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Abstract: This technical report describes BLSURF, an automatic surface mesh
generator. This software creates the mesh of a composite parametric surface while
conforming to a prescribed size map. To this end, analytical functions defining the
surface, as well as their first and possibly second derivatives, must be externally
provided (for instance by a CAD system). Also, each patch must be described by
giving its 2D parametric domain. The method used is based on an incremental
Delaunay approach adapted to a Riemannian metric.
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BLSURF — Mailleur de surfaces
composées de carreaux paramétrés —
Manuel d’utilisation

Résumé : Ce rapport technique décrit les fonctionnalités du mailleur automatique
surfacique BLSURF. Ce logiciel génére le maillage d’une surface composée de plu-
sieurs carreaux paramétrés, en respectant un champ de tailles spécifiées. A cette fin,
les fonctions analytiques définissant la surface, ainsi que leurs dérivées premiéres et
éventuellement secondes, devront étre fournies de maniére externe (par exemple par
un systéme de CAQO). En outre, chaque carreau sera décrit & partir de son domaine
de parameétres 2D. La méthode utilisée est basée sur une approche incrémentale de
Delaunay adaptée & une métrique riemannienne.

Mots-clé : maillage surfacique, surface composée paramétrée, métrique rieman-
nienne, triangulation de Delaunay, approche frontale.
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4 P. Laug and H. Borouchak:

1 Introduction

This introduction briefly presents the goal and the functionalities of the BLSURF
software, and then provides some examples to illustrate its possibilities.

1.1 Presentation

Three-dimensional surface meshing is of the utmost importance in many numerical
applications including the finite element method. It is a necessary step when one
wants to construct the mesh of a solid object. A wide range of surfaces can be defined
by means of composite parametric surfaces. Most of the surfaces are approximated
by polynomial or rational parametric patches as is the case for most CAD-CAM
modelers.

The method implemented in the BLSURF software is suitable for generating a
mesh which conforms to given constraints (prescribed sizes of the elements in the
vicinity of points of the surfaces) and closely approximates the geometry of the
surface. It consists of meshing a 2D parametric domain, and a surface mesh is
obtained when this is mapped to the 3D space. By discretizing first the interface
curves which represent the common boundary of the patches, it has been adapted to
surfaces made up of several parametric patches.

1.2 Data flow

As input, the surface must be defined by a set of parametric patches. The descrip-
tion of each patch consists of the domain of two parameters u and v, an analytical
function S(u, v) of class C%, and also the first and second derivatives of S(u,v). The
parametric domains can be of arbitrary shapes. Validation tests have been carried
out for different kinds of surfaces: spherical, toroidal, Bézier, B-spline, NURBS,
CAD grids, etc. It is possible to specify the desired sizes of the elements (constant,
dependent on curvature radii, or imposed by given functions).

As output, in version 0 of this software, an isotropic surface mesh is generated.
Forthcoming versions will provide anisotropic meshes, curved quadratic elements and
adaptive meshes (with size maps prescribed on background meshes).

INRIA
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1.3 A few examples
The following figures show three sample meshes created by the BLSURF software.

Figure 1 shows a uniform mesh and a geometric mesh of the well-known Utah teapot,
which is composed of 32 Bézier patches. Figure 2 shows the mesh of a Klein bottle
defined by an analytic equation. This mesh conforms to both a given spiral metric

and the geometry of the surface.
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Figure 1: Utah teapot:

mesh.

Klein bottle: both spiral and geometric

Figure 2:
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2 Modeling a composite surface

This section briefly presents the principle of modeling a single parametric patch, then
a surface composed of several patches.

2.1 Parametric patch

Let us consider a parametric patch ¥ in three-dimensional real space R? (see figure 3
right). By definition, it represents the image of a parametric domain o of R? by a
function S(u,v):

[HEU — S(u,v) = ;Em €y,

The domain o contains particular curved segments, for instance those making up
the boundary. It may also contain predefined internal curved segments, for instance
to model cracks. Each of these curved segments v of R? is the image by a function

C'(t) of an interval [a, b] of R:
t € [a,b] — C(t):[z(t)]e'y.

Having defined the functions S(u,v) and C(t), the curved segment I' of R is
defined by a function S(u(t),v(t)), t € [a, b].

LT

R R2 R3

Figure 3: Simple parametric surface.

INRIA
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Please note: in what follows, to lighten the text and by abuse of language,
we may use the term “curve” instead of “curved segment”.

The preceding functions must satisfy certain properties:

(Po) Functions C'(t) and S(u,v) must be defined and continuous.

d
(Py) Their first derivatives d—?(t), z—s(u, v) and Z—S(u, v) must also be defined and
u Y
continuous. Moreover, the plane tangent to the surface must be defined eve-

rywhere, which is equivalent to: V(u,v), Z—S(u, v) # 0 and g—s(u, v) # 0, and
u v
these two vectors are not colinear.
d*C %S %S %S

(P2) Their second derivatives W(t)’ W(u,v), m(u,v) and —(u,v) must

2
also be defined and continuous, in the case where the prescribed sizes of the

mesh elements depend on curvature radii of surfaces and curves.

If property (P1) is not verified, the associated metrics are undefined at some
points, and bad quality elements may appear. To remedy this problem, it is some-
times sufficient to give the values of the derivatives at a neighboring point (approxi-
mate solution). It is also possible to split a surface or a curve into several pieces, or
else to modify its parameterization, as detailed in the examples below.

Example 1: Splitting a curve

Figure 4 shows the curve defined by:
at)=t, o) =lsn(@)],  tel-3+3].

Because the first derivative of function v(t) is discontinuous at ¢t = 0, we may

wish to split this curve into two pieces, ¢ € [—%, 0] and ¢ € [0, —}—%]

RT n- 0235
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0.5

Figure 4: Curve v(t) = |sin(¢)|.

Example 2: Parameterization of a spherical surface

To parameterize a spherical surface, we can inversely define a projection from the
3D surface to the 2D parametric domain. In figure 5, the orthogonal projection of
point P of the sphere gives point F,, while the stereographic projection gives point

Ps.

Let us consider the first projection method, called orthogonal. If P = (z,y, 2)
is a point of the sphere with center C' = (0,0, R) and radius R, its orthogonal
projection is the point P, = (u,v) with v = 2 and v = y. Inversely, a hemisphere

can be parameterized by:

Figure 5: Orthogonal and stereographic projections.

INRIA
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The main drawback of this parameterization is that it is highly unstable near the

2 _ v? goes to 0.

z z
“equator”, for the limit a—(u, v) and 8—(u, v) is infinity as R? — u
U v
As an illustration, figure 6 shows a uniform mesh on a plane disk (bottom) and the

corresponding surface mesh (top left).

Another projection method, called stereographic, is used in cartography for
polar regions. If N = (0,0,2 R) is the sphere’s “North Pole”, the stereographic

projection of point P is defined as the intersection Ps of the straight line (NP) with

2Rz 2Ry
and v = .
2R — =z 2R— =z
Conversely, the sphere without point N can be parameterized by:

the plane z = 0. We now have P, = (u,v) with v =

2Ru
Ss(u,v)zi 2Rv
wol AR oo

This latter parameterization is stable near the equator, continuously differen-
tiable, and preserves angles (but not distances) [1]. As a consequence, a triangle
which is equilateral on the parametric domain is also equilateral on the sphere, which
leads to good quality elements for the surface mesh (see figure 6 top right).

