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Abstract: This document describes a new networking subsystem architec-
ture built around a packet classifier executing in the Network Interface Card
(NIC). By classifying packets in the NIC, we believe that performance, scal-
ability, and robustness can be significantly improved on shared-memory mul-
tiprocessor Internet servers. In order to demonstrate the feasibility and the
benefits of the approach, we developed a software prototype (consisting in ex-
tensions to the Linux kernel and modifications to the Myrinet NIC firmware
and driver) and ran a series of experiments. The obtained results, presented
therein, show the relevance of the approach.
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Classification de paquet dans l'interface
réseau pour des serveurs Internet
multiprocesseurs a mémoire partagée
améliorés

Résumé : Ce document décrit une nouvelle architecture de sous-systéme ré-
seau construite autour d’un classificateur de paquets dans la carte d’interface
réseau. Nous pensons que la classifier les paquets au niveau de la carte
d’interface conduit & des gains significatifs en termes de performance et robus-
tess des serveurs Internet multiprocesseurs & mémoire partagée. Dans I’objectif
de prouver la faisabilité et les bénéfices de I’approche, nous avons développé
un prototype logiciel (qui consiste en une extension au noyau Linux et des mo-
difications du firmware et du pilote de la carte d’interface Myrinet) et réalisé
une serie d’expériences. Les résultats expérimentaux obtenus, présentés dans
ce document, montrent la pertinence de ’approche.

Mots-clés : Sous-systéme réseau paralléle, Serveurs Internet, Performance,
Robustess
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1 Introduction

The explosive growth of the Internet, both in terms of number of users and
speed of its constituents (links and routers) results in increasing absolute net-
work loads on Internet servers', with large deviations around the mean net-
work load. In addition, network speed tends to increase faster than CPU and
memory speeds. For example, there is a common conception that 1 mega-
hertz (MHz) of CPU speed is required to drive 1 megabit per second (Mbps)
of network throughput. Following this paradigm, 10 gigahertz (GHz) proces-
sors are required to drive 10 gigabit per second (Gbps) network technologies
(e.g. 10Gbps Ethernet [7]). At time of this writing, 10Gbps Ethernet prod-
ucts start being commercialized [4] and 10GHz processors are unlikely to be
available anytime soon. Therefore, Internet servers must deal with increasing
network loads relative to their compute power.

This gap between network and end-system speeds causes performance and
robustness issues on Internet servers. Indeed, Internet servers must provide
high performance for the mean network load, and delivered performance must
not degrade when the offered network load exceeds their capacities. Maintain-
ing a constant level of performance under overload is not obvious. For instance
it is well known that many Unix and non-Unix based networking subsystems
suffer from poor network overload behavior [14].

One way to alleviate the performance problem is parallel network proto-
col processing, i.e., using multiple processors for the execution of the protocol
stack. Parallel network procotol processing has generated considerable interest
in academia and industry this last decade (e.g. [16, 18, 9]). Although many ap-
proaches to parallel network protocol processing have emerged, two have gained
favor: packet-level parallelism and connection-level parallelism. In packet-level
parallelism, the packet is the unit of concurrency. Parallelism is achieved
by dispatching packets among processing elements. In connection-level paral-
lelism, the unit of concurrency is the connection. Parallelism is achieved by
demultiplexing packets early—before they enter the network stack—to their re-
spective connection and dispatching connections among processing elements.
Packet-level parallelism allows parallelism within a single connection. With

!By Internet servers, we mean server machines connected to the Internet, therefore po-
tentially serving a large number of clients.
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4 Lemoine & Pham & Lefévre

connection-level parallelism, there is no parallelism with a single connection
but contentions on memory (cache lines) and locks are less likely to happen
than with packet-level parallelism, thereby yielding better performance.

Networking subsystems’ robustness problems have been quite studied in
the past. A a few solutions to have been proposed [14, 5, 3|, with some of
them implemented in today’s mainstream operating systems [19].

