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Manuel du langage OPTIMIX
(pour OPTIMIX 2.0)

Résumé : Ceci est le manuel décrivant le langage d’OPTIMIX, le générateur d’optimiseurs. OP-
TIMIX peut étre utilisé pour générer des analyses et transformations de programmes. Son langage
d’entrée est basé sur DATALOG et la réécriture de graphes. Deux nouvelles classes de systémes de
réécriture de graphes sont particulierement utilisées : les systémes d’ajout d’arcs (edge addition rewrite

systems, EARS) et les systémes de réécriture de graphe exhaustifs (ezhaustive graph rewrite systems,
XGRS).

Mots-clé : Générateur de compilateurs, optimisation de programmes, spécification, stratification,
langages de haut niveau, programmation visuelle



... there clearly remains more work to be done in the following areas:

(1) discovery of other properties of transformations that appear to have
relevance to code optimization,

(2) development of simple tests of these properties, and

(3) the use of these properties to construct efficient and effective optimiza-
tion algorithms that apply the transformations involved.

Aho, Sethi, Ullman in "*Code Optimization and Finite Church-Rosser Systems”’ [ASU72]

22, Der Einsatz von Graph-Ersetzungssystemen auf Probleme der
DatenfluB-Analyse, wie Bestimmung gemeinsamer Teilausdricke, Pa-
rallelisierbarkeit, Schleifenoptimierung, existiert bisher nur in Andeu-
tungen. .. Auch das Problem der Ubersetzung eines Zwischencodes (in
Form eines Programmgraphen) in Maschinencode mit Hilfe von Graph-
Ersetzungssystemen wurde bisher kaum untersucht.

M. Nagl in [Nag79], Kapitel Offene Probleme
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Warning

This is a language reference manual, not a tutorial on the OPTIMIX-specification language.
OPTIMIX is, although it provides quite advanced rule-based programming concepts for specification
of optimizations, not a commercial software product, but a research prototype. Thus

1.

OPTIMIX may dump core in unexpected situations. Then send a mail with the specification and
the version number of your binary to the author. To obtain the version number call optimix -v
on the command line. T do not promise to provide immediate support but I am glad if users
help me to detect errors.

. OPTIMIX may generate incorrect code. Test your generated code first before you trust it!!

The documentation may be too crude to understand (because I have only limited time for it).
Please try OPTIMIX on different variants of your specification. Also read all papers on the
subject of graph rewriting for program optimization.

The specification language is not stable, and may change in further versions. The syntax is
sometimes inconsistent and non-orthogonal (large and small keywords, bracket structuring).
This is due to historic reasons and the experimental nature of the language. Future versions will
try to make the language more orthogonal and in its conventional pars more similar to classical
languages as C/C++.

OPTIMIX is compiled with an enourmous amount of gcc warnings. This is due to the use of void
pointer classes and the AST tool types, which would need casting everywhere. If the system
does not compile, send a mail to the author and use the OPTIMIX-binary.

To construct OPTIMIX has cost me about 3 man years. Please be patient with me and the
current status of the tool.

If you are pleased with the tool and find it revolutionary, please send a plain mail postcard with
a nice picture to my address. This will motivate me to fight for further development. The more
encouraging comments are found on the postcard, the better!

INRIA
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Chapter 1

General Topics

This is the language manual for OPTIMIX, the optimizer generator. OPTIMIX can be used to generate
program analyses and transformations in C language. Its input language is based on DATALOG and
graph rewriting [A894] [AB895] [AB96b]. Especially two new classes of graph rewrite systems are used:
edge addition rewrite systems (EARS) and exhaustive graph rewrite systems (XGRS).

The development of OPTIMIX has partially been supported by the Esprit project COMPARE (No.
5399). The tool is not in the public domain; however, a free version can be ordered from the author.

It is highly recommended that the user first reads the papers [A94] [A95] [AB96b] [AB96a]. [AB94]
and [A96a] are available with the OPTIMIX-package.

1.1 Design procedure for an optimizer

In order to generate optimizer parts with OPTIMIX we propose the following procedure [AB96D].

1.

2.

Write down all preconditions for a transformation, perhaps in text.

Define the data model of your application, i.e. define which parts of the knowledge you want
to present should be objects and which should be relations. This can be done either with the
syntax of the tool AST from the GMD toolbox Cocktail [GE90] [Gro89], or — within the context
of the compiler model CoSy — in CoSy-fSDL [Buh95].

Design of the data manipulation, i.e. formulate graph rewrite systems that compute and trans-
form the graphs that were defined in the data model. Build graphs with edge addition rewrite
systems (EARS), and transform them via general graph rewrite systems (GRS).

. Think about the representations of the graphs. Which algorithms does OPTIMIX generate for a

problem and with which graph representations do these run fast? Exchange graph representa-
tions (functor calls) accordingly.

1.2 Two principal modes

OPTIMIX can be used in CoSy-fSDL-mode and in AST/standalone-mode.

CoSy-fSDL-mode This mode is only feasible in the CoSy compiler construction environment. The

data model is specified in CoSy-fSDL, as common files and views of engines, that collaborate
in the compiler. For each compiler, CoSy produces a flatform-file which contains all fSDL
specifications in a flat form. OPTIMIX must read this file to know about the data model (option
-ff).

RT no0195
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AST /standalone-mode OPTIMIX is able to read existing data model specifications of AST (with
small restrictions) [GE90] [Gro89]. This means that existing AST data specifications of compilers
can be reused and extended for use with OPTIMIX. AST data definitions are module-based and
AST-modules may occur within OPTIMIX-specification files. Thus AST data definition language
can also be used as standalone data definition language of OPTIMIX.

The compiler construction toolbox Cocktail is available in two forms. There is a free version at
ftp://i44ftp.info.uni-karlsruhe.de/pub/cocktail/. After 1993, Josef Grosch, the developer
of Cocktail, has become independent and maintains Cocktail within his own company. Currently
there is an improved version of the toolbox, e.g. containing a new LR (k) parser generator with visual
debugging aid. A research licence is available for this version.

Dr. Josef Grosch
CoCoLab

Hagsfelder Allee 16
D-76131 Karlsruhe
Germany

Tel.: +49-721-697061
Fax : +49-721-661966
Mail: grosch@cocolab.sub.com

1.3 A first example

First consider a small program analysis example, the transitive closure over basic blocks. Typically,
basic blocks are sequences of statements started by labels and ended by jumps (straight-line code).
Each block is connected to other blocks via the jumps and the labels. A block B1 is predecessor of
another block B2 if it ends with a jump to B2. Then also B2 is a successor to B1, and this relation
makes up the basic block graph.

If we want to know which blocks are reachable from a block, we have to construct the transitive
closure operation on the basic block graph. Assume our block looks like (in AST):?

MODULE TransitiveClosureDDL TREE MyTree RULES
Block =
/* other attributes left out */
/* the successors in the basic block graph as embedded neighbor */
/* sets (type consset(Block)) */
( BlockGraph: consset(Block) )
/* the successors in the reachable block graph as embedded */
/* neighbor sets (type consset(Block)) */
( ReachableBlocks: consset(Block) )

END TranstiveClosureDDL

A similar CoSy-fSDL definition would be:

domain Block { Block <
/* the successors in the basic block graph as SET functor application */
BlockGraph: SET(Block),
/* the successors in the reachable block graph as SET functor application */
ReachableBlocks: SET(Block)

>};

With this data model we may write a specification that computes the transitive closure of the
graph BlockGraph into the graph ReachableBlocks:

! Actually this is an extension of AST syntax. See section 2.3.3 how OPTIMIX collaborates with AST.

INRIA
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MODULE TransitiveClosure
OPT
EARS ComputeReachableBlocks(BlockSet:consset(Block))

{

RANGE b <= BlockSet;
RULES

ReachableBlocks(b,bl) :- BlockGraph(b,bl).
ReachableBlocks(b,bl) :- BlockGraph(b,s), ReachableBlocks(s,bl).

}

END TranstiveClosure

This EARS (edge addition rewrite system) specifies with two rules how a relation ReachableBlocks
over blocks may be constructed by querying another relation BlockGraph. The first rule means that a
block b1 which is a successor to a block b in relation BlockGraph should also be a successor in Relation
ReachableBlocks. The second rule describes the transitive closure: if there is a successor block s to
b in relation BlockGraph which has another reachable block b1, then b1 should also reachable from b.

For the EARS a C routine with name ComputeReachableBlocks is generated. This routine walks
over all blocks from the parameter set BlockSet and applies the two rules. Because the rules are
recursive, the rule applications are embedded in a fixpoint evaluation loop. To see which code OPTIMIX
generates for this specification, feed the following file (example-reachable.ox from directory doc) to
OPTIMIX. The generated C code may be found in Appendix 6.3.

LII11771777777777777777777777777777777777777

// Transitive closure over basic block graph.

