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Abstract:

In this report, we present a method allowing to visualize and interact with massive virtual urban environ-
ments adapted to mobile and connected devices like PDA or mobile phones. These devices have a very limited
computational power and a restricted display area. We address these constraints using two optimizations. The
first one is locale, we propose a simplified representation of building’ facades as an alternative for textured
rendering. Feature lines are extracted from facade images and vectorised. The resulting representation is more
compact than the original image and allows to optimize transmission and rendering costs. As a global opti-
mization, we split up the urban scenery in cells using the Magellan framework. Then we compute visibility
relationships between the cells in order to stream the model.

Key-words: Non-photorealistic rendering, line based rendering, mobile and connected devices, client-server,
streaming
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Visualisation client serveur d’environnements urbains non
photoréalistes

Résumé :

Dans ce rapport, nous présentons une méthode permettant la visualisation et l'interaction dans de gros
environnements urbains virtuels adaptée aux plateformes mobiles telles que les PDAs ou les téléphones portables.
Ces terminaux disposent de capacités de calcul limitées et d’une surface d’affichage réduite. Nous adressons
ces contraintes par deux optimisations. La premiére optimisation est locale; nous proposons une représentation
simplifiée des facades de batiments comme alternative aux textures. Les traits caractéristiques d’images de
facade sont extraits et vectorisés. La représentation obtenue est plus compacte que 'image originale et permet
d’optimiser les cotits de transmission et de rendu. La seconde optimisation est globale; I’environnement urbain
virtuel est découpé en cellules & 'aide de la plateforme Magellan. Puis nous calculons les relations de visibilité
entre les cellules en vue d’une diffusion du modéle en flux tendu.

Mots-clés : Rendu non-photoréaliste, rendu basé ligne, terminaux mobiles communiquants, client-serveur,
streaming
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4 Jean-Charles Quitlet , Gwenola Thomas , Jean-Eudes Marvie

1 Introduction

Our objective is to propose some modeling and rendering tools for the interactive visualization of complex
virtual urban environments on small devices. Wishing to be able to handle massive databases, we place ourself
in client-server configuration. The server disposes of the whole geometry and sends on demand to the client
a subset of the model. Visualisation and interaction are then initiated by the client. From the small display
size and limited computation performances result strong constraints we want to solve using non-photorealistic
rendering (NPR) techniques.

Usually, the buildings of a virtual city are simple textured blocks which are constructed from extrusions of
their footprints. The textures are photographs of real building facades. The visual quality of resulting cities
is satisfactory if some photographs of good resolution are used. In our case, transmission of high resolution
textures can be prohibitive due to network bandwidth and high rendering cost on the client side.

As an answer to this problem, we propose to use, as an alternative for textured rendering, a set of feature lines
which defines a given facade. These lines are stored in a vectorial form and thus allow to decrease significantly
the size of a building representation. We have settled a whole operational pipeline able to extract the feature
lines from photographs or texture images. And a second for streaming and rendering such models on mobile
devices.

2 Overview

The figure [l presents a general overview of the process. The first part consists in the modeling and optimisation
of the 3D model. We first extrude the city footprints to get the first model. Feature lines extracted from the
textures are then used to describe the facade into the geometric model. As a result we obtain a NPR database.
The construction of this database is described in section

The next part consists in optimizing the database in order to stream it. For this point we relied mainly on
the Magellan [7, Part1] framework. The main purpose of Magellan is to allow easy and fast development of new
solutions for the remote visualization of 3D models.

The NPR database needs first to be split up in connected cells, so the server is able to send to the client
only the cells it requires. For further optimisation, visibility relationships between the cells are computed. As
a result only the visible geometry is sent to the client and so rendered. The related processes are described in
section

Finally, the algorithms used by the client-server application are explained in section Bl and the results of our
approach are discussed in section Bl

3 NPR city modeling

3.1 Facade transformation

The whole image-processing pipeline is shown on figure Bl Pictures of buildings are used at the start of the
system. Feature lines are extracted using edge detector filters. Extracted contours can be seen as pixel chains
which are then vectorized into poly-lines. This procedure allows to reduce the size of the data as well as to
make the representation independent from the resolution. Then, this set of lines is used to build a 3D scene
composed by a set of blocks one for each building. The lines are viewed in the 3D scene in the local block
coordinate system .