Large-scale Internet servers must deal with huge numbers of connections,
thus, we believe that connection-level parallelism is the most appropriate ap-
proach to parallel network protocol processing on Internet servers. However,
building a network subsystem based on connection-level parallelism that be-
haves gracefully under input overload is not obvious. In this paper, we argue
that classifying packets off-kernel, in the NIC is a good solution to building
efficient and robust network subsystems. We present the KNET networking
subsystem built around a packet classifier in the NIC, and provide experimen-
tal results showing the relevance of our design.

The remainder of this document is outlined as follows. Section 2 and 3
formulate the problems we address in this work. More specifically, Section 2
discusses performance issues, and Section 3 discusses robustness issues. Section
4 describes our prototype’s design and implementation in details. In Section
5 , we describe the software and hardware environments used for our mea-
surements, then present the obtained results along with an analysis of these
results. Finally we provide conclusions and future work in Section 6.

2 Performance issues

With the increasing number of Internet users, there is huge demand for high
bandwidth networks. However, as network bandwidth increases, CPU and
memory systems of Internet servers become bottlenecks, making it impossible
for an Internet server to deliver the maximum bandwidth, i.e., that of the
underlying network medium. One solution to this problem is to have multiple
processors that simultaneously transfer data towards the network.

In this section, we begin by giving a quick overview of the working of a
Internet server on a Unix-based platform in order to highlight issues relative to
performing simultaneous transfers. We then present a simple model allowing to

INRIA



Packet classification in the NIC for improved SMP-based Internet servers 5

predict when having multiple processors simultaneously executing the network
stack can lead to performance gains.

Internet servers typically use the HTTP protocol [8, 6], itself layered atop
the TCP protocol [17]. From now on, we will use the terms Internet servers
and HTTP servers interchangeably. Communications between Internet clients
and servers follow the client/server model: upon reception of an HTTP request
from a client, an HTTP server parses the request, forms the HTTP response?
and initiates the transfer of the response towards the client by calling operating
system’s transmit primitives (e.g. sendmsg(), sendfile()). The server TCP
stack sends as much data as the TCP congestion window (cwnd) allows in the
context of the system call. The remainding of the output data will be sent as
soon as cwnd widens, when TCP acknowledgements (ACKs) are received|[10].

Thus, since some data is sent due to received ACKs, i.e., in the context of
the thread® receiving packets, having multiple processors simultaneously send-
ing data into the network requires having multiple processors simultaneously
receiving packets from the network. Furthermore, the ratio

number of packets sent in the thread receiving ACKs

number packets sent in the transmit system calls

determines to what extent having multiple processors simultaneously receiving
packets can lead to better performance. In effect, we see two factors that
contribute to varying this ratio: network latency and zero-copy transfers. For
a given connection, the higher the network latency between the server and its
client, the more likely the output data will be in the TCP output queue by
the time the ACKs arrive, so the lower the ratio. And also, with zero-copy
transfers, i.e., without copying output data between user and kernel spaces
(e.g. using sendfile()), the output data is guaranteed to be in the TCP
output queue by the time ACKs arrive, so most segments will be sent out due
to received ACKs.

In order to better understand where performance gains are to be expected
we derive a simple model. Let T be the total processing time for a given HTTP
request. Let T, be the fraction of T spent due to network receive events (in

2The response is either directly retrieved from disk or memory, or dynamically generated.
In the former case, the request is said static, it is said dynaemic in the latter case.

3We are not referring to any operating system’s execution context here, so the term
"thread" must be understood in its broad sense.
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6 Lemoine & Pham & Lefévre

the thread receiving packets), and 7, the fraction of 7" spent in the application
(including both user and kernel modes). We neglect processing time spent
in timers and therefore assume that T' = T, + T,. Let p be the number of
processors in the server machine.

If only one processor executes the network stack at a time, then the maxi-
mum achievable rate (in number of connections per second) equals:

1 . T
L ifp>142L,

Ry = { P> T 1)
T T, otherwise.