LIITIIITIIITI00770077707070077717177177771177

MODULE TransitiveClosureDDL
TREE MyTree RULE
Block =
/* other attributes left out */
/* the basic block graph as embedded neighbor sets (type set_Block) */
( BlockGraph: consset(Block) )
/* the reachable block graph as embedded neighbor sets (type set_Block) */
( ReachableBlocks: consset(Block) )

END TranstiveClosureDDL

MODULE TransitiveClosure
OPT
EARS ComputeReachableBlocks(BlockSet:consset(Block))
{
RANGE b <= BlockSet;
RULES

ReachableBlocks(b,bl) :- BlockGraph(b,bl).
ReachableBlocks(b,bl) :- BlockGraph(b,s), ReachableBlocks(s,bl).
}

END TranstiveClosure

1.4 Running OPTIMIX from shell

shell>> optimix [options] filenames
shell>> optimix [options] < filename
shell>> optimix -typedefs [options] filenames

OPTIMIX can be run as standalone command (line 1), or as a filter in a pipe (line 2). Thus a
previous run of cpp can be used to resolve any conditional #ifdef-commands in a specification. If the
special option -typedefs is set, only pointer type definitions for the used C types are produced (line
3).

RT no0195
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If the user specifies several OPTIMIX input files, the generated files are prefixed by the file name
prefix of the first file. For instance,

optimix optimizer.ox optimizer2.ox

will create two files optimizer.c and optimizer.h which contain the generated code and its
interface. Also the option -o <file> overrides the name of the output file to <file>.

File-suffixes need not be specified. Then OPTIMIX looks for the file in the current directory, trying
the following suffixes in order: .ox., .cg, .ast.

OPTIMIX can be parametrized in different ways. There are options, which are set in the specifi-
cation file, and command line options. Command line options fall in directly recognized options (e.g.
—-typedefs) or option keywords after the generic prefix option -x (e.g. -x PrintSuperClasses) The
latter ones refer to options which are not often used or development options. It is likely that in future
version of OPTIMIX option keywords become directly recognized options. The command line options
of OPTIMIX are:

INRIA
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-help (-h)
-X name
-x name=value

— General Options: —

print this message and exit

set option flag name

set option keyword name to value

— Input Options: —

-ff name use name for fSDL flat form file; CoSy-fSDL mode is turned on
-ast name use name as AST/CG data specification file
— Output Options: —
-0 name use name for output files
-typedefs if AST data specifications are used, only print a file oxtypes.h

-x InternalTypedefs

-comments value

-SimpleNestedLoopJoin
-ETJoin

-ETFilters

-nobitsetopt

-noindex

-view name

-helpfuns

-helpfun name

with forward declarations for C types of flat sol functor applications.
if AST data specifications are used, print all forward declarations
for C types of flat sol functor applications in the .h-file.

Otherwise they are printed in the external file oxtypes.h

(currently has limited effect) emit generated code with comment
level value. The larger value, the more comment is

printed. 3 is current maximum.

use nested loop join code generation (default code generation mode)
use element-test-join code generation

use element-test path filters during code generation

do not generate bitset operations in code

do not use index optimization

(CoSy-fSDL mode) use name as view name of the engine
(CoSy-fSDL mode) produce help functions together with other functions
(CoSy-fSDL mode) produce help functions in file name

-v
-VersionNumber
-vl

-v2

-silent

-poem

— Verbosity: —

print version info, do nothing else

print version number only, do nothing else
be a bit verbose (default)

be fully verbose

be totally silent

print a poem and exit

-x ShowSuperClasses
-x ShowClassAttributes
-ShowOptions
-ShowBinding
-ShowComparing
-ShowSignatures
-ShowNodeTypes
-ShowRTG
-ShowRTGPaths
-ShowTermination
-prio int

-diag name
-ShowParseTree
-parser

— Debug information: —

print the super classes of all class or fSDL domains.

print the classes and their attributes (only for AST classes)
print all options which are set

print bindings of types for variables during type inference
print comparisons of types for variables during type inference
print signatures of all rules (types of rule test root nodes).
print all infered types of all variables.

write all rule test graph in VCG format to files

print all paths of path coverings in rule test graphs.

print the termination labels of each rule and stratum

print test outputs that have priority less than int

(obsolet) use diagnostic output file name

(obsolet) write internal data structures of ox in ASCII format
run only the parser

RT no0195
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1.4.1 Option file

Instead of giving the command options on the command line, the user can pass them also via a
customization file, .optimixrc, which must be located either in the current directory or in the home
directory. Each option (maybe also with a value) has to stand on an extra line in the file. Empty lines
and lines beginning with # are ignored.

INRIA
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Chapter 2

An Optimix Specification

2.1 Outline
The outline of an OPTIMIX-specification file is the following:!

OptimizerSpecification ::= ’MODULE’ ModuleName ’0PT’ [ OptimizerName ] GlobalTargetCodeSections
[ £SDLImportDeclaration ] [ InheritanceDeclarations ] GraphRewriteSystems ’END’ ModuleName
| ’0PT’ [ OptimizerName ] GlobalTargetCodeSections
[ £SDLImportDeclaration ] [ InheritanceDeclarations ] GraphRewriteSystems .
GlobalTargetCodeSections ::= [ ’HFIRST’ TargetCodeBlock ] [ ’IMPORT’ TargetCodeBlock ]
[ ’EXPORT’ TargetCodeBlock ] [ ’GLOBAL’ TargetCodeBlock ]
[ ’BEGIN’ TargetCodeBlock ] [ ’CLOSE’ TargetCodeBlock ] .
GraphRewriteSystems ::= ( UseClause | GraphRewriteSystem ) * .

OPTIMIX-specifications are module-based. OPTIMIX accepts OPTIMIX-modules and AST-
modules.? As in AST, OPTIMIX-modules are bracketed by the pair MODULE <module-name> and
END <module-name>. However, in order to distinguish OPTIMIX-modules from AST-modules, the
keyword OPT is used instead of the AST keyword TREE. OPT may be followed by an OptimizerName,
which then is the name of the output file.? If the specification is monolithic, the module bracket may
be left out. Then the file is regarded as one module which does not contain AST-modules.

Specified modules are combined in order to compose the output file(s). The graph rewrite systems
of all OPTIMIX-modules are collected into one list. The code which is generated for them is put toge-
ther into one C output file. In AST/standalone-mode, OPTIMIX also collects all data specifications
from AST-modules, coalesces them into a single data model, and type-checks the graph rewrite spe-
cifications against this model. In CoSy-fSDL mode, the user must specify a flatform-file from which
the flat fSDL data specification can be read.

As AST, OPTIMIX accepts several global target code sections, containing code of the target lan-
guage C. The code is copied unchanged to certain parts of the generated files:

HFIRST into <OptimizerName>.h file; before any code line. Can be used to manipulate inclusions
of files

IMPORT into <OptimizerName>.h file; after the inclusion of stdio.h
EXPORT into <OptimizerName>.h file; after IMPORT

GLOBAL into <OptimizerName>.c file; after the prologue

'Note that the grammar parts we give here are not the actual grammar of the parser; they only show the layout of
an OPTIMIX specification.

2AST-modules are described in section 2.3.3.

3Otherwise it is by default the first command line file argument or the value of the -o option.
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BEGIN into <OptimizerName>.c file into the begin function <OptimizerName>_Begin()

CLOSE into OptimizerName.c file into the close function <OptimizerName>_Close ()

2.2 Lexical parts

Lexical items of OPTIMIX specifications are the following:

String ::= ’’’ any ’’° | "’ any ’"’.
Digit ::= [0-9]

Integer ::= Digit + .

Ident ::= A-z (A-z|Digit)+
TargetCodeBlock ::= ’{’ any ’}’.
TargetPredicate ::= ’{*’ any ’*}’.

Keywords Special keywords are the following.* Also their counterparts in lowercase letters are
reserved, denoting the same.