For the first two stages (edge detection and polygonal approximation), we explored existing techniques and
chose the methods adapted to our problem. For easy use, proposed filters have been implemented as plugins
for The Gimpﬂ, a widely used image processing tool.

3.1.1 Automatic extraction of feature lines

We seek to obtain the feature lines from pictures of buildings. Those feature lines are represented by contours
and discontinuities within the image. The first stage thus consists in extracting these contours. Once obtained,
they are chained and then vectorized. Finally some heuristics proper to the images we work on are applied in
order to simplify the obtained model.

Working on vectorial data offers two main advantages:

1GNU Image Manipulation Program http://www.gimp.org/

INRIA
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City footprints NPR Buildings extrusion
+ Textures modeling Extraction of feature lines
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NPR Database Spacial subdivision
database | optimization Visibility computation
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% Optimised Client-server Model streaming
'e) database visualization Adaptative rendering

Figure 1: General overview. Offline processes consist in modeling and preparing the database to be used in a
client-server application (online). The feature lines are extracted from the textures. The geometry is split up

and the visibility relationship computed.

Edge detection Polygonal approximation Rendering

N

i

L I,
| |7

Figure 2: Production pipeline of stroke-based buildings. The edges of facade images are extracted and vectorized.
These vector data are used instead of textures to represent the facade in the final 3D modele.
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e The size of the data is reduced to a minimum, which is interesting for the transmission

e The aspect remains the same whatever the scale.

3.1.2 Edge detection

Most techniques for edge detection work using a convolution kernel in order to locally estimate the gradient
magnitude. The gradient represents the intensity variation within the image. Following this convolution, the
contours are recovered applying a threshold. These filters work well for general purpose, but are however very
sensitive to noise. Moreover, resulting contours are usually regions of contours, i.e. there width is larger than
one pixel, which is a problem for the stage of pixel chaining and polygonal approximation. The most popular
edge detectors are Sobel [I1], Roberts [I3] and Prewitt [12]. Each use a slightly different kernel convolution
from each other.

We used Canny edge detector [2] that tries to solve previously stated problem. It works in a multi-stage
process. First of all, the image is smoothed by Gaussian convolution. Then we compute the gradient of the
image to highlight high frequencies which often represent contours. The gradient is calculated by applying the
two following convolution kernels. ) . . )

ar=|3 Plo=|i 7]
2 2 2 2
The gradient magnitude is then:

Gij| = V/Gx(i,§)2 + Gy(i, j)?

Gy(i, j)
0;,; = arctan (G —

And its direction:

The next two stages are:

o Non-maximal suppression: We keep only the maximum in the gradient direction, this ensures to get one
pixel wide contours.

e Hysteresis: An adaptive threshold using two criterions. It makes sure the same edge will not be broken
by noise.

To summarize, involved parameters are: the size of the Gaussian kernel, its standard deviation, and two
thresholds for non-maximal suppression. A result can be seen on figure Bl

3.1.3 Pixel chaining

The pixels obtained from edge detection are then chained to obtain the poly-lines that will represent them. To
this end, we create and fill a graph structure. Thus, we preserve the topology of edges, which seems necessary
to a good comprehension of the picture.

First at all, we identify end-points and junctions of the pixel chains using 3 x 3 masks on the contour image.
Basically, we run through the image and using masks like those depicted on figure @l we are able to detect
end-points and junctions. The detected pixels are the initial vertices of the graph. The resulting graph is
weighted by the pixel chains between each vertex. These chains will be represented at the stage of vectorization
by a poly-line. Starting from an end-point, we process the whole connex components following the contour in a
breath-first traversal way. It still remains the components without any end-point: the loops, like the windows
of the figure Al A second traversal of the image is thus necessary. The starting pixel is this time the first
unprocessed one. The figure B illustrates the different stages of this procedure.