Note that R; = 1/T, corresponds to the best case, when the number of
processors is sufficient for the application to keep up with the network stack
(p > 1+ T,/T,). If the number of processors is insufficient for the application
to keep up (p < 1+7,/T,) the maximum achievable rate is equal to p/(T.+Ty),
which is lower that 1/7,.

Now, by assuming that both the network stack and the application scale
linearly with the number of processors, if p processors can simultaneously
process network receive events, the number of connections per second one can
achieve is:

p
R, = 2
P Te +Ta ( )
Therefore, using p processors results in a speedup equal to:
p
o= T (3)
I+ 7

We note that the speedup « increases with the ratio T,/7,. This ratio
corresponds to the percentage of CPU time spent in the kernel thread(s) pro-
cessing incoming network packets over the percentage of CPU time spent in the
application thread(s). It is akin to the ratio presented previously: the factors
contributing to increasing/decreasing both ratios are similar. So, again, the
higher the network latency, the more TCP segments are sent due to received
ACKs, so the higher the ratio(s). And avoiding the memory copies between
user and kernel spaces contributes to increasing the ratio(s) as well.

INRIA
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3 Robustness issues

Robustness problems can arise when a system is subjected to input overload.
Ideally, the machine is sized in such a way it is able to handle the maximum
input load the network on which it is attached can deliver. In real life, for
cost considerations, server machines are sized to support a given mean input
load. However, it is crucial that such machines behave gracefully under input
loads above the mean load. This is especially true for Internet servers since
Internet traffic is bursty in nature, with peak loads exceeding the average load
by factors of 10 [13].

The throughput delivered by a server system must keep up with the input
load until the server saturates. The server’s peak throughput reached at the
saturation point is called the Mazimum Loss Free Receive Rate (MLFRR) [14].
Beyond the saturation point, the delivered throughput is expected not to drop
below MLFRR. Figure 1 illustrates this. Point A corresponds to the satura-
tion point. Beyond A, the well-designed server maintains constant throughput
whereas the ill-designed one severely degrades. B corresponds to the point
from which the ill-behaved server is no longer able to do any useful work, i.e.,
its delivered throughput is nil. Mogul et al offered first a complete study of
this effect, they refer to it as receive livelock |14].

Delivered throughput
A

A _ -
MLERRl - - - . .. ... Well-designed system

I11-designed system

P

MLERR Input IOadr

Figure 1: Well-designed vs ill-designed systems.
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8 Lemoine & Pham & Lefévre

Kernels of operating systems execute in different contexts: scheduler con-
text, interrupt context. In the rest of this section, we will refer to kernel control
paths running in scheduler context and interrupt context as scheduler threads
and interrupt threads, respectively. The kernel executes in scheduler context
when it either executes on behalf of a user thread, as a result of a system
call, or in a kernel thread*. The kernel executes in interrupt context when
responding to a hardware interrupt. In Linux, scheduler threads (user threads
either in user mode or kernel mode, and kernel threads) can be preempted by
interrupt threads whereas interrupt threads cannot be preempted by scheduler
threads.

NICs generate interrupts to notify the host operating system of incoming
packets. Then, most operating systems, such as Linux and Solaris, process the
incoming packets in interrupt context, thereby with the highest priority. The
receive livelock becomes effective when the Receive Interrupts (RINTs) rate
is so high that all CPU resources are spent handling RINTs and eventually
dropping packets.

Mogul et al. first highlighted the receive livelock effect, and proposed a
solution to eliminate it [14]. Their solution consists in combining the inter-
rupt and polling modes. The NIC driver’s Receive Interrupt Service Routine
(RISR), which is responsible for taking care of interrupts caused by arriving
packets or RINTs (Receive INTerrupts), disables the RINTs on the NIC so that
subsequent arriving packets will not cause RINTs, and schedules the so-called
polling thread for execution. When scheduled, the polling thread takes all
packets present in the driver’s receive queue through the network stack, each
packet in turn. Once the polling thread has emptied the queue, it re-enables
RINTs on the NIC. If the driver’s receive queue fills up, i.e., the polling thread
cannot keep up with the network, then the NIC drops packets, without con-
suming any CPU resources. We will describe these operations again shortly
while presenting an implementation of this technique (NAPT).