«fii??g‘i%‘i\\

DAV
/) \
Q10NN

g

Figure 6: Bottom: uniform mesh of a plane disk. Top left: its inverse orthogonal
projection. Top right: its inverse stereographic projection.
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Example 3: Parameterizing a surface of revolution

A surface of revolution can be defined by a curve C'(t) in a revolving coordinate
system XOY (see figure 7). Therefore, the equations of the curve and the surface
are respectively:

X(t) cose
C(t) = [ ?5((;)) ] and  S(g,t) = ;‘f((tt)) sin ¢

To see this more practically, let us take for definition intervals ¢ € [0, 1] and

Vs
v € 0, 5] Also, to show the influence of the parameterization method, let us

suppose that t = 0 = X () = 0. Then, as ¢ varies from 0 to % and t = 0, S(¢,1)

reduces to a point P of the Oz axis.

An initial method is to choose directly ¢ and ¢ as parameters, their domain then
being a rectangle. However, the inverse image of point P by the function S(¢, 1) is
in that case a whole segment, the edge with ordinate ¢ = 0. For all points (¢, ) of
this edge, the function S(¢p,t) is constant as ¢ varies, and therefore the derivative

8—(4,9, t) stays equal to 0 (this can also be easily found from the preceding equations).
©

A better approach consists in taking for parametric domain the quarter disk in
the coordinate system (u, v) such that u = ¢ cos ¢ and v = ¢ sin ¢. The inverse image
of point P then reduces to a single point, the center of the disk, which eliminates

the previous problem.

A
y[ T— .
t 1
C(t)
1
P
o) | Y
u

/X 0 Z e 0
x ~ ¥ X 2

Figure 7: Surface of revolution.

INRIA



BLSURF — User’s Manual 11

Having studied the parameterization of one patch only, let us now consider the
parameterization of a surface composed of several patches.

2.2 Composite surface

A composite surface is defined by a set of patches (see figure 8). Each patch is defined
by a domain ¢; and a function S;(u,v).

The images in R? of some curves of R? can be geometrically identical. Generally,
we also want them to be topologically identical, i.e. the surface mesh should be based
on a unique discretization of these curves (called interface curves). This leads to
conformal meshes (see in figure 9 examples of conformal and non conformal meshes).
To this end, we identify the interface curves by giving them identical references. In
the example in figure 8, the three-dimensional curve Cyq is the image by Sy (u, v) of
curve c¢1g of domain ¢; and the image by Ss(u,v) of curve ¢19 of domain o3, hence
the common reference which equals 10.

P35
ﬁ:} Ss(u,v)
pa1  cio PU
C25
Cs6 241 C75
P82
C21
D89 C41 P35

12

Figure 8: Composite parametric surface.

RT n- 0235



12 P. Laug and H. Borouchak:

Figure 9: Non conformal mesh (left) and conformal mesh (right).

In the same manner, points having the same location in R?® are identified by
identical references. Here, point Py is the image of three different points py;. Finally,
to make patches ¥ and Y5 conformal, point pgs must appear in domain oy, though
there is no discontinuity between curves c9; and cg5 of this domain.

3 Input files and external functions

Based on the previous model, the BLSURF software needs information on the para-
meterization of surfaces and curves, and also on the parametric domains and their
references. To this end, the software can call external functions gathered in a For-
tran module named cad_m, or also read a data file x.pardom. Finally, a file called
blsurf.env contains environment variables in order to control several functionalities
of the software.

3.1 Module cad_m: external functions

The Fortran 90 module named cad_m contains the implementation of surfaces and
curves parameterizations (mathematical functions S(u,v) and C(t) as well as their
derivatives). Moreover, it contains optional functions to define the desired size of the
elements. Naturally, all these functions must be compiled and linked to make the
executable file of BLSURF (cf. section 5).

Figure 10 shows the general structure of this module. The most important func-
tions are surf0, surfl, surf2 which define the surfaces, and curv0, curvi, curv2
which define the curves. The other functions are optional.

INRIA
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module cad_m
! This part can contain global variables
contains

subroutine cad_init

! makes initializations, if necessary

subroutine surfO(refs, uv, S)

I returns S(u,v)

subroutine surfi(refs, uv, Su, Sv)

! returns the first derivatives of S(u,v)

subroutine surf2(refs, uv, Suu, Suv, Svv)

I returns the second derivatives of S(u,v)

subroutine curv_int(refs, ic, a, b)

! returns the definition interval of a function C(t)

subroutine curvO(refs, ic, t, C)
I returns C(t)

subroutine curvi(refs, ic, t, Ct)
! returns the first derivative of C(t)

subroutine curv2(refs, ic, t, Ctt)
I returns the second derivative of C(t)

subroutine cad_hphys(refs, uv, h)
! returns the desired size at a point of a surface

subroutine cad_hphyc(refs, ic, t, h)
! returns the desired size at a point of a curve

subroutine cad_hphyp(refp, h)
I returns the desired size at a point (extremity)

subroutine cad_rads(refs, uv, rhos)
! returns the radius of curvature of a surface

subroutine cad_radc(refs, ic, t, rhoc)
! returns the radius of curvature of a curve

end module cad_m

Figure 10: General structure of the Fortran 90 module cad_m.

RT n- 0235



14 P. Laug and H. Borouchak:

We detail below each of the functions which make up this module (surfaces and
curves parameterization, then sizes specification). At the end of this manual, a
complete example of a module is given (cf. section 6.1).

3.1.1 Parameterization of surfaces

Let us recall that a single parameterized surface is mathematically defined by a
function S(u,v). The implementation of this function and its derivatives is realized
by the four functions described below.

e cad_init is called only once, at the beginning of the execution of BLSURF,
with the aim of making some initializations if necessary. Generally, the purpose
is to read a CAD data file or the equivalent.

e surfO(refs, uv, S) implements a function S(u,v). The “intent(in)” dummy
argument refs s the reference of a surface. The “intent(in)” dummy argument
uv is an array of two coordinates (u =uv(1) and v =uv(2)). As a result, an
array of three coordinates S = S(u,v) is obtained.

e surfi(refs, uv, Su, Sv) qives, in a stmilar way, the first deriatives Su =

aS aS
—(u,v) and Sv = —(u, v).
au( v 80( v
e surf2(refs, uv, Suu, Suv, Svv) gives, in a similar way, the second deriva-
2 2 2
tives Suu = ——(u,v), Suv = u—av(u’ v) and Svv = ——(u,v). These second

derivatives are really necessary only in the case where the desired sizes of the
elements depend on the radu of curvature.

The function surf0, which implements S(u,v), can be fully programmed by the
user, or simply call other functions in a CAD system. The two examples below show
these two cases more precisely. Once the programmation of function surf0 is comple-
ted, its derivatives surfl and surf2 can be manually written, or else automatically
obtained by a computer algebra system such as Maple [5] or Odyssée [6].