The junctions identified using this method are not always positioned on the actual intersections between the
segments. Indeed we seek those in the one neighbourhood, which does not allow to find their position with great
accuracy. The figure B illustrates this problem. The figure shows the detected junctions using the mask
method. The real position of the intersection (figure can only be obtained knowing a vector representation
of the segments involved. We obtain it easily after the polygonal approximation in the post-processing stage in
merging locally close junctions.

INRIA
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(a) Original image (b) Canny edge detector

Figure 3: Sample result applying canny edge detector

T 5
T .

(a) End points (b) Junctions

Figure 4: Sample masks used to find initial vertices of the graph: (a) for end-point detection, (b) for junctions
detection

Figure 5: Stages for automatic stroke extraction: (a) Extracted edges. (b) End-points and junctions detection.
(c) Breath-first traversal. (d) Loop processing.

RT n°® 0313
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(a) (b)

Figure 6: Problem when positioning junctions: (a) Detected junctions. (b) More likely position.

111

]

Figure 7: The graph after the polygonal approximation

3.1.4 Polygonal approximation

In this stage, each pixel chain of the graph is processed to obtain a poly-line representing it. The characteristic
points obtained are then added as vertices in the graph structure. On figure [ the vertices introduced by the
polygonal approximation are white.

Polygonal approximation thus consists in transforming a chain of related points into a set of segments: a
poly-line. Although several techniques exist on this subject, it seems that there is not any of them that makes
reference. However we can classify them in two main families: merging methods and splitting methods.

The merging methods work in traversing the chain from the first point to the last. The points are merged in
the same segment as long as the set of points checks a linearity criterion. The last point checking the criterion
is the end-point of a segment and the start of the new one. This procedure functions in an iterative way.

The splitting methods works in a very similar way. Polygonal approximation is done this time recursively.
The chain is initially approximated in a coarse way by only one segment connecting the two end-points of the
chain. Then the segment is split in two in order to approach the chain as well as possible. The process is
reiterated until all the segments check the criterion of linearity. The figure ] shows an example of such an
approximation.

Figure 8: Splitting method using a distance-based criterion

Among the different algorithms we tested, the merging method using a distance-based criterion is the one
that gave us the best results.
3.1.5 Post-processing and cleaning

In order to perfect vectorization, a post treatment is necessary. Its purpose is to simplify the approximation
obtained and to correct the errors generated by the initial noise of the image and the stage of vectorization.
Post-processing steps we selected are:

o Suppression of small size segments: indeed, those are introduced by noise and thus do not bring anything
to the legibility of the image.

INRIA
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e Junctions merging: as explained in the section BT the method of the masks does not allow to find the
right position of the intersections between the segments. The knowledge of a vectorial representation of
the chains of pixels enables us to solve this problem in merging locally close junctions.

o Straight lines detection: in order to improve legibility, we seek to simplify the model as much as we can.
Stating that the input image might have been distorted by perspective, the resulting edge might have
too, and particularly the edge on straight walls or windows. In order to correct this, we detect aligned
segments and merge them in one.

o Vertical and horizontal line fitting: As we work on photographs of buildings, we have a great number of
horizontal and vertical lines. We seek here to redress these lines.

The number of lines removed at this step is evaluated in section

3.2 3D modeling
3.2.1 Scene modeling

We now have a set of lines related to a facade. An easy way to get a 3D model from this data is to build a street
in which each building is a simple bloc which size is obtained from the size of the associated image. However,
the input images need to be at the same scale. This simplistic representation can be useful for testing purposes
(see section ).

We applied our method to a large model usable in a client-server configuration. We used the Bordeaux
representation presented in [5]. This model generated from cadastral data is composed of a set of buildings and
their related textures. Thus it is well suited for the deployment of the method we settled.