Other more specialized solutions also exist: LRP[5] and SRP[3]. Basically,
these techniques process incoming packets in low priority threads, namely in
process or kernel-thread contexts. In addition to eliminating receive livelock,

4Some kernels such as Linux and Solaris(TM) implement kernel threads. Kernel threads
are scheduler’s entities, they differ from user thread running in kernel mode in the sense
that they do not run on behalf of a user thread, as a result of a system call.

INRIA
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CPUO 3 CPU1

User space é é é é
TCl
1P
Kernel space
S LOSTRE— N ... Receivequeue
Driver -
A
——» DataMoveme
NIC

Figure 2: NAPI components.

LRP and SRP aims to ensure fair allocation of system resources among the
various applications that utilize the network. They achieve this by accounting
and charging resources spent in protocol processing to the application on whose
behalf this processing is performed.

Recently, Salim et al. implemented the solution proposed by Mogul et
al. in Linux, they named their implementation NAPI (New API) [19]. NAPI
adopts all the mechanisms proposed by Mogul et al.

Figure 2 shows the various components that come into play in NAPI. Upon
receiving the packet, the NIC copies it into the receive queue in the driver’s
memory, and generates a RINT (Receive INTerrupt) if RINTs are enabled.
The processor that takes the interrupt executes the driver’s RISR (Receive

RT n” 0285



10 Lemoine & Pham & Lefévre

NIC:
1. dma pkt into recv queue
2. generate RINT if enabled

RISR:
1. disable RINT
2. register device has work
3. schedule softirq

Softirq:
1. retrieve device that has work
2. take pkts through network stack
3. re-enable RINT

Figure 3: NAPI: inbound packet flow.

Interrupt Service Routine)®. The RISR disables RINTs on the NIC so that
subsequent incoming packets delivered by the NIC will not cause an RINT,
indicates to the kernel that there is work for this device (by enqueueing the
structure variable representing the device in the interrupted processor’s device
queue), and schedules a softirg® for further processing (TCP/IP processing).
The softirq, which also runs on the interrupted processor, pulls the device off
the device queue, and calls the po11() primitive on this device (dev->pol1()).
The poll1() primitive, implemented by the NIC driver, is responsible for taking
all packets present in the driver’s receive queue through the network stack, each
in turn. When the pol1() primitive finds an empty entry in the queue, it re-
enables RINTs in the NIC, removes the device from the device queue, and
returns. Refer to Figure 3 for a summary of various steps.

It is interesting to note that even though interrupts are distributed among
the processors, no two packets are simultaneously processed with NAPI. In-

SRecent x86-based SMP machines include a so-called I/O APIC (I/O Advanced Pro-
grammable Interrupt Controller). By default, Linux programs the I/O APIC in such a
way that each interrupt vector is distributed in a round-robin manner among the various
Processors.

6In Linux, packet processing occurs in softirg context, softirq corresponds to interrupt
context with the serviced hardware device’s interrupt vector re-enabled in the machine’s
interrupt controller.

INRIA



Packet classification in the NIC for improved SMP-based Internet servers 11

stead, a packets burst is processed by one processor, and once the entire burst
has been processed, another burst may be processed by another processor’:
but packet processing does not execute in parallel.

In addition to eliminating receive livelock, the solution proposed by Mogul
et al. and implemented in Linux by Salim et al. provides other benefits. Un-
der high input load, the polling thread happens to pull few packets off the
driver’s receive queue before re-enabling RINTs in the NIC, thus ensuring low
latency. In contrast, under high input load, the polling thread can process
lots of packets before re-enabling RINTs in the NIC, therefore increasing the
number of packets per interrupt ratio and hence the throughput of the sys-
tem. Also, not re-enabling RINTs during network processing allows to ensure
fairness among the various NICs in the machine. Detailing all benefits of this
solution is beyond the scope of this paper, interested readers are invited to
refer to the appropriate documents {14, 19].