INRIA
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Example 1: full programmation

The Klein bottle represented in figure 2 is defined by the following parametric equa-

tions:

u,v € [0,2 7] r=4-2 cosu

. { 6 cosu (14 sinu) 4+ r cosu cosv

6 cosu (14 sinu) —r cosv

B 16 sinu +r sinu cosv
1 16 sinu

z=1r sinv

if u € [0, 7[
ifu € [r,2n]

if u € [0, 7|
if u e [m,2n]

Because of the periodicity of this surface, the parametric domain [0, 2 7]? is split

into four squares. This gives the following surf0 function:

subroutine surf0(refs, uv, S)
integer :: refs

u=uv(l) ; v =uv(2)
cosu = cos(u) ; sinu = sin(u)
cosv = cos(v) ; sinv = sin(v)
r = 4 - 2%cosu
if (refs <= 2) then
S(1) = 6%cosu*x(1+sinu) + r*cosu*cosv

S(2) = 16*sinu + r*sinuxcosv
else
S(1) = 6%cosu*x(1+sinu) - r*cosv
S(2) = 16%sinu
end if

S(3) = rxsinv
end subroutine surf0

! x (case
'y (case

! x (case
'y (case

- Z

double precision :: uv(2), S(3), u, v, cosu, sinu, cosv, sinv, r

1)
1)

2)
2)

All the possibilities of the Fortran 90 language can be used, such as select case

for multi-way branches according to refs or the use of arrays indexed by refs.

RT n- 0235
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Example 2: call to a CAD system

The case of a call to a CAD system is simply of the form:

subroutine surfO(refs, uv, S)
integer :: refs
double precision :: uv(2), S(3)

call ... ! call to one or several functions of the CAD system
end subroutine surf0

This method theoretically makes it possible to adapt to any CAD system. Howe-
ver, this involves an extra software layer, which should be eliminated to save CPU
time.

3.1.2 Parameterization of curves

Let us recall that a curve is mathematically defined by a function C'(¢), t € [a, b]. The
implementation of this function and its derivatives is realized by the four functions
described below.

e curv_int(refs, ic, a, b) gives the bounds of interval [a, b]. We will see la-
ter that file x.pardom contains, for each surface, its reference refs and the des-
criptions of the nc curves which belong to it (cf. section 3.2). The “intent(in)”
dummy arguments of curv_int, that are refs and ic (1 < ic < nc), refer to
such a curve.

o curvO(refs, ic, t, C) implements a function C(t). The “intent(in)” dummy
arguments refs and ic refer to such a curve as previously. The third “intent(in)”
dummy argument t is a scalar value that lies between the bounds a and b re-
turned by curv_int. As a result, an array of two coordinates C = C(t) is
obtained.

e curvi(refs, ic, t, Ct) gives, in a similar way, the first deriwative Ct =

d
ZC).

e curv2(refs, ic, t, Ctt) gives, in a similar way, the second derivative Ctt
2

= ;QC(t). This second derivative is really necessary only in the case where

the desired sizes of the elements depend on the radii of curvature.

INRIA
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The remarks mentioned in the previous section concerning surfaces (full program-
mation, call to a CAD system, and automatic differentiation) also apply to curves.

3.1.3 Specification of sizes

In most simple cases, no environment variable is specified and no optional func-
tion is programmed. Then, a uniform mesh is obtained, the size of the elements
being diag /50, where diag represents the length of the diagonal of the bounding box
(cf. examples in section 6). This size can be modified by the environment variable
hphydef.

In other cases, the BLSURF software provides many possibilities that are detailed
here. To obtain the size h prescribed at a point P of the surface to be meshed,
BLSURF uses in fact a physical size A, (chosen by the user) and a geometric size
hgeo (intended to conform to the geometry of the surface to be meshed, considering
the curvatures). The calculation of these sizes h,p, and b, is detailed in paragraphs
(a) and (b) of this section.

All the physical sizes hpp, are “trimmed”, i.e. each size is forced between two
bounds Apny.min and fpnymaz. More precisely, if hppy < hphymin then hpp, =
hphy.min 5 €lse if hpny > Aphymaz then Apny = Aphymaz. In a similar way, all the
geometric sizes hge, are trimmed between two bounds Ageo.min and Ageo.maz. In prac-
tice, these bounds are given by environment variables hphymin, hphymax, hgeomin
and hgeomax (cf. section 3.3). By default, both lower bounds have a value equal to
diag/500 and both upper bounds have a value equal to diag/5, where diag represents
the length of the diagonal of the box bounding the surface to mesh.

Finally, the prescribed size h is obtained in the following way:
e Compute the physical size hp, and trim it.

e Compute the geometrical size hgye, and trim it.

e The prescribed size is h = min(hphy, Ageo)-

It is also possible to impose only a physical size while ignoring the geometrical
size (giving finally h = hyp,), or conversely (h = hye,).

Let us now consider more precisely how the physical size and the geometrical size
at a given point P are computed.

RT n~ 0235
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(a) Computation of the physical size

This computation depends on the chosen option, which is governed by the envi-
ronment variable hphy_flag. The value of this variable can be 0, 1 (by default)
or 2.

If hphy_flag = 0, the physical size hyp, is ignored. In this case, we must have
hgeo_flag # 0, finally giving h = hye,.

If hphy_flag = 1, the size is given by the value of the environment variable
hphydef.

If hphy_flag = 2, it is obtained by querying functions cad_hphys (surfaces),
cad_hphyc (curves) and cad_hphyp (points). Each function can either return a
value h (which is then trimmed between the two bounds hphymin and hphymax), or
“not answer” (by not assigning a value to h), thus providing great flexibility in the
specification of the sizes. The computation depends whether point P is internal to
a surface, internal to a curve, or at the end of several curves:

e If point P is internal to a surface, cad_hphys is queried. If it does not answer,
one interpolates with the values at the vertices of the discretized interface
curves.

e If point P is internal to a curve, cad_hphyc is queried first. If it does not
answer, cad_hphys is queried for every adjacent surface and the mean of the
returned values is computed. If there is no answer, sizes hy and hgy at both
ends of the curve are considered (see next item) and the interpolated value is
computed.

e If point P is at the extremity of several curves, cad_hphyp is queried first.
If it does not answer, cad_hphyc is queried for every adjacent curve and the
mean of the returned values is computed. If there is no answer, cad_hphys
is queried for every adjacent surface and the mean of the returned values is
computed. If there is no answer again, the default value hphydef is retained.

In the above paragraph (if hphy_flag = 2), in order to compute the mean of
several values, the arithmetic mean is used by default, but this can be modified
by the environment variable hmean_flag. In the same way, in order to interpolate
two values, a linear interpolation is used by default, but this can be modified by
hinterpol_flag (cf. section 3.3).
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Therefore, when hphy_flag = 2, the three functions cad_hphys, cad_hphyc and
cad_hphyp can be programmed:

e cad_hphys(refs, uv, h) returns (or not) a prescribed size h at a point of
surface refs with coordinates uv in the parametric domain.

e cad_hphyc(refs, ic, t, h) returns (or not) a prescribed size h at a point of
curve (refs, ic) with parameter t.

e cad_hphyp(refp, h) returns (or not) a prescribed size h at an extremity of
reference refp.