ADD AFTER ANY

BEGIN BEFORE

CHECK CLOSE CONSLIST CUT

DAG DECLARE  DELAYEDREMOVE DELETE

EARS END ENDINPUT EXPORT EXPORTS

FAIL FALSE FINER FIRST FIRSTFIX FOR FORALL
FREE FUN FUNCTION FUNCTOR

GLOBAL GENERIC GRAPH GRS

HASH HFIRST HYPEREDGE

IMPORT IMPORTSDL INDEX INHERITED INITIAL INPUT ITERATE
LAST LASTFIX  LEFT

MARK MODULE

NEW NEXT NIL NOT NULL

OPT OPTIONS

PATH PRED PREV PROC PROPERTY

RANGE REDUCIBLE REMOVE REFINE REUSE RULE RULES
STRATUM  SUCC

TARGET THREADED TREE TRUE

USE

VIEW VIRTUAL

XGRS

Note that within AST-modules AST-syntax holds. Because for AST code the same parser is used,
all keywords of AST are reserved also within OPTIMIX-specifications. Also the following are special
keywords of OPTIMIX. They are names of functors (template classes, either from CoSy-fSDL or the
sol-library, see section 2.3.1):

LIST SET SETF

EGRAPH  SGRAPH  HGRAPH  SEQCLASS

BIPUNI  BITUNI

bitset conslist consset hashset ptrarray
bipuni bituni hgraph seqclass

Delimiters Delimiter of identifiers (besides white space (space, newline, tab)) are:
cy £y {3y . 5 ¢ = <>/ /x % (xx) {x*}{| I} {IIl I}
#E U D > 1"=<>17:=
<= ==>

“Some of them are not yet used

INRIA
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Line comments are started by // and end at a newline. Non-nested comments start with /x*
and end with */ (same as in C++). There are also nested comments available as in Modula:
(* nested comment *). It is not allowed to use the string delimiter characters ’> and " in com-
ments. The keyword ENDINPUT ends the input in a specification file, i.e. all text after it is regarded to
be a comment. This is nice for testing; just move text after [ END <module-name> ] ENDINPUT and
OPTIMIX will not see it.

Basic syntactical definitions We will need some syntactical definitions in the following:

Type ::= Ident .

C-Type ::= FlatFormType | Ident .

Variable ::= Ident .

GraphName ::= Ident .

Name ::= Ident | String .

fSDLDomain ::= Ident .

fSDLOperator ::= Ident .

FieldName ::= Ident .

FlatFormType ::= Ident .

ActualParameter ::= Ident .

Stringlist ::= String // ’

IdentKommalList ::= Ident // ’ °

NodeType ::= fSDLDomain ’@’ fSDLOperator
| £SDLDomain | fSDLOperator | Type .

A C-Type is a type which can be understood by the C-Compiler. A FlatFormType is a C-type
which results from functor flattening in fSDL, i.e. from expanding all inheritance relations and functor
calls.

2.3 Global data declarations

OPTIMIX requires that the user specifies a data model of the graphs which are queried and rewritten
(data definition specifications). The data model is specified in a data definition language (DDL), either
AST-DDL or flat-CoSy-fSDL.

2.3.1 Predicates, object types and functors
Graph representations by graph functors

In OPTIMIX analysis and transformation specifications use rules that are conjunctions of binary pre-
dicates (sections 3.1 — 3.7). This is the style of DATALOG [CGT89b]. Each predicate is binary and
must correspond to an edge of a graph of the data model. The data model specification tells how
these graphs, i.e. the predicates, are represented. OPTIMIX provides graph representation transparency
(functor transparency): it is transparent from a predicate specification how a corresponding graph is
represented, this is only expressed by the type of the object field in the data model.

Types of graphs and sets are expressed by functor calls on object types. Functors are template
classes, which are instantiated by one or several object types in order to specify a concrete graph or
set. The given predicate name of the specification is used to find the object field in the data model,
and with that the functor call. The code to traverse the concrete graphs is generated according to the
functor call. A change of the type of a graph or set field, i.e. a change of a functor call changes the
generated code, while the rewrite specification stays the same.

If graphs are implemented with these functors, you can test whether certain edges exist, and add or
delete edges from them. OPTIMIX also understands simple pointer fields. You are allowed to navigate
via them by writing down their field name as predicate.

RT no0195
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Typechecking

A rewrite specification in an EARS or GRS is checked against the data model in the following way
(Figure 2.1).

Object Type 0

predicated:graph(ObjectTypel,ObjectType2);

|\ - - - - - - Object Type 1

= predicatel: ObjectType2;

= predicate3:set(ObjectType2),

predicate2:set(ObjectTypel);

|
|
|
:I
I|
:I
h _ _ _ _ ObjectType2
I|
I|
I|
I|
I|
I|
I|

I Rewrite Rule

- | variabletype
| 5
predicatel(Variadlel| Variable2), |
- ___ ! predicate type
predicate2(Variable2,Variable3) : ——
|
predicate3(Variable3,V ariabled)

==> predicated(Variablel,Variabled).

Figure 2.1: Typechecking a rewrite rule against the data model. Predicates refer to field names (solid
lines), variables to object types (dashed lines).

1. for all predicates, lookup the predicate as a field in an object.

2. determine the type of the field.

object type (pointer type) (in the figure predicatel) Then the relation is one-valued. The
containing object type of the predicate determines the type of the left variable of the
predicate. The right type is the type of the field.

set functor type (in the figure predicate2) Then the relation is multi-valued, and represented
by a call to an embedded set functor. This means that the field consists of a set of neighbors
of an object type (the parameter of the functor call). This parameter determines the type of
the right variable of the predicate. The containing object type of the predicate determines
the type of the left variable of the predicate.

list functor type Same as previous case, except that the neighbor set is ordered.

graph functor type (in the figure predicate4) Then the relation is a functor-created graph
over two types. The first parameter makes up the type of the left variable, the second that
of the right variable.

. When all types of variables for predicates have been determined, check whether these are com-
patible (equal or subtypes of each other).

OPTIMIX uses the type information on variables and predicates to generate correct navigation and

manipulation code. This code calls functions from the functor libraries (loop over neighbor sets, add
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edges, delete edges, delete nodes, add nodes, test existance of edges). The variable type information
is also used to check whether the user has specified correct pattern matching.

Currently OPTIMIX only supports a fixed set of functors, either from the CoSy functor library or
from the sol-library which is shipped in the distribution.
2.3.2 Data definitions with CoSy-fSDL
Within the CoSy compiler environment OPTIMIX can be used to produce engines which are put into
CoSy compilers.

Available functors for CoSy-fSDL

Set functors

Functor ::= f£fSDLFunctor | SolFunctor

fSDLFunctor ::= fSDLHomogeneousGraphFunctor | fSDLBipartiteGraphFunctor | fSDLSetFunctor .
SetFunctor ::= ’SET’ | °LIST’ | °’SETF’.

FunctorCall ::= Functor ’(’ NodeType // °,” ’)’.

Types of set fields may be instantiated via set functor calls. These consist of an application of a
functor (a template class) to one or several node type parameters. Please consider the CoSy framework
documentation for set functor parameters.

Graph functors OPTIMIX supports functor-created as well as hand-crafted graphs. Functor-created
graphs provide a set of nodes as well as the relation. Hand-crafted graphs always consist only of the
relations, which are represented as neighbor sets in objects. Thus hand-crafted graphs are always
represented as sets of neighbor sets, and their node set is not represented explicitly. In CoSy-fSDL-
mode the supported functors are:

fSDLFunctor ::= fSDLHomogeneousGraphFunctor | fSDLBipartiteGraphFunctor | fSDLSetFunctor .
fSDLHomogeneousGraphFunctor ::= >EGRAPH’ | ’SGRAPH’> | ’HGRAPH’> | >SEQCLASS’.
fSDLBipartiteGraphFunctor ::= ’BIPUNI’ | ’BITUNI’ | ’SETFUNI’.

Predicates in rules may also refer to fields with object types (pointer types). Navigation is done
also by specifying their field name as predicate in a rule. OPTIMIX generates the corresponding field
dereferencing.

Import a flat form file

Every CoSy compiler relies on several CoSy-fSDL data specifications, and especially on an CoSy-fSDL
flatform-file <compiler>.fdl. This flatform-file must be imported to every OPTIMIX-specification.
The user can import a flatform-file via command line option -ff (section 1.4). If the specification is
used only for one compiler, the import can also be specified in the OPTIMIX-specification itself:

fSDLImportDeclaration ::= ’IMPORTSDL’ String

This declares that OPTIMIX should read an CoSy-fSDL flat form file with name String and turns
on CoSy-fSDL-mode.

Inheritance declarations for CoSy-fSDL

InheritanceDeclarations ::= ’FINER’ FinerDecl * .
FinerDecl ::= Ident // ’<’ ’;’.
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The CoSy-fSDL flatform does not contain inheritance information because domains are flattened.
Because OPTIMIX checks the types of rule predicates against the data model, and performs some type
inference, inheritance information is often lacking. To support the CoSy-fSDL flatform information,
the user may specify inheritance declarations in the OPTIMIX-specification himself. These declare
flatform types (domains and operators) to be more specific (finer) than others. In particular this is
required, when the type inference algorithm of OPTIMIX infers that two types are non-compatible
which are different in the flatform but were compatible in the original CoSy-fSDL specification. E.g.
consider two domains SimpleSTMT_Assign and STMT_Assign, where SimpleSTMT is a sub-domain of
STMT. In the flatform the inheritance relation of SimpleSTMT and STMT is lost. If the user specifies
FINER SimpleSTMT < STMT;, the type inference algorithm will know that both types are compatible.

Note that finer types stand to the left.