4 New networking subsystem proposal

In this section, we first list the requirements of our networking subsystem,
present our design choices to meet those requirements, and then describe our
implementation, KNET.

4.1 Requirements

Our objective is to design and implement a parallel networking subsystem (a
network subsystem capable of receiving and transmitting packets coming from
and going to a single interface in parallel) that is efficient and robust. For our
subsystem to be effective, we want to avoid cache and reordering issues that
are of concern when processing network packets in parallel. And for it to be
robust, we want to eliminate all possibilities for receive livelock (explained in
section 3).

"E.g. due to the interrupt round-robin algorithm in the I/O APIC.
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12 Lemoine & Pham & Lefévre

4.2 Design

Here we first explain the design choices to make our parallel networking sub-
system efficient as well as robust, and then describe the overall functioning of
our system by presenting the various steps for receiving packets.

4.2.1 Efficiency

Processing network packets in parallel raises instruction-cache and data-cache
locality issues [15]. In particular, processing packets of the same connection on
different processors results in cache misses when accessing connection-specific
data (TCP Control Block). We maximize instruction- and data-cache locality
by creating per-processor network threads, binding each network thread to a
particular processor, and classifying incoming packets before they enter TCP
so that it is always the same processor that processes all packets of a con-
nection. In addition to maximizing cache locality, connection-level parallelism
minimizes contentions on per-connection locks. Furthermore, processing all
packets of a TCP connection on a single processor avoids reordering issues in
TCP. Most TCP implementations use Jacobson’s header prediction technique
[11], which fails if packets arrive unordered.

4.2.2 Robustness

Ensuring robustness, i.e., designing a livelock-free network subsystem, while
performing connection-level parallelism as described above is challenging. In
previous work on connection-level parallel network processing |16, 18, 9|, in-
coming packets are classified in the kernel, more precisely in the RISR. As ex-
plained in section 3 re-enabling interrupt while processing packets can lead to
receive livelock. We achieve robustness by implementing per-processor receive
queues in the driver, having the NIC classify incoming packets and deposit the
classified packets in the appropriate receive queue, and applying the technique
proposed by Mogul et al. [14] that we have presented in section 3. Figure 4
shows the various components of our design.

INRIA
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CPUO : CcPUL

User space

Per—processor
i ~....-.=:" network threads
TCP P
IP
Per—processor
Kernel space " receive queues
-

s / """"" i - ... Packet classifier

——» Data moveme

Figure 4: KNET components.
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1. classify packet
2. dma pkt into appropriate recv queue
3. generate RINT if enabled for this queue

1. read queue index from NIC
3. register device has work
4. schedule appropriate network thread

Network thread:
1. retrieve device that has work
2. take pkts through network stack
3. re-enable RINT

Figure 5: KNET: Inbound packet flow.

4.2.3 Overall functioning

The NIC inputs a packet from the network, and classifies it to decide which
driver’s receive queue the packet should be copied into. After classification,
the NIC copies the packet in the appropriate receive queue. At this point
either the receive queue is currently being polled by its corresponding network
thread or not. If it is currently polled then the NIC generates a RINT (Receive
INTerrupt) and marks the queue polled. As long as the queue is marked polled
the NIC will not generate RINTs as packets come in. If an RINT has been
generated, the processor that takes it executes the driver’s RISR (Receive
Interrupt Service Routine), which retrieves the index of the receive queue,
indicates there is work for this NIC, and wakes up the appropriate network
thread. Once scheduled, the network thread retrieves a reference to the NIC,
and takes all packets present in the corresponding NIC driver’s receive queue
through 1P then TCP, each packet in turn. Once the receiving threads finds
an empty entry in the polled receive queue it re-enables RINT in the NIC. All
the process is summarized in figure 5.

INRIA
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4.3 Implementation

To test the approach, we developed a software prototype on Linux and Myrinet.
The prototype consists in modifications to the Myricom /Myrinet NIC firmware
and driver and in an implementation of a Linux module.