Let us recall that each function can either return a value h (which is then trimmed
between two bounds hphymin and hphymax), or “not answer” (by not assigning a
value to h, cf. examples in section 6). This is because the internal call from BLSURF
software is of the form :

h = hempty ! hempty is a "very negative" constant, e.g. -1.d38
call cad_hphys(..., h) ! call cad_hphys, call cad_hphyc or call cad_hphyp
if (h /= hempty) then
h=... ! trim between hphymin and hphymax
else
h=... ! compute another value
end if

(b) Computation of the geometric size

The computation of the geometric size at a given point P depends on the chosen
option, which is governed by the environment variable hgeo_flag. The value of this
variable can be 0, 1 (by default) or 2.

If hgeo_flag = 0, the geometric size hg, is ignored. In this case, we must have
hphy_flag # 0, finally giving h = Appy.

If hgeo_flag = 1, it is computed by the BLSURF software in the following way:

e If point P is internal to a surface, h; = A p, is computed, where X is a
coeflicient and p; is the radius of curvature of the surface.

e If point P is internal to a curve, BLSURF computes the smallest size hg
induced by the adjacent surfaces, and the size h. = A p., where p.. is the radius
of curvature proper to the curve. Finally, hj., = min(hg, h,) is retained.

RT n- 0235



20 P. Laug and H. Borouchak:

e If point P is at the extremity of several curves, BLSURF computes the smal-
lest size hg induced by the adjacent curves,
The coefficient A is computed in such a way that a given tolerance angle (defined
by the environment variable angle_mesh) is respected.

If hgeo_flag = 2, the computations are similar but the radii of curvature are
not computed by BLSURF': they are given by the external functions cad_rads for
surfaces and cad_radc for curves. The purpose is to optimize these computations
in certain particular cases (spheres or cylinders for instance) since BLSURF usually
makes a more general computation. The description of these two functions is the
following:

e cad_rads(refs, uv, rhos) returns the radius of curvature rhos of surface
refs at the point with coordinates uv in the parametric domain.

e cad_radc(refs, ic, t, rhoc) returns the radius of curvature rhos of curve
(refs, ic) at the point with parameter t.

In the case of an infinite radius (plane surface or straight line), these functions
must return a “big value”, for instance huge(1.) in Fortran 90.

3.2 Input file x.pardom: parametric domains

The file x.pardom serves to complement the above descriptions of the different pa-
rametric domains, principally by giving the references of curves and points. It is no
longer a Fortran program but a simple text file (ASCII).

The general form of this file is a nested structure as is shown in figure 11. It
contains an integer number ns, followed by ns blocks. Each block contains the
integers refs, orientation, nc, followed by nc blocks, then the integer np followed
by np blocks.

The different elements contained in this file are detailed below. Some complete
examples are given later (cf. section 6).

e ns: number of surfaces (or patches).
e refs: reference of the surface.

e orientation: integer whose absolute value gives a curve number ic and whose
sign determines the orientation of the surface: if the sign is positive, the surface
lies on the left of curve ic ; if it is negative, the surface lies on the right. The
type of the curve ic must be “boundary” (typc = 1).
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ns

refs
orientation

nc

X ns
’typc refc refpl repr‘ X nc

np
’refp u v ‘ X np

Figure 11: General structure of the text file x.pardom.

e nc: number of curves.

e typc: type of the curve: 1 “boundary”, 2 “internal”. A curve of type 1 is a
part of the boundary of the sub-domain. A curve of type 2 is internal to a
sub-domain, i.e. the edges of the triangles of the final mesh will contain its
discretization. Examples of internal curves are given in section 6.2.

e refc: reference of the curve (to identify identical curves in 3D space).

e refpl refp2: references of extremities 1 and 2 (obtained respectively for t = a

and t = b).
e np: number of internal points.
e refp: reference of the internal point.

e u v: coordinates of the internal point in the parametric domain.

Remarks

The name of the file is by default x.pardom, but its prefix can be modified by the
environment variable pref.

If the reference of the very first curve is zero (is = ic = 1 = refc = 0), the
BLSURF software automatically gives references by searching points that have the
same location or are neighboring (cf. environment variable eps_glue). The results
are saved in a file named x.pardom.new, which can be reused afterwards.

Two distinct surfaces must have different references (is1 # is2 = refsl #
refs2). This reference is used in particular by functions of module cad_m (cf. section
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3.1). As a practical application, it is possible to mesh only one patch by giving ns
= 1, followed by the description of the patch containing its reference.

If several curves have the same reference, it is the definition of the first curve
(in order of appearance in file x.pardom) which is used by the mesh generator.

For a given patch, all the boundary references must be different. For example,
to represent a cylinder, at least two patches are necessary because of the periodicity
of this surface.

References refpl and refp2 at the extremities of one curve refc must not be
identical. This is because they determine the direction of the curve.

After file x.pardom is read, the BLSURF software checks if the preceding pro-
perties hold.

3.3 Input file blsurf.env: environment variables

The BLSURF software is governed by a set of environment variables. Fach variable
has a predefined name and a default value. File blsurf.env makes it possible to
modify the values of these variables. Once again, it is an ASCII text file.

The general structure of this file is illustrated by figure 12. Several successive
actions are invoked by the keyword call. The BLSURF software executes a loop
where it initializes the environment variables by their default values, reads their new
values until the keyword call is reached, runs the corresponding action, re-initializes
the environment variables, re-reads the new values, and so forth until call exit is
reached. Some complete examples are given in section 6.

Assign some variables
call actiont

Assign some variables
call action2

‘ call exit ‘

Figure 12: General structure of the text file blsurf.env.
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‘ & ‘ Name Type ‘ Default value ‘
CheckAdjacentEdges | integer 0
CheckCloseEdges integer 0
CheckWellDefined integer 0
CoefRectangle real 0.25
LSS real 0.5
angle_mesh real 8.
angle_smo real 1.