2.3.3 Data definitions with AST

OPTIMIX can collaborate with AST (or CG), the tools from the compiler toolbox Cocktail. OPTIMIX
can read one or more data specification modules in AST-format and use them as definition of node
and edge types. Note that either AST- or CoSy-fSDL-mode can be used, mixed mode does not work.
A user may tell OPTIMIX in several ways whether/which AST-modules he wants to use.

e AST files can be handed over as normal input files, if they consist only of AST-modules. Then
OPTIMIX automatically recognizes them as AST code and parses them:

optimix optimizer.ox optimizer.ast optimizer2.cg

Note that the first input file determines the name of the output file; thus AST-files should be
given as later arguments.

o Alternatively, the user may specify one or more command line flags —ast <file> then this/these
file(s) are parsed to find the AST data definitions. Example:

optimix -ast optimizer.ast -ast optimizer2.cg optimizer.ox

e The user can write a use-clause for a file in the OPTIMIX-specification (on the same syntactic
level as GRS/EARS). This clause has the form

UseClause ::= ’use’ StringlList .

Stringlist is a list of space-separated strings, which indicate file names which OPTIMIX has
to open and to read. Thus, if an OPTIMIX specification is dependent on some files, the user
may give these dependencies in the OPTIMIX-file. After reading the OPTIMIX-file OPTIMIX
will read the files of the use clause.

In AST-mode, code is generated in plain C (without access functions). The sol-library is used for
the available functors (graph and set template classes, file sollib.ps).
Available sol-library functors

In AST-mode OPTIMIX supports the following functors. Consider the documentation of the sol-library
for more information.

SolFunctor ::= SolGraphFunctor | SolSetFunctor .
SolGraphFunctor ::= ’hgraph’ | ’bipuni’
SolSetFunctor ::= ’conslist’ | ’consset’ | ’hashset’ | ’ptrarray’ | ’bitset’.
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conslist provides a simple ordered list of objects (adress list). consset provides a linked-list
based object set. hashset provides a set module that enters elements using a hash function on the
object’s address. ptrarray is a pointer-string set module. bitset is a bitset module.

hgraph is a simple unipartite graph with parametrizable neighbor sets. bipuni is a bipartite
graph with parametrizable neighbor sets. All graphs of a graph functor type must currently be
created ‘by hand’, i.e. the user must create the graph by calling a C Function which is provided by
the sol-library. Nodes must be associated to the graph by calling addnode functions. Please consider
the documentation of the sol-library for more information on how to call allocation and association
functions.

The functors hgraph and bipuni are generic functors. Their modules provide create-functions
which can be parametrized by the neighbor set types the graph functor should use. This may be an
arbitrary set or list type from the sol-library.

2.3.4 Refining of AST field types

Unfortunately AST does not know graph-, set-, and list-fields. This means, that although existing
AST-modules of compilers may be read by OPTIMIX, OPTIMIX cannot find graph and set fields in
the data definition. However, set and graph fields can be introduced with two tricks:

1. The user declares the type of a scalar attribute to be of a flat sol functor application. This is an
identifer consisting of the functor name and all parameters, concatenated by _, e.g.

Object =
[setfield: consset_0bject2]

Then OPTIMIX understands that setfield has a type functor call to the consset functor
and infers correctly that setfield may be used as predicate over Object and Object2. The
disadvantage is that AST does not know anymore which type this field has; it assumes that
consset_Object2 is a scalar attribute. Thus no AST functionality on this field is available.

2. Set or graph fields may be specified in AST-modules (which only AST will read) as scalar
attributes, and the OPTIMIX-user has to give an additional refine specification for the field in
another module (which only OPTIMIX will read). If a field (or a tree module) has the AST
property REFINE then OPTIMIX assumes that this field (resp. all fields) provide finer types for
already defined fields. OPTIMIX looks up the already specified fields and changes their type to
functor applications.

Assume an AST-module which contains the AST data specification, which will only be read by
AST:

MODULE x TREE Tree RULES /% only read by AST */
Object =
setfield: Object2

END x
Then we can refine the type of setfield in another module, which will only be read by OPTIMIX,
to a functor call using the attribute property REFINE:

MODULE y1 TREE Tree RULES /* only read by OPTIMIX */

Object =

(setfield: consset(Object2) REFINE)

END yi
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Or we may give the property to the entire module:
MODULE y2 TREE Tree PROPERTY REFINE RULES /# only read by OPTIMIX %/
Object =
(setfield: consset(0Object2))

END y2

Note that set fields have to be bracketed by (). Thus OPTIMIX understands a slightly extended
AST language:

ASTObjectField ::= AstSetField .
ASTSetField ::= ’(’ Ident ’:’ FunctorCall ’)°’.

With this mechanism we can use module x for generation of AST code, and module y1 or module
y2 for OPTIMIX type refinement. AST will not recognize the REFINE property. and will emit errors
if feed by y1 or y2.
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Chapter 3

Specification of Graph Rewrite
Systems

This section describes how graphs can be constructed and manipulated by OPTIMIX. OPTIMIX pro-
vides two kinds of graph rewrite systems for this: edge addition rewrite systems (EARS) and general
terminating ezhaustive graph rewrite systems (XGRS, GRS).

EARS are equivalent to DATALOG with binary predicates [CGT89b] [CGT89a] [A94] [AB95], and
their rules may be written in this style (similar to Prolog clauses). In DATALOG rule tests (rule bodies)
are rule right hand sides. In graph rewrite rules rule tests form left hand sides. In order to avoid
confusion we will denote the left hand side of GRS rules and the right hand side of DATALOG rules
with the term rule test. We will denote the right hand side of GRS rules and the left hand sides of
DATALOG rules by rule transformation.

3.1 Graph rewrite specifications

A OPTIMIX-module consists of one or several graph rewrite system specifications. For each GRS one
C routine is generated, having the same name. We distinguish conceptually EARS which consist of
rules that only add edges (marked by the keyword EARS) and more general graph rewrite systems with
transforming rules (marked by keyword GRS).!

The syntactic composition of EARS and GRS is the same, they consists of a parameter list, and
one or several rule groups, called strata. The code for the stratas is generated in their specification
order, one module after the other.

GraphRewriteSystem ::= ( ’EARS’ | ’GRS’) Ident ’(’ Parameters °’)°’ ’{’ Stratum + ’}’
| ( ?EARS’ | ’GRS’) Ident ’(’ Parameters ’)’ Stratum

3.1.1 Strata

A stratum consists a range declaration and several graph rewrite rules.

Stratum ::= ’{’ RangeDeclarations [ Declarations ] [ Options ] [ FIRSTCode ]
’RULES’ Rules [ LASTCode ] ’}’.

For each stratum range declarations for variables (nodes) have to be made (section 3.3). These
declarations convey to which node domains the root nodes of the stratum refer [A94]. Also variable
declarations (node declarations, section 3.4), options (section 3.6.1), FIRST- and LAST-Code may be
given (section 3.6.2).

1 This is only a syntactic distinction. Currently the keywords don’t have a special meaning, but this may change in
future.
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An GRS or a stratum is recursive, if it defines a relation (an object type) which is also used
(tested). Then the generated code contains a fixpoint loop to detect the fixpoint. For non-recursive
strata no fixpoint loop is generated.

Each rule of a stratum leads to the generation of several rule test loops over the nodes of the
mentioned graphs. How the rules are evaluated within a strata, is decided by OPTIMIX according to
the evaluation strategy for GRS [AB94].

Currently GRS(k), k& > 1 are allowed. 2

An edge-addition stratum constructs graphs by building a relation between one or two node do-
mains, e.g. relating the node domain of a homogeneous graph or the two node domains of a bipartite
graph. Each successful rule application adds one or more edges to the graph. The process can also
be seen as inference of predicates between the nodes. Because an edge-addition stratum is confluent
and terminating, the process stops and yields the desired graph. You may also say that edge-addition
strata have a unique fixpoint. Rule syntax for edge-addition rules is given in section 3.6.

Strata that contain transforming rules need neither be terminating nor yielding unique normal
forms (unique results). The syntax of transformation rules is given in section 3.7.

3.1.2 Termination check

OPTIMIX detects whether a stratum is an edge-addition stratum, and emits a corresponding informa-
tion. These strata always terminate.

OPTIMIX can prove for certain other types of strata whether they terminate. This check is
performed according to the edge-additive termination criterion of XGRS [A96b]. The result for each
stratum is printed as information on the console. With option ShowTermination also the termination
edges of each rule are printed.?

3.1.3 Choice-Strata

A choice-stratum consists of a number of rules that are tried in source order until the first redex is
found. Rules are not evaluated until fixpoint; the manipulated graph is only searched until the first
redex is found.

Stratum ::= ’{|’ RangeDeclarations [ Declarations ] [ Options ] [ FIRSTCode ]
Rules [ LASTCode 1 ’1}’.