Myrinet is a full-duplex 2 + 2Gbps proprietary switched interconnect net-
work commercialized by Myricom |2]. Figure 6 depicts a block diagram of a
Myrinet NIC. Myrinet NICs are built around a RISC processor, namely the
LANai. The firmware executed by the LANai is downloaded in the NIC mem-
ory at the time the NIC driver is inserted into the kernel. Myricom provides
a software suite, GM, and a compilation suite, that, among other things, in-
cludes a cross-compiler for the LANai processor (lanai-gcc). GM provides
drivers emulating Ethernet that can be used under the regular kernel TCP/1P
stack. In our prototype, we modified GM-1.5’s Linux "IP driver" and firmware.

8

@

Qo

< =

Network Packet |~ SRA DMA Controller
Network7> Interface —= DMA |—»| M -~ and BusBridge **'g
I
RISC

Figure 6: Block-diagram of a Myrinet NIC.

The modified NIC firmware classifies each incoming packet in order to
determine which receive queue the packet should be DMAed into. In the
current implementation, the classification function is

ide =ip_src& (n_queues — 1),

where ip_src is the source 1P address of the packet, n__queues is the number of
receive queues, and idx the resulting index of the appropriate receive queue. In
addition to being trivial to implement, this packet classifier has the advantage
of being stateless, yet resulting in good load-balancing among the processors
given the large population of clients Internet servers must face under high load.

RT n” 0285



16 Lemoine & Pham & Lefévre

The modified NIC driver implements as many receive queues and receive
buffer descriptors rings as processors. The new NIC firmware maintains copies
of each receive buffer descriptors ring in its memory, and itself fetches the rings
using DMAs. In the current implementation, the number of receive queues and
rings is defined at compile time but we believe specifying it at open time should
be feasible.

The networking subsystem itself is implemented in a Linux module 8. At
startup time, the Linux module creates as many kernel threads as processors
(the network threads) and binds each to a particular processor. Each network
thread then enters an event loop and goes to sleep waiting for network receive
events from NICs. The driver’s RISR is responsible for waking up the network
threads. In contrast to NAPI which executes the TCP/IP stack in softirg
context, KNET executes it in kernel-thread context. The reason for this is
that we do not control onto which processors interrupts from the NIC arrive
(because the I/O APIC is responsible for this). For example, it may occur
that processor A takes the RINT whereas the packet (or packets burst) that
caused the RINT is to be processed on processor B. In this situation, the
RISR executing on processor A must wake up the receive thread on processor
B. Achieving this would not be possible if TCP/IP were to execute in softirq
context.

5 Experimental results

5.1 Experimental setup

In this section, we describe our software and hardware setup used for our
performance measurements.

5.1.1 Hardware

Four 2-way PIII (600Mhz, 256KB L2 cache, 256 MB SDRAM, ServerWorks
CNB20LE Host Bridge) machines and one 4-way PIII (550Mhz, 512MB SDRAM,
ServerWorks CNB20HE Host Bridge) are used throughout the experiments.
The 4-way machine acts as the HTTP server and the four 2-way machines as

8Linux modules are objects that can dynamically be linked to a running Linux kernel.
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the clients. The five machines are networked together through the Myrinet
network.

5.1.2 Operating system configuration

All involved machines run a 2.4.20 Linux kernel. On the client machines, all
OS-related settings are left to their defaults. On the server machine we change
the send socket buffer to be 32 Kbytes in length. This value is chosen so that
one call to sendmsg() or sendfile() can be sufficient to initiate the transfer of
the response file. In all experiments we compare KNET to the NAPI version of
the GM-1.5 Linux driver and firmware, which we implemented for the purpose
of the comparison.

5.1.3 Benchmark programs

Two software programs are used for performance evaluation: Webfs [12] at the
server side and a modified version of Sclient [1| at the clients side. We briefly
describe both in the following.

Webfs is an event-driven HTTP server for purely static content, it uses the
select () system call to wait for events without blocking. Though Webfs is
not a purely multi-threaded server ?, it supports threads, where each thread
runs its own select() /accept () loop. In addition, to maximize throughput
and minimize CPU utilization, Webfs uses the zero-copy sendfile() system
call.