3.2.2 Line rendering
We can use the set of lines to represent a facade in different ways:

¢ The lines can be drawn in an image to be used in place of a texture. This image is indeed less complex
than the original one and so offers a good compression rate using any image compression algorithm. We
can consider using this as an easy way to try different stylization techniques

¢ A line can be represented as a geometric primitive on the surface of the building. It is possible to use a
polygon to this end. However, these are not very usable for the representation of lines on a small screen.
They cause many flickering trouble and result poor frame rates. Even so, we get encouraging results using
1 pixel wide lines.

Consequently, we tried mainly this latest method. However, we can consider different approaches depending
on our objectives (ex: stylized rendering), or the evolutions of the devices. The figure @ shows an example of
rendering of a street using lines on Pocket PC. Rendering all lines without taking into account facade distance
and orientation results a high density of lines in image space that declines legibility. This leads us to use level
of detail techniques in order to solve this issue.

3.3 Level of detail

The lines previously found are rendered on the 3D model as lines of constant width whatever the distance they
are viewed from. From a certain distance the screen is thus saturated with lines, decreasing the scene legibility.
Level of detail technique gives a solution to this problem. Depending on the distance a building is viewed we
show only a subset of the associated lines. The farther we are from a building, the smaller will be this subset.
In this way we keep a reasonably line occupation density on the screen. Moreover, less geometric primitives are
drawn improving the rendering time.

Given a set of lines associated to a building, an easy solution is to give a weight to each line to sort them in
a hierarchical way. Thus we define the levels of detail as a set of distances:

D= (dl,dg, ,dn) Vi, d; € [07—|—oo[and d; < di+1

related to a set of values:

V = (v1,v2, ..., Un—1) Vi, v; € [0,1] and vg > Vg1

RT n° 0313
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(a) Without level of detail (b) Using level of detail

Figure 9: A street rendered on a Pocket PC. (a) The display is quickly saturated with lines. (b) Using level of
detail permits to reduce the line density.

In the distance interval [d}, dj+1[, we render only the lines which check f(¢) < vi. On the interval [d,,, +o0],
we render the lines which checks f(¢) < v,,. One might want the first level of detail to contain the whole set of
lines, thus we define: d; = 0 and v; = 1. In the same way, if we do not want any line on the last level, we can
define v,, < 0.

We can now sort the line in any kind of way according to their importance. We can choose to keep the
longest lines first. Thus we define the following importance function on each line [ of the set L. The rank()
function return the rank of the line in an array sorted according to the size of the lines.

£ = ranksize (L)
card(L) — 1

This way the vy value represents a percentage of lines with a priority to the longest lines.

This approach gives satisfying rendering performances (see section ). The process is however local, which
is not suitable and can cause problems sometimes. We do not consider the closeness between the lines which
can lead to unwanted local agglomerations of lines. We think of using the work of Barla and al. [I] on the
simplification of line drawing.

4 Subdivision and visibility

The objective of this preprocessing step is to produce a VRML97 database that is compatible with the visibility
streaming solution presented in [R]. It consists of an extension of VRMLI7 format allowing to describe visibility
relationships for progressive transmission of 3D scenes.

This preprocessing stage can be decomposed in two steps; the first one producing the navigation space
by subdividing the city model according to its topology and the second one computing the OPVS (Object
Potentially Visible Set) of each cell of the navigation space. In order to produce such a database and to
optimize the preprocessing step we rely on three different representations of the city model :

1. A single file that contains the polygonal representation of the entire city model. This representation is
used to compute the navigation space.

2. A set of files, each one containing the partial description of a building (only its polygonal faces). This
representation is used to perform the visibility computation.

3. A set of files, each one containing the full description of a building (its polygonal faces together with
its vectorial appearance). After visibility computation, these files are substituted to the ones of previous
representation to produce the final database.