Because strata can be nested, choice-strata offer a nice opportunity to specify alternative rule
conditions:

{ // A normal stratum with nested sub-strata

DECLARE r:DatalogExpr;

RULES

// here a normal rule begins

DatalogRuleBlock(s,r), RTG(r,rtg2),

{I // Second level: an alternative stratum (two alternative conditions)
// Reuse range specification, reuses outer node rtg2
RANGE REUSE rtg2;

// Two alternative rules:

// The first rule tests something complex

( AddedNodes(rtg2,AN1), RTGNodeType(AN1,AEI3),
GlobalClass (AEI3~Instantiated,GC3),
GC3 ~ GlobalClass name => AN1Name,
ANiName != AESuccname,

2The case k > 2 does not occur very often, and such GRS have not been tested. It may happen that if the signatures
of the rules do not overlap in list form, incorrect code is generated.

3The termination check is implemented with Optimix itself. Please look at the specification file
examples/termination.ox.
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AN1Name != AEPredname
=>

)
( // A very simple rule that only tests something
rtg2 ~ RTG,
* TEST(cglist_empty(rtg2->AddedNodes,kNoRTGNode))
=>

~

I}
=>

// This is the rule action of the one rule of the outer stratum:
// add a new node and link it

ADD newlabel:Oneldent;.

EdgeTerminationLabels(r,newlabel)

3.2 Parameters of routines in the generated code

For each GRS one C routine with the same name is generated. For these routines OPTIMIX generates
parameter lists which consist of three subsets of parameters:

e explicitly specified parameters,
e parameters stemming from range declarations with automatic parameters,
e parameters which are graphs that are tested in rule tests or assigned in rule transformations.

If the user specifies all used/modified graphs as parameters explicitly, list (3) is empty. List (2) is
only generated if declarations with automatic set parameters were specified.

Explicit parameter specification

Parameters ::= Parameter // ’,°
Parameter ::= Variable ’:’ C-Type .

Explicit parameter specifications serve to hand help variables over to the generated routine. They
can serve to pass the engine state, or other variables that may be used in target predicates. Their
type must be a C-Type (which can also be a FlatFormType).

Parameters stemming from range declarations

Each automatic range declaration (section 3.3) delivers one or two parameter declarations for the
generated routine.

Parameters stemming from graph usage

Each graph tested or manipulated by a rule must be passed as parameter of the generated routine.
However, the user need not provide declarations for these; OPTIMIX automatically generates a correct
parameter list. The graph parameter list is ordered alphabetically.

The user has to take care that these parameter graphs are prepared correctly:

e all graphs must be created by a create-function of the functor library

e graphs must have nodes (and edges if they are not empty). The nodes must have been added
to the graph by calling addnode-functions of the graph functors, single edges may be added by
addedge-functions. Then more edges are calculated and inserted by the generated routine.
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o if predicates are stated over the same variable, the universes of the corresponding graphs must
be the same (equality on graph node domains). Otherwise unexpected results can occur.

3.3 Stratum range declarations

Code generation for GRS and strata relies on the concept of GRS order [A94]. The order of a stratum
is roughly the same as the maximal number of root nodes in rule tests which have different types.
These nodes (these variables) are called order loop nodes. For each order loop node OPTIMIX needs
a range decaration, i.e. a specification to which node set the node is instantiated.

The most simple case is if the range of an order loop node is just one parameter node. Then the
range declaration can be omitted, if the variable is specified in the parameter list.

RangeDeclarations ::= ’RANGE’ RangeDeclaration + |
RangeDeclaration ::= ParameterRange | AutomaticParameterRange | ReuseRange .

If the range of the order loop node is a set or a graph node domain, a range declaration, i.e. a
declaration to which graph node domain or node set the order loop node is initialized. Ranges can
refer to user specified parameters or to automatically generated parameters.

Range declarations on user specified parameters

ParameterRange ::= Variable ’<=’ ParameterSet

| Variable ’<=’ ParameterGraph [’.’ ’TARGET’] .
ParameterSet ::= Variable .
ParameterGraph ::= Variable .

A range declaration on a user parameter consists of a specification which parameter of the GRS
makes up the range of the node.

e single node parameter.
Then no range declaration is necessary.

e node sets of graphs.
Then the order loop range is initialized to the node domain of a parameter graph. If the modifier
.TARGET is specified, the target node domain (domain 2) of a bipartite graph functor is taken,
otherwise the source domain (domain 1).

e gsets.
If the mentioned parameter name is a set the order loop node is instantiated from this set.

Range declarations on automatically generated parameters

AutomaticParameterRange ::= Variable ’<=’ UsedGraphName [>.’ °TARGET’]
| Variable ’<=’ SetFunctor ’(’ f£SDLDomain ’)’
| Variable ’:’ fSDLDomain ’<->’ Variable ’<=’ SetFunctor ’(’ fSDLDomain ’)’
| Variable ’:’ fSDLDomain .

UsedGraphName ::= Ident .

It is also possible to save the writing of parameters and let OPTIMIX infer them. Then a range
declaration must give a hint of which type the node must be taken. Currently there are the following
possibilities:
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e specify a graph name which is used in the rules as predicate.
Then the order loop range is initialized to the node domain of that (tested or modified) graph.
Also that graph is inserted automatically in the parameter list of the generated routine.

If the modifier . TARGET is specified, the target node domain (domain 2) of a bipartite graph
functor is taken, otherwise the source domain (domain 1).

e sets.
If the range is declared to be an application of a set functor, a set parameter is inserted auto-
matically in the parameter list of the generated routine. This set is then taken to initialize the
order loop node.

e single source path problem (SSPP) initialization.
The range of an order loop node can also be only one single parameter object. Then the rule
which contains the order loop node is considered to be an SSPP rule with a single source node
and a result solution set which contains all nodes that fulfil the SSPP problem (section 3.8.2).
The result set is thus the second part of the declaration. Source node of the SSPP as well as the
result set are inserted automatically as parameters of the generated routine.

e single parameters.
Then the order loop domain is just a variable, which is included automatically in the parameter
list of the generated routine.

Range declarations on outer nodes

ReuseRange ::= ’REUSE’ Ident

Within nested strata nodes from outer strata can be reused. Then it is assumed that the range of
the variable is only one node, a node of an outer stratum. An example can be found in section 3.1.3.

Other examples of range declarations
57/////////////////////////////////////////////////////////////////

// Range declarations
IILLTTTTI007777700777777770777777770777777771771777777777777777777
LILILETIITILL LTI T2 0007777000077 00 7770707777 77707077077777771777777777

// Explicit parameter ranges

LIITIIITILITIII07 0000700071077 7707077077771777717771177771717717177

MODULE RangeDeclDemo OPT use "files.ast"
grs RangeDeclDemol(g:State)
{

RULES // g is taken from the single node parameter
Files(g,File), File ~ sun4 ==> Files(g,gen_lalr) .

grs RangeDeclDemo2(s:consset(State))

RANGE g <= s; // g is taken from the parameter set s
RULES
Files(g,File), File ~ sun4 ==> Files(g,gen_lalr) .

grs RangeDeclDemo3(h:hgraph(State))
{

RANGE g <= h; // g is taken from the parameter graph h
RULES
Files(g,File), File ~ sun4 ==> Files(g,gen_lalr) .

}
LII77777777177777777177777777777777777777777777777777171777117777777
// Automatic parameter ranges

I117777777777777777777777777777777777777777777777777777777777777777/
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grs RangeDeclAutoDemol()
{

RANGE g : State; // automatic single node parameter
RULES
Files(g,File), File ~ sun4 ==> Files(g,gen_lalr)

grs RangeDeclAutoDemo2()
{

RANGE g <= dep2; h <= dep2.TARGET;
// g from source domain, h from target domain of graph dep2.
// In this case this is the same domain, because dep2 is a hgraph.
RULES
sat(g,File), File ~ sun4 ==> dep2(g,gen_lalr)
dep2(h,g), h ~ sun4 ==> dep2(g,h)
}
grs RangeDeclAutoDemo3()

RANGE g <= consset(State); // automatic set parameter
RULES
Files(g,File), File ~ sun4 ==> Files(g,gen_lalr)

}

grs RangeDeclAutoDemo4 ()

{

RANGE g <= hgraph(State); // automatic graph parameter
RULES
Files(g,File), File ~ sun4 ==> Files(g,gen_lalr)

END RangeDeclDemo

3.4 Stratum variable declarations

OPTIMIX infers types for variables by looking up the predicates as fields in the data model. Sometimes
it cannot infer the class of a variable, it may infer different types for variables, or it may find a type
which is too general.* Then the user can help OPTIMIX by giving additional declarations for variables.
They hold for all rules of the current stratum.

Declarations ::= ’DECLARE’ Declaration * .
Declaration ::= IdentKommaList ’:’ NodeType ’;’.
| ExternalFunctionDeclaration
| ExternalFunctionDeclaration
| ViewDeclaration .

A node declaration is much like a variable declaration in Modula-2. In AST-mode a class must
be given as type, in CoSy-fSDL-mode domains and/or operators have to be given. OPTIMIX then
incooperates these declarations into his type inference. Declarations of external functions are in section
3.6.3, view declarations in section 3.8.3.