The client machines run a modified version of Sclient. Sclient is an HTTP
traffic generator specifically designed to generate HTTP requests rates beyond
the capacity of the server, without employing a huge number of client processes.
Using Sclient as a starting point, we implemented a new HTTP traffic generator
which functions as follows. First, a user-defined number of TCP connections is
generated towards the HTTP server. Then, for each open connection, an HTTP
request is sent and the corresponding response is received. Once the response
is received, a new TCP connection is initiated, etc. The select () system call
is used to avoid blocking in the sendmsg() and recvmsg() system calls.

91n the sense that Webfs does not use per-connection threads.
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18 Lemoine & Pham & Lefévre

5.1.4 ‘Workload

To minimize interactions with the server’s file system each Sclient instance
requests a different file. Since we use 4 Sclient instances in our experiments
there are 4 different files served by the HTTP server, each being 20 or 5 Kbytes
in size. Also, in all experiments, we vary the number of concurrent connections
each client instance opens. We go up to 80 concurrent connections (4 x 20),
which is sufficient to drive the server machine to saturation (0% idle CPU
time) for every experiment case we ran.

5.2 Results and analysis
5.2.1 9000-byte MTUs

Figure 7 reports the aggregated throughput delivered by the server versus
the number of concurrent connections for 9000-byte MTUs. The sendfile()
system call is used in all experiments here. First, we observe that KNET leads
to about 3% improvement over NAPI. For 9000-byte MTUs, the application
and network threads spend about 75% and 25% of CPU time, respectively'®.
For this sharing in CPU time and for 4 processors the model presented in
section 2 gives a speedup o = p/(1 + T,/T.) equal to 1, the TCP/IP stack is
therefore not the bottleneck for 9000-byte MTUs. The experimental results
reported in the graph were therefore predictable. However, it is interesting to
note that, even in cases where one processor suffices to process the network,
KNET does not exhibit worse performance than NAPI. The curve KNET-RR
represents the case where the NIC does not classify incoming packets. Instead,
the NIC directs incoming packets to processors in a round-robin fashion. In
the KNET-RR case, the processing of packets is still parallelized but, since
packets of the same connection can be processed by two different processors,
data-cache locality is not as good as with KNET. Peak throughput obtained
with KNET-RR is effectively 20% lower than that obtained with KNET. This
shows the benefits of classifying packets before they enter the network stack.

10The CPU utilization numbers reported here obtained using the top command.
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Figure 7: Performance results of NAPI, KNET and KNET-RR, with 9000-byte
MTUs, 20-Kbyte requested files, and sendfile().

5.2.2 1500-byte MTUs

Figure 8 reports the aggregated throughput delivered by the server versus the
number of concurrent connections for 1500-byte MTUs. Here we report results
of NAPI and KNET with and without sendfile(). KNET leads to 34%
improvement over NAPI when sendfile() is used, and to 17% when using
the regular sendmsg() system call. For 1500-byte M'T'Us, the application and
network threads use roughly 55% and 45% of CPU time, respectively. With 4
processors, the model gives a speedup equal to 1.8. The experimental speedup
(=~ 1.3) is below the analytical one because we assumed in the model that the
network stack scales linearly with the numbers of processors, which is untrue
in practice. We will go back to this issue shortly. It is interesting to note that
with NAPI using sendfile() or sendmsg() does not make any difference.
Indeed, with NAPI the network stack executing only on one processor at a
time is the bottleneck so minimizing the CPU time spent on behalf of the
application threads does not result in better performance.
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Figure 8: Performance results of NAPI and KNET, for 1500-byte MTUs, 20-
Kbyte requested files, with and without sendfile()

Figure 9 again reports the aggregated throughput delivered by the server
versus the number of concurrent connections for 1500-byte MTUs, but with
two different requested file sizes: 20-Kbytes and 5-Kbytes. sendfile() is
used in all experiments here. For 5-Kbyte requested files, KNET leads to 6%
improvement over NAPI, in contrast to the 34% improvement for 20-Kbyte re-
quested files. This performance drop comes from the fact that the ratio T, /T,
(corresponding to the percentage of CPU time spent in the kernel threads pro-
cessing incoming network packets over that spent in the application threads)
is lower for small files than for large files, because the smaller the response file,
the fewer network packets.