INRIA
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4.1 Space subdivision

In order to generate the navigation space, we exploit the space subdivision algorithm presented in [7]. This
algorithm takes a polygonal scenery (usually architectural) as an input and subdivides it into a set of cells (each
cell containing its associated geometry) for which it establishes adjacency relationships. Such a subdivision
result is usually used to compute cell-to-cells visibility relationships. In this case each cell refers to a set of
potentially visible cells (CPVS) and thus to the geometry it contains. In our case we need a set of empty cells
(following the topology of the urban scenery) in order to compute cell-to-objects visibility relationships. That
is to say that each cell refers to a set of potentially visible objects (OPVS) that are buildings of the city. We
thus use the algorithm in a slightly modified way.

First, we make the assumption that the ground of the urban scenery is flat (which is the case for our test
scenery). The algorithm is then used as follows :

1. We produce a single cell that surrounds the entire polygonal model described in database 1 (see fig-

ure [10(a))).

2. We then cut this cell at a six meter elevation and we just keep the resulting cell placed between the ground
and this cutting plane (see figure [LO(b)]). During visualization the user will thus be constrained to stay
(to walk-through) within this slice of the whole space.

3. The constrained binary space subdivision is then performed on this cell. At each new cell subdivision the
algorithm uses the geometry contained by the cell to find out the best plane to be used for its cutting.
The convex volumes of the produced cells thus follows the topology of the scene (see figure which
provides, at the visibility step, smaller PVS than if we used a regular subdivision such as an octree.

4. We finally delete all the geometry contained by the produced cells (see figure [LO(d)]).

The result of this process is a set of cells, following the topology of the city model, for which each cell
contains a set of references to its adjacent cells.

4.2 Visibility preprocessing

The computation of the cell-to-objects visibility relationships is performed with the visibility algorithm presented
in [9]. This algorithm is based on an OpenGL shooting system. Sample points are put in different places of
the cell for which we want to compute the visibility relationships. We detect the set of cells and objects visible
from theses points.

Basically, the scene is rendered six times for each sample point using a camera placed on the point and in
the direction of each major axe. Such a group is called a render box, thus one render box is used for each sample
point.

The detection of visible elements is performed in the following way. For each camera of each render box, the
elements are rendered using their memory pointer as a color. Therefore, analysing the resulting image gives us
the set of potentially visible objects.

This is not conservative but gives reasonable results using a small number of shooting boxes, usually one box
per cell corner. More shooting boxes can be added if the result is not of sufficient quality (say some buildings
misses). The advantage of this algorithm is that it is simple to implement and fast to execute since it uses the
specialized graphics hardware.

As the visibility computation is performed by rendering the entire scenery several times we use the model
described in database 2 (which is a simplified one). Indeed, appearance information is not useful to detect the
visibility of a building. As an output of the algorithm the files containing the cells descriptions are completed
with the visibility relationships.

4.3 Finalization

Files that contain the partial building description (the ones of database 2) are then substituted by files containing
the full descriptions (the ones of database 3). As the URL are the same, the substitution is transparent and
cell’s references to objects are still valid. The entire set of files is then encoded using VRML97 binary format
presented in [I0] and compressed using the zlib.

RT n° 0313
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(e)

Figure 10: Subdivision steps. We start with a cell englobing the whole model (a). This cell is split up vertically
and we keep the lowest 6 meter from the ground (b). We then apply a constraint BSP to get cells which follow
the walls of the streets. The remaining geometry is removed (d) to be replaced by the original one (e).

INRIA
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5 Streaming and adaptive rendering

5.1 Visibility streaming

The process is done on-line on the client side. There are two stages which are processed in a sequential way:
one loading step necessary for the navigation then a pre-fetching step to optimise the data transfers. These
steps are depicted on figure [l

The first step (figure occurs at the beginning of the visualization. The current cell is downloaded in
a synchronous way together with its OPVS. Once this step finished, the user is able to begin the navigation
in the cell and visualizes the elements of its OPVS. At this time, only the current cell and the potentially
visible cells are available on the client. So, this one does not dispose of any information but the references
on the adjacent cells to initiate potential pre-fetchings.