3.5 Rules in a stratum

Rules in a stratum are specified either in the style of DATALOG (if they are edge-addition rules), or in
the style of graph rewrite rules. Each rule consists of a rule test part and a rule transformation part.
Edge-addition rules only allow predicates in their transformation part. Each rule may be accompanied
by rule options, FIRST- and LAST-code. Rules are either enclosed in ’(’ )’ brackets or they end with
a '.’. Facts are explained in section 3.8.1, transformation rules in section 3.7.

Rules ::= (EARSRule | XGRSRule | EARSFact) +
EARSRule ::= [ Options ] [ FIRSTCode ] EdgeAddition ’:-’ RuleTest [ LASTCode ] ’.°
| >’ [ Options ] [ FIRSTCode ] EdgeAddition ’:-’ RuleTest [ LASTCode ] ’)’.

4This may happen especially in CoSy-fSDL-mode because here the code generation needs not only domains, but also
operators to generate access functions.
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3.6

RuleTest ::= Predicates .
EdgeAddition ::= Predicates .
Predicates ::= Predicate // °’,°

Rule tests

3.6.1 Options for strata and rules

Options ::= ’OPTIONS’ Name + ’.°.
Options ::= ’[’ Name // *,’ ’1’.

Strata and rules may also be annotated with an option list (options). This is a list of strings,
enclosed in square brackets [] or appended after the keyword OPTIONS. If such an option is set,
the semantical analysis, optimization and code generation phases of OPTIMIX are performed in a
stratum/rule specific way.

Current available stratum options are:

CentralNeighborSetComparison, LocalNeighborSetComparison, DirectFixpoint-
Check

OPTIMIX knows three kinds of fixpoint detections for edge additive rules: central neighbor set
comparison, local neighbor set comparison, and direct fixpoint check (section 3.9). Normally
central neighbor set comparison is prefered over local neighbor set comparison. The flag can be
used to override this default.

NoFixpoint, Fixpoint Do not generate a fixpoint loop/generate a fixpoint loop for the stratum.

Current available rule options are:

JOIN Use join code generation mode, even if on-the-fly was analysed.

ETJoin (alpha-tested) Use element-test join code generation mode. This mode uses element
tests instead of join equality conditions. It should for a lot of cases speedup the join, if element
tests of the last functor of a path are possible in constant time.

ETFilters (alpha-tested) Use element-test path pre-filtering. Paths are generated several times,
the first times for pre-selections.

LocalTests Perform the pattern matching on a node always, if an instance of the node is
traversed. This option results in more pattern matching tests, but fewer traversals, because the
join search space of path problems is diminished.

3.6.2 FIRST and LAST target predicates for strata and rules

Strata as well as rules can be annotated by a FIRST and an LAST target predicates. The code of
FIRST predicates is printed in the generated code right after the variable declarations for a stratum
(or a rule). Here the user can define his own variables for use in target predicates. The code of the
LAST target predicate before the stratum/rule end.

FIRSTCode ::= ’FIRST’ TargetPredicate .
LASTCode ::= ’LAST’ TargetPredicate .

FIRST {* /* here is FIRST %/ *}

LinearBlocks(PBody,B), Stmts(B,Ass), Ass ~ mirAssign
==>

Al1Definitions(PBody,Ass)
LAST {* /* here is LAST */ *}
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3.6.3 Predicates in rules

A rule test part contains a number of predicates, which are tested against the manipulated graph.
They may have the following forms:

Predicate ::= PredicateName °’(’ Pattern ’,’ Pattern ’)’
| FORALL’> Variable ’:’ Predicate

| ’NOT’ Predicate

| ’?’ ProcedureCall

| TargetPredicate

| TargetCodeLine

| PatternMatchStatement

| EqualityTest

| FailStatement

| Cut
| Strata .

PredicateName ::= Ident [ ’@’ NodeTypel [ ’.’ GraphFieldModifier] [ ’.’ OrderIndicator ] .

Simple predicates

Simple predicates are always binary because they refer to graphs. Simple predicates contain patterns
or variables as arguments. Predicate names must exist as the name of a object field in the data
model (in CoSy-fSDL in an operator in a certain domain). Thus a predicate in a rule test or rule
transformation refers to

e a field which has the type of a graph functor call (graph field)
e a field which has the type of a set/list functor call (set field)
e a field which has the type of a simple domain (non-graph) (pointer field).

The predicate
- p(X,Y),..
is true if the object Y is contained in the set X.p. Also (in the generated code) the predicate p(X,Y)
delivers all objects Y which are linked under field (or graph) p to object X.
Type inference for simple predicates

OPTIMIX looks up the field name in the data model and annotates with the predicate a set of types
(in CoSy-fSDL operator/domain pairs). This is a set of types because a field can turn up in several
objects. In CoSy-fSDL also operators may be contained in several domains. These sets of alternative
types are then intersected and unified against each other during the type inference. OPTIMIX always
tries to retain finer types, i.e. more specific types, which then provides better information for code
generation. The rules according two types are compared are the following:

e an AST type is finer than its superclasses.
e an CoSy-fSDL operator is finer than a containing domain.
e an CoSy-fSDL operator/domain pair is finer than the domain.

e a type is finer than another if it has been declared so in a FINER inheritance declaration.
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At the end of the type inference process there should be unique types for all variables in rules. If
not, OPTIMIX will prompt an error. Either this is a real typing error or the user can give more type
information to OPTIMIX by providing inheritance declarations (section 2.3.2) or variable declarations
(section 3.4).

In CoSy-fSDL-mode however, this scheme currently has one restriction. If a field is contained in
several operators, and is not a shared field, then the user has to specify with the field a domain/operator
specification. E.g. in the CCMIR the field Then occurs in operator mirIf as well as in mirTryAcquire.
A predicate using it in domain mirIf should look like:

Then@mirSimpleSTMT@mirIf(Stmt, ThenPart)

If the field is a shared field between all operators that use it, the field alone is sufficient as predicate
name.

The ANY class Users can specify nodes to be of class ANY. This type is coarser than all other
types, and all types are compatible with it. If AST-mode is used, also the type tTree can be used,
which is equivalent.

Graph field modifiers

GraphFieldModifier ::= ’succ’ | ’pred’.

Graph field modifiers serve to indicate which kind of functions should be called to navigate in the
generated code. From OPTIMIX’s point of view a functor-created graph defines two default fields for
the parameter domains of the functor application. These two default fields can be used as predicates
in clauses. For instance, if we have the following CoSy-fSDL definition

domain Proc : {
Procedure < BlockGraph: SGRAPH(BasicBlock) >

>}
domain BasicBlock : {
BasicBlock < >

>}

then the functor call BlockGraph: SGRAPH(BasicBlock) creates for domain BasicBlock two de-
fault fields BlockGraph and BlockGraph.pred. These field names denote all successors resp. prede-
cessors of a BasicBlock concerning the functor-created graph BlockGraph. With p.succ or p the
successor relation of graph p is denoted, with p.pred the predecessor relation is denoted.

Order indicators

OrderIndicator ::= ’first’ | ’last’ | ’next’ | ’prev’ | ’before’ | ’after’ | ’any’.

If users specifies predicates that refer to fields of list-functor type, special order indicators can
be used to find out certain special elements of the list. The order indicators generate an access to
specific list elements. There are the following types, exemplified by a relation Stmts, the statements
of a block:

e Stmts.after(Block,S1,S52) generates a loop over all successors S2 of S1 in the Stmts of Block.

e Stmts.before(Block,S1,S2) generates a loop over all predecessors S2 of S1 in the Stmts of
Block.

e Stmts.next(Block,S1,52) generates an access to the successor S2 of S1 in the Stmts of Block.
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e Stmts.prev(Block,S1,S2) generates an access to the predecessor S2 of S1 in the Stmts of
Block.

e Stmts.first(Block,S1) generates an access to the first element S1 in the Stmts of Block.
e Stmts.last(Block,S1) generates an access to the last element S1 in the Stmts of Block.

e Stmts.any(Block,S1) generates an access to an arbitrary element S1 in the Stmts of Block.
For lists the head of the list is taken. This indicator can also be applied to set functors. Then
it emits a call to the choose-function of the set functor.

The variable Block must be defined earlier in the specification. Note that the arity of several ordered
predicates is 3.