$ | call characters | "exit"
element characters | "p1"
eps_collapse real 0.
eps_ends real diag/500
eps_glue real diag/500
flag integer 0
format characters | "mesh"

¢ | frontal integer 1

¢ | hgeo_flag integer 0
hgeomax real diag/5
hgeomin real diag /500
hinterpol_flag integer 0
hmean_flag integer 0

¢ | hphy_flag integer 1
hphydef real diag/50
hphymax real diag/5
hphymin real diag/500
option characters | ""
pref characters | "x"
refs integer 1

¢ | verb integer 10

Figure 13: List of the environment variables in file blsurf.

env.
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The table in figure 13 gives an alphabetical list of all the environment variables.
These are rather numerous, but in general only a few of them are necessary. They are
indicated in the figure by a diamond-shaped sign (). As previously, diag represents
the length of the diagonal of the box which bounds the surface to mesh. We detail
these variables below, giving for each its name, its default value between brackets | |
and its description.

e CheckAdjacentEdges [0], CheckCloseEdges [0] and CheckWellDefined [0].
The BLSURF software calls ny times the subroutine CheckCloseEdges, ng
times CheckAdjacentEdges and ng times CheckWellDefined. The purpose of
these subroutines is to improve the mesh of domains having narrow parts [8]:
at each iteration, CheckCloseEdges decreases the sizes of the edges when two
boundary curves are neighboring (see figure 14), CheckAdjacentEdges balances
the sizes of adjacent edges, and CheckWellDefined checks if the parametric
domain is well defined. The three environment variables having the same names
as these subroutines represent the respective numbers of iterations ny, ny and

ng (by default, 0 for each).

e CoefRectangle [0.25]. This variable defines the relative thickness of the rec-
tangles used by subroutine CheckCloseEdges (see above).

e LSS [0.5]. LSS is an abbreviation for “length of sub-segment”. From the spe-
cifications of the sizes, a Riemannian metric M is defined in such a way that
the edges of the desired mesh are of length 1 in this metric. To compute the
length L a4 of an edge, the approximate value of an integral is used. If the value
obtained is less than LSS, the result is considered to be correct. Otherwise, the
edge is recursively split into two sub-edges. As a practical consequence, the

Figure 14: Checking close edges (subroutine CheckCloseEdges).
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RT n°

smaller LSS is, the more accurate the computations are, but the CPU time and
the necessary memory increase.

angle_mesh [8.]. This variable defines an angle 6 (in degrees) which represents
the tolerance of a geometric mesh, both for surfaces and curves. In the case of
a surface mesh, 6 is the limiting angle between the plane of a triangle of the
mesh and each of the tangent planes at the three vertices. In the case of a curve
discretization, 8 is the limiting angle between an edge of the discretization and
the tangent to the curve. Clearly, the smaller the angle is, the closer the mesh
is to the exact surface.

angle_smo [1.]. This variable defines an angle # (in degrees) which represents
the tolerance used for the geometric support of the curves (called smooth). This
support approximates curves with polygonal segments. Angle 6 is the limiting
angle between an edge of the polygonal segment and the tangent to the curve.
To ensure the inequality angle_smo < angle_mesh, BLSURF can force the
value of angle_smo.

call ["exit"] activates a predefined action of BLSURF, and resets the envi-
ronment variables to their default values. The actions that are admitted at
present are: "inimesh" = create a mesh (which is the initial mesh in the case
of an adaptive process), "export" = export a mesh into a file, and "exit" =
exit from the program.

element ["p1"]. This variable must not be modified in version 0 of the BLSURF
software. It determines the type of the elements of the mesh to be created.

eps_collapse [0.]. If eps_collapse > 0, BLSURF removes curves whose
lengths are less than eps_collapse. Here, to obtain an approximate value of
the length of a curve, the latter is arbitrarily split into 20 edges.

eps_ends [diag/500]. This variable is used to detect curves whose lengths
are very small, which sometimes constitutes an error. A message is printed if
||P, — P1|| < eps_ends, where P, and P, are the extremities of a curve.

eps_glue [diag/500]. Optionally, the BLSURF software automatically gives
references by searching for points that have the same location or are neighboring
(cf. section 3.2). In this case, two points P and P, are considered to be
neighboring if || P, — P|| < eps_glue.
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flag [0]. This variable is used to modify the contents of an exported mesh file
(cf. section 4). At present, the possible values are 0 or 1.

format ["mesh"]. This variable must not be modified in version 0 of the BL-
SURF software. It determines the format of the file to export (cf. section 4).

frontal [1]. If frontal = 1, the mesh generator inserts points with an advan-
cing front method. If frontal = 0, it inserts them with an algebraic method
(on internal edges). This latter method is faster but generates less regular
meshes.

hgeo_flag [0]. Option for computing the geometric size (cf. section 3.1.3). The
possible values are 0, 1 or 2.

hgeomax [diag/5]. Maximum geometric size (cf. section 3.1.3).
hgeomin [diag/500]. Minimum geometric size (cf. section 3.1.3).

hinterpol_flag [0] determines the computation of an interpolated value v
between two points P, and P, on a curve. Let Ay be the value at point P,
hg be the value at point P, and t be a parameter varying from 0 to 1 when
moving from P, to P,. If hinterpol_flag = 0, the interpolation is linear:

h t
v ="hy 4+t (hg — hy). If hinterpol_flag = 1, it is geometric: v = hy (—2> .

hy
hl+h2  hl—h2
5+

If hinterpol_flag = 2, it is sinusoidal: v = cos(m t). See

also section 3.1.3(a) and figure 23.
hmean_flag [0] determines the computation of the mean m of n values h;. If

hmean_flag = -1, the minimum m = min, h; is computed. If hmean_flag =
0 or 2, the arithmetic mean m = (3_, h;) /n is computed. If hmean_flag =

1, the geometric mean m = ([], hi)l/” is computed. See also section 3.1.3(a)
and figure 22.

hphy_flag [1]. Option for computing the physical size (cf. section 3.1.3). The
possible values are 0, 1 or 2.

hphydef [diag/50]. Predefined physical size. Note that this size is trimmed
into the interval [hphymin, hphymax|.

hphymax [diag/5]. Maximum physical size (cf. section 3.1.3).
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e hphymin [diag/500]. Minimum physical size (cf. section 3.1.3).

e option [""]. Option used when exporting files (cf. section 4). Possible values
are "", "allsurf3d", "allsurf2d", "onesurf3d", "onesurf2d" and "smo3d".

e pref ["x"|. Prefix of the files generated by BLSURF.
e refs [1]. reference of a surface, used when exporting files (cf. section 4).

e verb [10] defines the percentage of “verbosity” of the program. This value is
an integer and must be between 0 (no printing, at least in theory) and 100
(maximum printing).

Syntax of a blsurf.env file. To specify briefly the syntax of an environment
file, it is made up of a sequence of couples of words, where each couple represents the
name and the value of a variable. It is possible to include comments, which as in
Fortran 90 start with an exclamation mark (!) and finish at the end of the line. The
words can be separated by one or several “blank” characters. A “blank” character
can be a space, a tabulation or an equal sign (=). Examples are provided in section

6.

4  Qutput files (exported meshes)

As indicated in section 3.3, the line call export causes the exportation of a mesh
into a file. Generally, it is the mesh of the complete surface, in a rather simple format
(list of points and triangles). We give here some details about this mesh exportation.

When call export is activated, the software considers the environment variable
option.

If option = "" or "allsurf3d", it exports the 3D mesh of the whole surface.

If option = "allsurf2d", it exports into a unique file all the meshes of the
parametric domains (2D). This can only be interesting when they don’t overlap (see
also "onesurf2d").

If option = "onesurf3d", it exports the 3D mesh of only one patch, whose
reference is given by the environment variable refs. To obtain several mesh files,
just invoke call export several times.

If option = "onesurf2d", it exports in the same way the 2D mesh of only one
patch.
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If option = "smo3d", it exports the geometric support of the curves (so-called
smooth).

The environment variable flag is used to modify the contents of the output
file. If flag = 0, one obtains a classical surface mesh made of a list of vertices and
triangles. If flag = 1, one also obtains the list of the edges involved in the curves
discretization (see figure 17).