The second step (figure [[1(b)] and i1(c)) is divided in two.

Firstly it consists in downloading the adjacent cells of the current cell together with their OPVS in an
asynchronous way and with a low priority. The adjacent cells are downloaded first because they contain
the references on the elements of their own OPVS.

The second stage begins as soon as the first adjacent cell comes. This stage is based on a movement
prediction of the user in order to detected a future visited cell. When such a cell is detected as future
visited cell, all its adjacent cells together with their OPVS are downloaded in an asynchronous way. The
algorithm caring of the movement prediction uses the last two positions of the camera without taking into
account its orientation. Indeed, the camera orientation can evolve very quickly therefore do not reflect
the actual displacement direction. Practically, we emit a ray from the oldest position to the latest one.
All neighbour cells of the one with which the ray intersects are then used as future visited cells and so
pre-fetched together with their OPVS.

(a) (b)

Figure 11: Loading steps: (a) Firstly the client fetches the current cell together with its OPVS. (b) Then it
fetches the adjacent cell and its OPVS. (c) In the same time, the next visited cell is downloaded using a motion
prediction algorithm.

5.2 Adaptative memory management

As the user is going through the scene, the client downloads progressively new cells. These cells are stored in
memory so it will not need to download them again if the user comes back. The client builds up a graph using
the adjacent relationships of the cells available on its side (figure [2). When the client needs a new cell but runs
out of memory, it removes the cells the farthest to the current cell, i.e. the deepest in the graph, until enough
memory is freed.

6 Results

We presented an alternative to textured rendering applied to urban scenery. We thus need to confront both
methods: texture and line based rendering. Validation of the scene legibility depends on psychological matters

RT n°® 0313
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» 2 Out ofmemory 3 Enough RAM
/
/> 1 Cell change
Cunentce"
Current cell

Figure 12: Memory management: When the client run out of memory and needs to fetches a new cell (a), it
suppresses the deepest cells in the graph (b). The freed memory allows to fetch the new cell.

(a)

and is not the purpose of the current report. We compared line and texture based rendering on the following
points: data size and rendering performances.

The rendering platform is a Toshiba Pocket PC (e800 serie) running Windows Mobile 2003. It is set up with
a 400 Mhz ARM processor and 128 Mb of RAM memory. We use the Magellan client on Pocket PC to render
VRMLOY files. The Magellan client is built on the software OpenGL|ES library developed by Hybrid Graphlcsﬁ

For the tests to be relevant, the data sets we are working on needs to be coherent. That is to say the images
of facades must come from the same source (same model, same street, same acquisition device ...). Indeed we
get comparable results applying the same parameter set on these kind of images. Obviously, it will not look
homogeneous when mixing high and low resolution images or images from different cities.

Then the problem of data acquisition arises. The french website of the “pages Jauneﬂ offers images of
facades of several towns. It is thus possible to pick up easily images from the same street. However, they are
of very small resolution (250x320) and poor quality: the imperfections of JPEG compression are often visible.
In order to confront the results to data of better quality, we have taken photographs of facades using a digital
camera. The resulting pictures have a resolution of 3008x2000. From these input data we generated three
streets using:

1. 10 images of the Borda street in Bordeaux coming from www.pagesjaunes.fr
2. 22 images of the Viadieu street in Toulouse coming from www.pagesjaunes.fr
3. 13 photographs of the cours de la Liberation at Talence taken with our digital camera

For the client-server application, we used the city model described in [5]. We processed the original textures.
Despite the poor quality of the textures, we could so validate the approach in a client-server framework.

6.1 The post-processing step

This first test is the evaluation of the post-processing step described in section It occurs after polygonal
approximation and applies a set of heuristics in order to simplify the resulting lines. Figure [[3 summarize the
number of lines generated at the end of the polygonal approximation, and the post-processing step on each data
set.

