate testbed for libraries as MADELEINE that could use
specialized links as INRIA-Grenoble/INRIA-Sophia.

RT n°® 0318
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