The name of the exported file is by default x.mesh, but its prefix can be modified
by the environment variable pref.

Now, all the output files are in the mesh format, which is very general (see
reference [7], section 10.3, a general data structure). Such a file is made up of a list
of fields, and we specify below those used by the BLSURF software:

MeshVersionFormatted O indicates the release identificator and the type of file.

Dimension is followed by 2 or 3 (2D or 3D).

Vertices is followed by the number of vertices, then each vertex is of the form: u
v refpin 2D orx y z refp in 3D. The reference refp of the point is the one given
in the input file x.pardom, or 0 if the point has been created by the mesh generator.

Triangles is followed by the number of triangles, then each triangle is given in
the form p1 p2 p3 refs (indices of the previously given vertices and reference of
the surface).

Edges is followed by the number edges of discretized curves, then each edge is
given in the form p1 p2 refc (indices of the previously given vertices and reference
of the curve).

End indicates the end of the file.

To illustrate these specifications, we give below a few examples of files in the
mesh format (meshes of 2D and 3D surfaces, and discretizations of 3D curves).
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2D surfaces:

MeshVersionFormatted 0
Dimension

2

Vertices

3D surfaces:

MeshVersionFormatted 0
Dimension

3

Vertices

-2.5000000 -2.5000000
2.5000000 -2.5000000
2.5000000 2.5000000

-2.5000000 2.5000000
0.0000000 -2.5000000

2.5000000 0.0000000
0.0000000  2.5000000
-2.5000000 0.0000000
0.0000000 0.0000000
Triangles

OO W N = OO0 00
~N U1 N 00 U1 0 O
O N O O 00 U1 ol
N e s e e e

End

O W W WwWwo o oo,

.2500005
.2500000
.2499995
.2500000
.1250002
.1249998
.1249998
.1250002
.0000000

= O O O OO & N =

-2.5000000 -2.5000000 1
2.5000000 -2.5000000 2
2.5000000 2.5000000 4

-2.5000000 2.5000000 6
0.0000000 -2.5000000 O
2.5000000 0.0000000 O
0.0000000 2.5000000 O

-2.5000000 0.0000000 O
0.0000000 0.0000000 1

Triangles

8

7481

6 951

9851

1581

7891

3761

6521

6791

End

3D curves:
Dimension
3
Vertices
33
-2.5000000
Edges

29

12 1

2 3 1
End

MeshVersionFormatted 0

-2.5000000

6.2500000 1
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5 Installing the software

The BLSURF software has several source files:

e a very short main program, written in Fortran 90, named blsurf.£90.

program blsurf
use blsurf_m
call blsurf_s
end program blsurf

e Fortran modules: blsurf_m.f90, blmc_m.f90, share_m.f90 and sharef_m.f
(the last one being in the old fixed format, hence a different suffix .f).

e a C program: bltms_m.c (bidimensional mesh generator).

e 3 sample module cad_m.£90.

Generally, it is necessary to rewrite the module cad_m.f90, which essentially
contains the implementation of the parameterization of surfaces and curves. This
part can be fully programmed by the user, or reduce to a simple call to a CAD
system.

The preceding source files must be compiled to create the corresponding object
files: blsurf.o, blsurf_m.o, blmc_m.o, share_m.o, sharef_m.o, bltms_m.o and
cad_m.o.

If the software is autonomous, all these object files must be linked together (by a
link editor) to make the executable file blsurf. The user will create the two ASCII
input files, x.pardom and blsurf.env (cf. sections 3.2 and 3.3). He/she will then
exploit the output files (cf. section 4), using for instance a personal vizualisation tool.

However, the software can also be integrated into an existing CAD system. In
this case, all the previous object files, except blsurf.o which corresponds to a main
program, should be linked to those which make up this system. This time, the CAD
system itself could also generate the files x.pardom and blsurf.env, or read the
output files of BLSURF, in a transparent way for the users. Finally, inputs and
outputs of files can be replaced by associated arguments, in order to improve the
performances.
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6 Examples of use

In this section, we present in a detailed way the simple example of a paraboloid.
Then, we will tackle the well known example of the Utah teapot (32 Bézier patches)
and the bust of Victor Hugo (discrete cylindrical surface).

6.1 Paraboloid
Let us consider the part of a paraboloid defined by:

[ ; ] €[-25, 4257 s S(uu)= | YmO=v

FEach edge of the square [-2.5, +2.5]? has an equation like C'(t) = P+ ¢ ]@,
t € [0,1], where P and @ are the extremities of the edge. The corresponding imple-
mentation of surfaces and curves is entirely given below:

module cad_m ! PARABOLOID
double precision :: segments(4, 4)
contains

subroutine cad_init
segments (1, :) (/ -2.5, -2.5, +2.5, -2.5 /)
segments (2, :) (/ +2.5, -2.5, +2.5, +2.5 /)
segments (3, :) (/ +2.5, +2.5, -2.5, +2.5 /)
segments (4,:) = (/ -2.5, +2.5, -2.5, -2.5 /)
end subroutine cad_init

subroutine surf0(refs, uv, S)

integer :: refs

double precision :: uv(2), S(3), u, v
u=uv(l) ; v =uv(2)

S(1) = u

S$(2) = v

S(3) = (u**2+v*x2) / 2
end subroutine surf0
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subroutine surfi(refs, uv, Su, Sv)
integer :: refs
double precision :: uv(2), Su(3), Sv(3), u, v
u=uv(l) ; v = uv(2)
Su(1) =1 ; Su(2) =0 ; Su(3) =
Sv(1) =0 ; Sv(2) =1 ; Sv(3)
end subroutine surfi

nou
< B

subroutine surf2(refs, uv, Suu, Suv, Svv)
integer :: refs
double precision :: uv(2), Suu(3), Suv(3), Svv(3)

Suu(1) = 0 ; Suu(2) = 0 ; Suu(3d) =1
Suv(1) = 0 ; Suv(2) = 0 ; Suv(3) =0
Svv(1l) = 0 ; Svv(2) =0 ; Svv(3) =1

end subroutine surf?2

subroutine curv_int (refs, ic, a, b)
integer :: refs, ic
double precision :: a, b
a=0.d0 ; b =1.d40

end subroutine curv_int

subroutine curvO(refs, ic, t, C)
integer :: refs, ic
double precision :: t, C(2)
C(1) = segments(ic,1) + t * (segments(ic,3) - segments(ic,1))
C(2) = segments(ic,2) + t * (segments(ic,4) - segments(ic,2))
end subroutine curv0

subroutine curvi(refs, ic, t, Ct)
integer :: refs, ic
double precision :: t, Ct(2)
Ct (1) = segments(ic,3) - segments(ic,1)
Ct(2) = segments(ic,4) - segments(ic,2)
end subroutine curvil

subroutine curv2(refs, ic, t, Ctt)
integer :: refs, ic
double precision :: t, Ctt(2)
Ctt(1) = 0.40
Ctt(2) = 0.40

end subroutine curv?2
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subroutine cad_hphys(refs, uv, h)

integer :: refs

double precision :: uv(2), h

! here, the value of h is not assigned to
end subroutine cad_hphys

subroutine cad_hphyc(refs, ic, t, h)
integer :: refs, ic
double precision :: t, h
! here, the value of h is not assigned to
end subroutine cad_hphyc

subroutine cad_hphyp(refp, h)

integer :: refp

double precision :: h

! here, the value of h is not assigned to
end subroutine cad_hphyp

subroutine cad_rads(refs, uv, rhos)

integer :: refs

double precision :: uv(2), rhos

print %, "cad_rads should not be called", refs, uv, rhos
stop

end subroutine cad_rads

subroutine cad_radc(refs, ic, t, rhoc)

integer :: refs, ic

double precision :: t, rhoc

print %, "cad_radc should not be called", refs, ic, t, rhoc
stop

end subroutine cad_radc

end module cad_m
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The file x.pardom, which describes the parametric domains, is first given without
the references of curves and points. This has the effect of generating automatically
the file x.pardom.new:

File x.pardom: File x.pardom.new:

1 ! ns (number of surfaces) 1 ! ns (number of surfaces)

1 ! refs (reference of the surface) 1 ! refs (reference of the surface)
1 ! orientation 1 ! orientation

4 ! nc (number of curves) 4 ! nc (number of curves)

1000 ! typc refc refpl refp2 1112 ! typc refc refpl refp2
1000 1224

1000 1346

1000 1461

0 ! np (number of internal points) 0 ! np (number of internal points)

At first, file blsurf.env calls the three base functions of BLSURF and keeps all
the default values:

File blsurf.env:

call inimesh
call export
call exit

Consequently, the exported file has the name x.mesh and contains a uniform
mesh, obtained with an advancing front method. The length of the diagonal of
the box bounding is diag = 7.7, hence the default physical size hphydef = diag/50
= 0.154. Figure 15 represents this mesh, which contains 2599 verticess and 4980
triangles.

A coarser uniform mesh is obtained by modifying files x.pardom and blsurf.env
(see below). Here, we impose an internal point at the center of the square, we
prescribe a size hphydef = 1.5 (and increase hphymax to the same value) and we
export both the 2D mesh of the parametric domain and the 3D mesh of the surface.
Figure 16 shows these 2D and 3D meshes, where each contains 45 vertices and 64
triangles.
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Figure 15: Paraboloid. Uniform default mesh.

Figure 16: Paraboloid. Left, coarse uniform mesh with a central point. Right, mesh

of the corresponding parametric domain.
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File x.pardom: File blsurf.env:
1 ! ns (number of surfaces) hphydef 1.5
hphymax 1.5
1 ! refs (reference of the surface) call inimesh
1 ! orientation call export
4 ! nc (number of curves) )
1000 ! typc refc refpl refp?2 option onesurf2d
1000 pref 2d
1000 call export
1000 .
1 ! np (number of internal points) option onesurf3d
10. 0. ! refpuv pref 3d
call export
call exit

The next example consists in imposing internal lines.

In module cad_m, subroutine cad_init is modified in order to specify 20 straight
segments and 16 circular arcs, and functions curv0, curvl, curv2 implement the
parameterization of the circular arcs:

uw=1ug+r cost ) B _
’U:’Uo—I—TSinH with 0—01—|—t(02 01)7 tE[O,l]

The following input files generate the 2D and 3D meshes shown in figure 17.
With the option flag = 1, the discretization of the boundary and internal curves
are better visualized. Each mesh contains 1772 vertices (+468 extremities caused by
the curves discretization) and 3366 triangles.
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File blsurf.env:

File x.pardom:
1 ! ns (number of surfaces) call inimesh
1 ! refs (reference of the surface) option allsurf2d
1 ! orientation pref 2d
36 ! nc (number of curves) flag 1
1000 ! typc refc refpl refp2 call export
1000
1000 option allsurf3d
1000 pref 34
1000 flag 1
1000 call export
1000
1000 call exit
2000
2000
2000
0 ! np (number of internal points)
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Figure 17: Paraboloid. Left, default uniform mesh with internal curves. Right, mesh

of the corresponding parametric domain.
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6.2 Utah teapot

We use a very familiar example, the teapot modeled by the University of Utah [10].
It is made up of 32 Bézier patches: 16 for the body (bottom included), 4 for the
handle, 4 for the spout and 8 for the lid (see figure 18 left).

A bicubic Bézier patch is defined on [0, 1]? by:

S(u,v) :Z 4

3 3
=0 5=0

Pij Bi(u) Bj(v) ,

where P;, i =0..3, 7 = 0..3 is a given grid of control points, and B;(t), 1 = 0..3
is the Bézier basis composed of the Bernstein polynomials:

Bo(t) = (1-1)°
Bi(t) =3t (1-1)?
By(t) =3¢* (1 —1)
Bs(t) =13

We have modified the boundaries of the square [0,1]? so that the whole mesh
of the body, the handle and the spout is conformal. To obtain this, we generated
independently the surface meshes of different patches, computed the points at the
intersections of these meshes, and finally obtained splines passing through these
points with the de Boor algorithm [2].

To better illustrate the examples, we present meshes on the four patches that
make up the front part of the body of the teapot. Figure 18 right shows the default
uniform mesh. The length of the diagonal of the box bounding is diag = 4.7, hence
the default physical size hphydef = diag/50 = 0.094. This mesh contains 1296
vertices and 2430 triangles.

With the following environment file, four meshes are exported, corresponding to
the parametric domains with respective references 1, 4, 5 and 8. These meshes are
shown in figure 19. At the top, vertical internal lines with abscissae v = 0.3 and
u = 0.8 can be seen. They have been imposed to follow more closely the contour
lines on the upper border.
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File blsurf.env

call inimesh

option allsurf3d
pref 3d

option onesurf2d
refs 5

pref 24.5

call export

call export
option onesurf2d

option onesurf2d refs 8
refs 1 pref 24.8
pref 24.1 call export

call export
call exit

option onesurf2d
refs 4

pref 24.4

call export

By adding both options hphy_flag 0 and hgeo_flag 1, a geometric mesh is
obtained (see figure 20). The indicated input files lead respectively to the default
tolerance angle § = 8° or a given angle § = 16°. Figure 20 shows these two meshes:
left, 3293 vertices and 6482 triangles ; right, 1503 vertices and 2950 triangles. Some
triangles are stretched because of the strong local variation of the radii of curvature,
thus the sizes of the elements (which are proportional to the radii). In the next
version of BLSURF, it will be possible to balance these size “shocks” [3].

The following example illustrates the specification of physical sizes (see figure 21).
To this end, we give hphy_flag = 2 and the function cad_hphys returns respectively
the sizes 0.05, 0.1, 0.2 and 0.8 on the four patches (of references 1, 4, 5 and 8). On the
interface curves (extremities excepted), the prescribed sizes are the arithmetic means
(0.84+0.1)/2 = 0.45, (0.14-0.05)/2 = 0.075, (0.05+0.2)/2 = 0.125 et (0.2+0.8)/2 =
0.5. At the common point of these four curves, the prescribed size is the arithmetic
mean (0.4540.075+0.125+0.5) /4 = 0.2875. Figure 21 shows, left, the resulting mesh
(475 vertices and 843 triangles). By adding hgeo_flag = 1, the geometry of the
object is considered also (right, 3460 vertices and 6784 triangles).