On the low resolution images (figure and figure , the post-processing step makes the number of
lines decrease from 807 to 563 in average, so a gain of 30.15%. On the high resolution images (figure ,
the number of lines decreases from 9628 to 4534 in average, with a gain reaching 54.96% this time. This step
reduces dramatically the number of lines resulting from the polygonal approximation while keeping a similar
look. Indeed the heuristics we chose are simple enough not to degrade too much the initial lines.

6.2 The street model
6.2.1 Data size

Comparison with the JPEG compression As an alternative to textured rendering, we have to compare
the size of the generated lines with the size of a classic JPEG compression. The figure [[4] presents the size of the

2www.hybrid.f1i
Swuw . pagesjaunes.fr
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Figure 13: The number of lines is greatly reduced after the post-processing stage
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vector files compared to the size of the JPEG files. All the sizes are in kilo bytes. The vector data are stored
in a binary format and compressed using the zlib.

12 12
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(=] (=]
~ ~
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o O 1 o °© i
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c
o 300 f T
N
(7]
200 A 1
100 H 1
0
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(c) Cours de la Libération (13 images)

Figure 14: Comparison between the size of vector data and JPEG images

The vector files resulting from the low resolution images (figure [14(a)l and figure [14(b)) are in average two
times smaller than the JPEG ones: 4.16 ko in average for the vector data compared to 8.55 ko for the JPEG
compression. We have smaller data size using our method. Of course, the files contain far less information
than compressed images. But we obtain a representation independent of the resolution. Oppositely an image
depends strongly on its resolution. Thus for the high resolution images the ratio JPEG/vector is bigger than
10 (387.76 ko in average for JPEG compression compared to 37.55 ko for vector data).

Comparison with drawn textures The lines can be drawn into an image to be used as a texture. Resulting
images are less complex than original ones, so they offer a good compression ratio using any image compression
algorithm. Such a representation is interesting because we can foresee using this approach to easily try several
stylization methods. The figure [[3 presents a comparison between the size of files compressed using JPEG and
the size of the images in which we drawn the vector data. PNG format has been adopted instead of JPEG for
this purpose because the JPEG method does not handle very well the compression of images that contain big
color patches as our. Indeed, produced images have a white background on which the lines are drawn in black.

The resulting data sizes for PNG without anti-aliasing are fairly low, 3.13 kb in average for the low resolution
images (figure and figure and 60.56 kb for the high resolution ones (figure [[5(c)). We can thus
conceive to use them as textures. When an anti-aliasing is applied to the lines drawn, the color map grows
as well as the size of the images. In high resolutions, resulting images are still smaller than the JPEG ones,
260.85 kb for PNG compared to 387.76 kb for JPEG in average. This is not the case for the low resolution
images because of their poor quality.
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Figure 15: Comparison between JPEG images and vector data drawn into PNG images, optionally using anti-
aliased lines
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6.2.2 Rendering speed

The rendering tests presented in figure [[A has been done on the three data sets using textures, lines without
level of detail and lines with level of detail on a the Pocket PC.

| | Borda street | Viadieu street | Cours de la Libération |

Number of lines 11188 6190 58949
Number of lines per facade 508.55 619 4534.54
Textured rendering 9.9 fps 8.2 fps -
Rendering using lines 4.7 fps 3.2 fps 0.8 fps
Rendering using lines and level of detail 10.1 fps 9.6 fps 2.5 fps

Figure 16: Rendering performances on Pocket PC

Textured rendering is about two times faster than line based rendering. This is not surprising seeing the
big number of geometric primitives used to render the scene. The frame rate increases using level of details
to finally beats textured rendering. For the high resolution images, their use as textures is not practicable on
Pocket PC, whereas using lines with level of detail the result is still interactive.

6.3 The city model
6.3.1 Data size

In order to test the different methods, we recorded a path in the scene and played it using the different
methods: textures, lines without LOD, lines with LOD, and the geometry only. During the navigation, we
recorded different statistics. The figure [ shows the size of downloaded files using either the textures or the
lines with LOD. The peaks visible the first minute are the files representing the facades: the lines and the
textures. The remaining time only the geometry is transmitted and its size is fairly low and constant. If we had
had more textures, the repartition of the peaks would be wider. As for previous tests using the street model,
the lines are much smaller than the textures (7.55 ko in average for the lines, 35.61 ko for the textures).