Z////////////////////////////////////////////////////////////////

// Test list functor addition predicates in rule transformations
//
I117777777770777777777777777777777777777777777777777777777777777/777
MODULE AdditionDemo OPT use "files.ast"
grs AdditionDemo()
{
RANGE g: State; RULES
Files(g,File), sat(File,Fx), sat(Fx,Fy), dep(File,0File)
==>
dep(File,0File),
dep.first(File,OFile),
dep.last(File,0File),
dep.after(File,Fx,0File),
dep.before(File,Fx,0File),
dep.next(File,Fx,0File),
dep.prev(File,Fx,0File),
dep.any(File,OFile),

/* test cglist functor */
dep3(File,0File),
dep3.first(File,0File),
dep3.last(File,0File),
dep3.after(File,Fx,0File),
dep3.before(File,Fx,0File),
dep3.next(File,Fx,0File),
dep3.prev(File,Fx,0File),
dep3.any(File,0File),

/* test cgthrlist functor */
dep4(File,0File),
dep4.first(File,0File),
dep4.last(File,OFile),
dep4.after(File,Fx,0File),
dep4.before(File,Fx,0File),
dep4.next(File,Fx,0File),
dep4.prev(File,Fx,0File),
dep4.any(File,0File)

}
END AdditionDemo

All-quantified predicates

Normally all predicates are existentially quantified in their variables. However, one predicate in a rule
is allowed to be preceeded by an all quantifier, e.g. FORALL V: p(X, V). The all-quantified variable
must be the right variable of the predicate. Predicates in the head of a rule cannot be all-quantified.
Currently the concept of all-quantifiers is rather restricted. It works only in two situations:

e The all-quantified variable is the middle variable of a path with two predicates and the rule test
is a single path. This is the standard situation for MUST dataflow analyses (section 5.2.2).
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e The all-quantified variable is the sink of an rule test graph. This rule test graph must also be
either a path or a dag (see example specification copyprop.ox).

Negated predicates

If a predicate is preceeded by a NOT, it is negated. Then the generated code tests that no edge between
the two variables of the predicate exists, and skips all combinations of nodes which are linked by a
corresponding edge. Negation is allowed in the following contexts:

o In rule tests if predicates are used that are graph functor instantiations. Negation can only be
performed if a universe is known against the completion of a set of nodes is performed. This is
the case only for graph functors, in which the set of graph nodes represents this universe.

Negation is performed by a loop over the universe, skipping those nodes which are the neighbor
set of the predicate.

e In rule tests for bitset predicates. They also have a universe which consists of all nodes the bits
refer to. Negation is performed by a bitset complement.

e In rule transformations. Then in the code an edge of the denoted graph is deleted, not added.

Checked calls to external predicate functions

ProcedureCall ::= Ident ’(’ ActualParameter // ’,’ [ ’==>’ ActualParameter // ’,’ ] ’)°.

If a predicate starts with a ?, then OPTIMIX assumes that the rest is a call to a C function
returning a boolean. Thus it generates this call and checks its result with TRUE (integer constant 1).
If the called predicate fails, also the rule fails. Otherwise the rule test is continued.

The list of actual parameters to a call must consist of simple variables. There is an IN parameter
list (before the ==>) and an OUT parameter list (after the ==>). The IN parameters are considered
to be pattern variables which are handed over to the called routine. The OUT parameters are also
handed over as reference parameters, i.e. their addresses are handed over.

Calls to external functions

Edges in graphs may be simulated by calling external C functions. The name of the functions must
appear in a DECLARE declaration:

ExternalFunctionDeclaration ::= IdentKommaList ’:’ ’fun’ NodeType ’->’ SetOrNodeType
ExternalProcedureDeclaration ::= IdentKommaList ’:’ ’proc’ NodeType ’->’ SetOrNodeType

The first alternative declares an external C function returning a node type or a set over a node
type. The second alternative declares a void C procedure with two parameters, the first an input
parameter (pointer/object type), the second one an output set parameter (set type). Examples of
declarations:

DECLARE
f1: fun file -> file;
f2, f3: fun file -> conslist(file);
fa. fun file -> consset(file);
pl: proc file -> file;

p2,p3: proc file -> consset(file);
f1 — p3 may all be refered to as binary predicate names in rule tests:
( £1(01,02), p3(02,03) ==> a_normal_graph_edge(01, 03) )

The semantics of external C function calls in rule transformations is not defined.
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Z////////////////////////////////////////////////////////////////

// Test external function calls

//
I117777717770777777777777777777777777777777777777777777777777777/777
MODULE FunctionDemo OPT use "files.ast"

grs ExternalFunctionDemo()
{
RANGE g: State;
DECLARE
procedgel: fun file -> consset(file);
procedge2: proc file -> consset(file);
procedge3: fun file -> file;
procedge4: proc file -> file;
RULES
Files(g,File),
procedgel(File,Fx),
procedge2(Fx,Fy),
? call_external(Fy ==> Fz,Fy),
7 call_external(Fy, Fz ==> Fz),
procedge3(Fy,Fz),
procedge4(Fz,Fa),
dep(Fa,0File)
==>
sat(File,0File) .
}

END ExternalFunctionDemo

Target code predicates

TargetPredicate ::= ’{*’ any ’*}’.

It is possible to specify C target code as predicate (a target predicate). This code is copied un-
changed to the generated file. Target predicates always succeed.

Target predicates normally are attached to their preceeding predicates. They are copied after the
code that was generated for their preceeding predicate, i.e. normally in a loop which was caused by
that predicate. There are some special cases:

1. If a target predicate appears as first predicate of a rule test part, it is copied to the generated
file as last action of the rule test part, but before join conditions are evaluated.®

2. If a target code predicate appears in the rule transformation of a rule it is printed after the
addition/deletion of the preceeding edge in the innermost rule test loop.

3. If it appears as first predicate in a rule transformation, it is printed before the addition of the
edges and the rule transformation.

4. If it appears as last predicate in a rule transformation, it is printed before the addition of the
edges and the rule transformation.

5. FIRST and LAST target predicates are copied to places before and after the execution of a rule
(section 3.6.2)

Target code lines

If a target predicate consists of one line of C, there is a special syntactic alternative for it. Target
code lines consist of arbitrary C text, terminated by a newline character. If necessary, the newline also
simulates a ’,-token to the parser, so no intermediate commas are necessary with target code lines.

5This semantics is weird and probably will change.
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TargetCodeLine ::= ’*’ any Newline .

Target predicates may be used for test and set of node attributes or debugging generated code.
E.g. the following rule tests whether a node is marked as deleted and removes it from some graphs:

GRS DeleteFromStatementLists(Proc:ProcGlobal)

{
RULES

Body(Proc,PBody),

{* /* This target code is printed after the code for */
/* the preceeding predicate Body */ *},

LinearBlocks(PBody,Block),

* /* and this here is a single line of target code */

Stmts(Block,Ass),

Ass ~ Assign{},

{* /* target predicate to test, whether a node was really deleted */
/* is copied to the rule test after the pattern match on Assign */
if (!SimpleSTMT_Assign_get_deleted(Ass))

continue;
*}
==>

DELETE Ass FREE;. // really deallocate Ass

* printf("deleting copy statement %s",STMT_provide_label(Ass));

NOT Stmts(Block,Ass),

NOT list_of_definitions(Proc,Ass)

* /% This here is really the end of the rule */

}

Pattern match predicates

PatternMatchStatement ::= Variable (’~’ | ’!7’) Pattern .

As predicates also pattern match statements on rule test nodes (rule test variables) are allowed. If
a variable is linked to a pattern with ~ this pattern match statement succeeds if the variable has the
form of the pattern. If a variable is linked to a pattern with !~ the pattern match statement succeeds
if the variable has not the form of the pattern.

N ~ Block // node N matches type Block
N !'" Block // node N is not of type Block

In rule transformations pattern matching is not allowed.

Patterns In pattern match statements or in predicates of rule tests patterns may appear.

Pattern ::= NodeType

| NodeType ’{’ InnerPattern // ’,’ ’}’.
InnerPattern ::= FieldName ’=>’ Pattern

| FieldName ’=>’ Variable (°~’ | ’!~’) Pattern

| FieldName ’=>’ Variable

Variables in patterns are arbitrary identifiers, contary to Prolog, where each variable has to begin
with a capital letter. Note that OPTIMIX only performs pattern matching, not unification. There
are two kinds of patterns: outer patterns are allowed in pattern match statements, where they match
already defined variables. They are also allowed in left or right parameters of simple predicates,
however, only at the outer level.

Inner patterns are allowed to occur only in an outer pattern or another inner pattern. They perform
field pattern matching and also variable assignment. Positional pattern matching is not possible, only
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matching with a field name is allowed. Variable assignment assigns a variable to the field, if the pattern
match was successful. If no variable assignment is given, OPTIMIX assigns a temporary variable to
the successfully matched subtree.

For instance, the pattern match

S ~ If{Then => A ~ Assign}

tests whether a variable S consists of a If where the field Then is a Assign. The variable A is
assigned to the assignment statement.

Restriction of the current implementation: Note that the variables which are defined in
patterns are not allowed to be used for further navigation, only for the use in target predicates, e.g.
to test attributes. Also it is not allowed to use constant patterns. Constant comparisons are only
allowed in equality tests (section 3.6.3).