RT n- 0235



40 P. Laug and H. Borouchak:

subroutine cad_hphys(refs, uv, h) subroutine cad_hphyc(refs, ic, t, h)
integer :: refs integer :: refs, ic
double precision :: uv(2), h double precision :: t, h
double precision, parameter :: & end subroutine cad_hphyc
th(8) = (/ 0.05, 0., 0., 0.1, &
0.2, 0., 0., 0.8 /) subroutine cad_hphyp(refp, h)
integer :: refp
h = th(refs) double precision :: h
end subroutine cad_hphys end subroutine cad_hphyp

To illustrate the influence of the computations of the means, we return to the
preceding example (figure 21 left). The environment variable hmean_flag has the de-
fault value 0, which corresponds to an arithmetic mean of the sizes. With hmean_flag
= -1, the prescribed size on a curve is the minimum of those on the adjacent sur-
faces, thus producing the mesh in figure 22 left (534 vertices and 960 triangles).
With hmean_flag = 1 (geometric mean), the mesh in figure 22 right is obtained (494
vertices and 881 triangles).

To illustrate now the influence of the interpolation of the prescribed sizes, we
impose a size of 0.01 at the central point, 0.1 at the extremities of the upper curves,
and 0.5 at the extremities of the lower curves. Figure 23 left corresponds to the
linear interpolation obtained by default (633 vertices and 1188 triangles). Figure 23
right corresponds to a geometric interpolation (2748 vertices and 5414 triangles).

subroutine cad_hphys(refs, uv, h) subroutine cad_hphyp(refp, h)
integer :: refs integer :: refp
double precision :: uv(2), h double precision :: h

end subroutine cad_hphys
if (refp == 6) then

h =0.01
else if (refp <= 26) then
h=0.1
subroutine cad_hphyc(refs, ic, t, h) else
integer :: refs, ic h =0.5
double precision :: t, h end if
end subroutine cad_hphyc end subroutine cad_hphyp
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Figure 19: Utah teapot. Meshes of the four parametric domains corresponding to
the previous uniform mesh.
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hphy_flag 0 hphy_flag 0
hgeo_flag 1 hgeo_flag 1
angle_mesh 16

Figure 20: Utah teapot. Left, geometric mesh with the default angle § = 8°. Right,
with an angle 8 = 16°.
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hphy_flag 2 hphy_flag 2
hgeo_flag 1

Figure 21: Utah teapot. Left, constant size for each patch. Right, mesh conforming
to both the same prescribed sizes and the geometry.
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Figure 23: Utah teapot. Size interpolation: linear (left) or geometric (right)
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To complete these examples, we show in figure 24 the mesh of the entire tea-
pot (32 patches) with a constant elements size A = 0.1. This mesh contains 5917

vertices and 11658 triangles. For information, the CPU time was 29 seconds on a
HP 9000/780 workstation, but this time can be greatly improved by optimizing the

external functions (surf0 and surf1) or by modifying the environment variables (for
instance LSS or frontal).

File blsurf.env:

hphydef 0.1

call inimesh
call export

call exit

('

s -

> > W
X RESEEREDS
[ OO S A I
s \VAVAVAVAVA

avAA A
SERRRRIS OSAE
RN
VAVAVAY
Xg%%‘rﬁmmv A

52
S
==
== S

v Vavav,
RO
R
SR HXRAS

Figure 24: Utah teapot: uniform mesh.
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6.3 Bust of Victor Hugo

By writing the appropriate external functions, the BLSURF software can be used
to mesh discrete surfaces (defined by a structured grid). As an illustration, we have
created an adapted mesh of a discrete cylindrical surface (the bust of Victor Hugo)
obtained with a digitalization system “3D VideoLaser” [9] (cf. figure 25).
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7 Conclusion and future extensions

The current BLSURF version has several restrictions, most of which have already
been mentioned. Some of these will be removed within a short time:

e Although the memory is in general managed dynamically, the mesh of each
patch is limited to 300 000 points and 600 000 triangles. If this limit is excee-
ded, the error message “insufficient memory” appears. It is then necessary to
modify the source file of the bidimensional mesh generator. This will shortly
be replaced by a more dynamic memory management.

e The generated elements are of type P1 only (three-node triangles). The next
version will also generate elements of type P2 (six-node triangles), Q1 (four-
node quadrilaterals) et Q2 (eight-node quadrilaterals).

e The next version will be able to balance the “h shocks” (strong variations of
the prescribed sizes) [3].

e The next version will allow the user to prescribe sizes at the vertices of a
background mesh.

e The next version will allow the user to specify an anisotropic map, i.e. the size
and the shape of the elements.

e The auxiliary files (written by some components of BLSURF and read by
others) will be replaced by associated arguments, which considerably reduces
both CPU time and disk space.

Despite the above restrictions, it is already possible to integrate the BLSURF

software into a CAD system, and to generate good quality surface meshes in a rea-
sonable CPU time.

RT n° 0235



48 P. Laug and H. Borouchak:

References

[1] M. Berger. Géométrie — tome 2. Nathan, 1990.
[2] C. pE BooR, A Practical Guide to Splines, Springer, 1978.

[3] H. Borouchaki, F. Hecht, P. Frey. Mesh Gradation Control. International Journal
for Numerical Methods in Engineering, vol. 43, n° 6, pp. 1143-1165, 30 November
1998.

[4] H. Borouchaki, P. Laug, P.L. George. About parametric surface meshing. 2™
Symposium on Trends in Unstructured Mesh Generation, USNCCM’99, Uni-
versity of Colorado, Boulder, CO, USA, 4-6 aott 1999.

[5] B.W. Char et al. First Leaves: a Tutorial Introduction to MAPLE V. Springer,
1992.

[6] Ch. Faure, Y. Papegay. Odyssée User’s Guide — Version 1.7. Rapport Technique
INRIA RT-0224, septembre 1998.

[7] P.L. George, H. Borouchaki. Delaunay Triangulation and Meshing. Ed. Hermés,
Paris, 1998.

[8] P. Laug, H. Borouchaki. Maillage de [’enveloppe d’une réunion de sphéres. Revue
internationale de CFAO et d’informatique graphique, 13(1), pp. 43-64, mars
1998.

[9] F. Schmitt, H. Maitre, A. Clainchard and J. Lopez-Krahm. Acquisition and
Representation of Real Object Surface Data. SPIE Proceedings of Biostereome-
trics’85 Conference, vol. 602, Cannes, France, 2-6 December, 1985.

[10] A. Watt. Fundamentals of Three-Dimensional Computer Graphics. Addison-
Wesley, 1989.

INRIA



/<

Unit e de recherche INRIA Lorraine, Technopdle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unit e de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unit e de recherche INRIA Rhone-Alpes, 655, avenue de I’Europe, 38330 MONTBONNOT ST MARTIN
Unit e de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unit e de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
http://www.inria.fr

ISSN 0249-6399