Textures Lines with LOD

10000

10000 |

Size in KB
Size in KB

1000 E 1000 E

|
\
0 50 100 150 200 0 50 100 150 200
Time in seconds Time in seconds

Figure 17: Comparison of the size of downloaded files during the streaming between the texture based model
and the line based model

On figure M8 the plots represent the memory used on the client side using the different techniques. The
geometry plot is the lower bound we can reach. As for the previous test, the memory used using the lines are
much smaller than using the textures, and about the same as the geometry.
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Figure 18: Comparison of the memory used on the client side during the streaming. Texture files are bigger
than the vector one, consequently memory is more requested. The geometry plot gives the lower possible bound

it is possible to reach.

6.3.2 Rendering speed

Figure M@ presents the rendering speed using each of the techniques. Once again, the geometry shows the higher
frame rate we are able to reach. Using the lines without LOD results a frame rate of 1.5 fps in average, which is
too slow to stay interactive. The rendering using the textures leads to good results (3.43 fps) and is still higher
than using the lines with LOD (2.7 fps). However, the quality of the original textures are very poor and we

are using non-connected lines. Further tests are needed using line strips and better quality textures in order to
compare the performance of the different methods.
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Figure 19: Framerate evolution during the navigation between the different tested methods.

200

The rendering steps is divided in two stages, the scene graph traversal and the rendering time. The next two
figures (20 and ETI) present the time spent in these two stages. The scene graph traversal time for the texture
(22.21 ms) is lower than for the lines with LOD (102.93 ms). Indeed, the scene graph for the textures is simpler.
Additionally, the node used for the lines contains a LOD node, and thus implies the computation of a square

root at each fram
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However their rendering time is about the same: 215.51 ms for the textures, 246.39 ms for the lines with
LOD. By implementing an optimised dedicated Magellan node, we would decrease the time spent in the graph
traversal and consequently we would increase significantly the frame rate.
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Figure 20: Time spent in traversing the graph scene using the line-based model, the texture-based one and the
geometry only
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Figure 21: Time spent in rendering. Line-based rendering without LOD provoq greatly more time spent during
rendering than other methods

6.3.3 Network

About the networking aspect, we measured the bandwidth on the figure 22 using the different methods. The
bandwidth represents the rate the data are coming from the server to the moment they are available in the
scene graph of the client, ready to be rendered. It includes: data transmission over the network, data decom-
pression, VRML97 parsing, and node initialisation. Additionally, the Pocket PC uses 16 bits integers while
those transmitted by the server are coded on 32 bits. So there is a 32 to 16 bits conversion on the fly on the
client side. The texture node requires less time to be spent in parsing VRML and in converting integer and so
it makes its bandwidth higher than for the lines. Even if there is less data to be transmitted, the time spent in
all these processes make the bandwidth smaller for the lines. Once again, making a dedicated Magellan node
would improve the result a lot.
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Figure 22: Bandwidth mesurement during the navigation using the texture based model and the line based one

7 Conclusion

We conceived non-photorealistic modelling and rendering techniques based on line for quick and expressive
rendering of urban scenery. We implemented a rendering technique for facades based on feature lines extracted
from photographs. The extraction is based on edge detectors; then the lines are resulting from polygonal ap-
proximation and post-processing. The line set is smaller than the original picture. This compact representation
allows efficient data transmissions in a client-server application.

Using high quality textures is not feasible on Pocket PC. The feature lines extracted from these same images
are however usable to represent a given facade. Our method thus offers a good compromise between legibility
and efficiency.

This approach lets us foresee interesting prospects about transmission and rendering. The simplified rep-
resentation we obtained could be used to test different stylization methods. Additionally the framework we
settled could be exploited to render heterogeneous objects so mix up different rendering techniques in the same
scene.
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