Earlier, we stated that our model is not accurate because while building it
we assumed that the network stack and application scale with the number of
processors, which is untrue in practice. Figure 10 shows that the network stack
does not scale because of the listening socket being accessed by all processors.
Indeed, using 4 instances of the web server with KNET, each listening on a
different port, results in 10% improvement over using one instance listening on

INRIA



Packet classification in the NIC for improved SMP-based Internet servers 21

6000

G @ B @
. L NS L B
5500 - e
R R SR SR
a ¥
Koo BT R KooKk KR R e

5000 - )
o

4500

4000

3500 -

Throughput, # conns per sec
o

D s i St

3000 w7
,)('r
NAPI 5K -
* KNET 5K -8
2000 ‘ ‘ \ \ \ \ \
0 10 20 30 40 50 60 70 80

Number of concurrent connections

Figure 9: Performance results of NAPI and KNET, with 1500-byte MTUs, and
sendfile(), for 20-Kbyte and 5-Kbyte requested files.

a single port. A solution of the 1 port case would be to do the classification
in such a way that all packets destined to the listening socket (SYN packets)
are always processed by the same processor. The problem with this solution is
that it may lead to a system that is not well-balanced. With NAPI, it does not
make much difference whether having 4 different ports or a single one because
the network stack is the bottleneck.

5.2.3 500-byte MTUs

Figure 11 reports the aggregated throughput delivered by the server versus the
number of concurrent connections for 500-byte MTUs. 20-Kbyte requested files
and sendfile() are used in the experiments reported here. The purpose of
experimenting with 500-byte M'T'Us is to observe whether KNET continues to
improve performance over NAPI as the network stack gets more congested. In
effect, KNET leads to 50% improvement over NAPI for 500-byte MTUs.
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Figure 10: Performance results of NAPI and KNET, with 1500-byte MTUs,
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Figure 11: Performance results with 500-byte MTUs, and 20-Kbyte requested
files, and sendfile().
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6 Conclusion and future work

In this paper, we claim that classifying incoming packets before they enter
the operating system’s kernel is key to implementing scalable and robust net-
working subsystem. We have designed and implemented a Linux networking
subsystem built around a packet classifier in the Myrinet Network Interface
Card. The experimental results reported in this paper show the relevance of
our design and implementation when the network stack is the bottleneck, and
that the performance of our implementation does not degrade when the net-
work stack is not the bottleneck (e.g. for 9000-byte MTUs). In addition, we
have derived a model allowing to predict if performance gains are to be ex-
pected when processing network packets in parallel. In particular, the model
helped us understand our experimental results.

In our implementation, packet processing is achieved in kernel-thread con-
text as opposed to interrupt context. We were constrained to resort to this
solution because we want to be able to direct a packet to any processor re-
gardless the processor that takes the interrupt. Processing the network in
kernel-threads raises scheduling latency issues. Indeed, even if the kernel-
thread has a high priority, it takes some time (the scheduling latency) for the
thread to be scheduled by the scheduler. This scheduling latency can be ob-
served at low load (4 concurrent connections) in the graphs reported in this
paper. One solution to this problem is to design new hardware with which the
classification-capable NIC can choose, based on the classification result, which
processor to interrupt, as opposed to relying only on the machine’s interrupt
controller (I/O APIC in x86-based hardware).

As future work, we plan to further study the implication in terms of per-
formance of operating the classification outside the kernel or not. In effect,
we want develop to a software-based classifier and carry out extensive experi-
ments. We also want to address the bottleneck issue due to the listening socket
by proposing new classification algorithms or improving the operating system’s
kernel.
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