Equality tests

EqualityTest ::= PatternVarEqualityTest | RTGNodeEqualityTest .
PatternVarEqualityTest ::= Variable BoolOp Variable .
RTGNodeEqualityTest ::= Variable EqualOp Variable .

BoolOp ::= EqualOp | ’<” | *>7 | <=’ | >=’

EqualOp ::= ’==’ | 1=’

On pattern variables or on rule test graph nodes equality tests may be performed. For pattern
variables they lead to the generation of equality/inequality functions of the opaque types of the
attributes. For rule test graph nodes, in AST-mode pointer equality is used. In CoSy-fSDL-mode
DMCP_equal is used.

SpecialBlocks(b,bl) :-
BlockGraph(b,bl),
b != b1, // test pointer inequality of b and bl
b ~ Block number => Number ,

bl ” Block number => Number2 ,
Number <= Number2 // compare attributes Number and Number2

3.6.4 Nested strata

In lieu of predicates strata may appear (nested strata). This can be used to test alternative conditions
for rules (with choice-strata), or to do intermediate actions during the test of a rule.

3.7 Transformation rules

Transformation rules use the same syntax as edge-addition rules to specify preconditions, and have
an additional transformational part. This transformational part consists of node deletions, node
additions, edge deletions and edge additions, also to the newly created nodes.

XGRSRule ::= [ Options ] [ FIRSTCode ] RuleTest ’==>’
[ [ NodesToBeDeleted ] [ NodesToBeAdded ] ’.’ ] Predicates [ LASTCode ] °’.°
| >’ [ Options ] [ FIRSTCode ] RuleTest ’==>’
[ [ NodesToBeDeleted ] [ NodesToBeAdded ] ’.’ ] Predicates [ LASTCode ] ’)°’.

Strata, strata options, rule options, FIRST- and LAST-Code behave in the same way as with EARS
rules.

Note that currently the user himself has to guarantee the termination of a XGRS. There is no
automatic check for that, neither a test for confluence. See also the article on XGRS [A96a], whose
method is currently not implemented..
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Node addition

NodesToBeAdded ::= ’ADD’ VariableDeclarations

Nodes which are added by the rule, have to be declared in a similar way as rule local variable
declarations. In CoSy-fSDL-mode it is necessary to specify both a domain and operator for new
nodes. Otherwise the correct node allocation function call cannot be generated.

Node deletion

NodesToBeDeleted ::= ’DELETE’ IdentKommalist DeleteProperty * ’;’.
DeleteProperty ::= ’MARK’ | ’FREE’ | °REMOVE’ | ’DELAYEDREMOVE’.

Nodes from the rule test which have to be deleted are specified after the keyword DELETE. The
deletion can be done in four modes, which can be combined, e.g. it is possible to specify MARK REMOVE
with some nodes.

The mark mode just markes the nodes, which are in a successfully matched redex, by setting the
field deleted. This is a field which the user has to add to all types of objects which have to be
deleted. Once the nodes are marked like this, they can be recognized as being invalid. Marking is
necessary when a node belongs to a lot of graphs, not only those that were tested in the rule. Then
subsequent passes over these graphs can remove all incident edges, and in the last pass also the node
can be deallocated.

The remove mode does not deallocate the nodes but removes the node from all the containing
graphs which are mentioned in the rule test. Thus it deletes all incident edges of graphs of the rule
test. There still might be other graphs the node belongs to.

The delayed-remove mode is special. It generates a second, artificial GRS. This GRS walks the
graphs of the rule test a second time, tests on deleted (marked) nodes and then performs removal
of incident edges.® In CoSy-fSDL-mode, the walking is done via ITERLIST-LOOPs, not with LIST-
LOOPs. This is due to a restriction of the fSDL-LIST functor which could not delete nodes from lists
when walking the lists themselvs via LIST-LOOP.”

The free mode really deallocates the nodes. In AST-mode a function Tree_delete is called.® An
appropriate macro or function has to be provided by the user. In CoSy-fSDL-mode <domain>_delete.
is called. This function is always part of the DMCP interface.

Addition of edges to new nodes

The rule transformation part following the declarations consists again of a sequence of predicates.
Here they specify edge additions and deletions. Edge additions are performed by non-negated simple
predicates and may refer to new nodes as well as to old nodes. Edge deletions are performed by
negated simple predicates and can of course only refer to items from the rule test.

( LinearBlocks(PBody,Block),
Stmts (Block,Assign),
==>
ADD Assign2;. // allocate Assign2
Stmts (Block,Assign2), // enter Assign2 in statements
NOT Stmts(Proc,Assign) // remove Assign from statements

)

5The generated GRS should only containing the rule in question. Currently it contains all rules.
"It may be that in the current version this is obsolete; so also delayed-remove mode is obsolete.
8Currently the AST tree is assumed to have name Tree. This should change
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3.8 Other kinds of rules

3.8.1 Non-ground facts

EARSFact ::= [ Options ] [ FIRSTCode ] Predicates [ LASTCode ] .’

In OXDML non-ground facts may be specified analogously to Coral [RSS92]. Facts are edge-
addition rules without preconditions. Non-ground facts are facts that contain variables. Non-ground
facts serve to initialize a graph with certain values before other rules manipulate the graph. This
can be used especially for data flow analysis: the initialization statements there are non-ground facts.
Non-ground facts in a stratum are always evaluated before other rules of the it are evaluated.

As example consider the specification of available expression dataflow analysis, the first two rules
are non-ground facts:

// Find available expressions
EARS AvailableExpressions ()

{
RANGE b <= AVIN; e <= AVIN.TARGET;
// non-ground facts: initiallization to FULL set.
AVIN(b,e).
AVOUT(b,e).
// EARS rules.
AVIN(b,e) :- FORALL p: BlockGraph(b,p), AVOUT(p,e).
AVOUT(b,e) :- COMPOUT(b,e).
AVOUT(b,e) :- TRANSP(b,e), AVIN(b,e).
}

Also self-edge facts may be specified which draw self edges on nodes:
EARS ComputeDominators(b: BasicBlock)
{
Dominators(b,b). // self-edge fact: each block is dominated by itself
}

Non-ground facts also may be negated. Then OPTIMIX generates loops over the graph nodes that
delete existing edges.
There are all in all several possibilities, how to initialize a graph:

e make a full graph with a non-ground fact.

e make a graph with self edges with a self-edge fact.
e delete all edges in a graph by a negated fact.

o delete all self edges by a negated self-edge fact.

Before and after facts target predicates can be written. If a target predicate is written before the
fact, it is copied directly before the edge addition. If it is written after the fact, it is copied direcly
after the edge addition.

For further examples on facts consider example file facts. ox.

3.8.2 Single source path problems (SSPPs)

There is a special variant of EARS which can solve single source path problems (SSPPs) [Tar81]. An
SSPP is a path problem in a graph which is described by a path expression (or a set of predicates, like
in EARS) and which is applied to one single source node of the graph. It delivers all nodes which are

INRIA



OrlTiMix 2.0 Language Manuat

reachable from the source node under the predicates (the path expression). These nodes are called
result set.

A GRS may contain several SSPP rules. The the source node of the SSPP and the result set of
such a rule can be declared with a range declaration (section 3.3). The node is then initialized to the
corresponding parameter of the generated routine, and the parameter set of the range declaration is
used as the result set. SSPP rule tests are not generated among those rule tests which result from
normal rules (in the order loops). Instead they are extracted and printed after them.

The following example solves a SSPP for a procedure and all its statements. It collects all assign-
ments that are in the blocks’ statement lists.

EARS PrepareReachingDefinitions()
{
RANGE Proc <= ProcGlobal <-> list_of_definitions: SET(STMT);
RULES
list_of_definitions(Proc,Ass) :-
Body(Proc,PBody) ,
LinearBlocks(PBody,Block),

Stmts(Block,Ass),
Ass " Assign{}

}

SSPP rules can also be used nicely to write down walking e.g. over statement lists and per-
form actions on them. The following example collects all assignment statements in a parameter set
list_of_definitions. They also are entered into a global class of definitions for objects, with a
target predicate side effect action. This global class is attached to global state handle (e.g. of a CoSy
engine), and must be passed as parameter to the generated routine CollectAssigns.

EARS CollectAssigns(state: StateType)

{
RANGE Proc <= ProcGlobal <-> list_of_definitions: SET(STMT);
RULES
list_of_definitions(Proc,Ass),
{* EnterInDefinitionClasses(state,Ass); *}

Body(Proc,PBody) ,
LinearBlocks(PBody,Block),
Stmts(Block,Ass),

Ass ~ Assign{}

3.8.3 View rules

(Only alpha tested)

View rules are single source path problem rules which consist of a linear chain of predicates and
one single assigned predicate. In order to faciliate the writing of rule tests, these assigned predicates
can be used as abbreviation for the complete view rule. Thus, if the user uses in a rule test an assigned
predicate of a view rule, the rule test part of the rule is ezpanded in-line into the using rule. This
works without problems because the view rule is only allowed to have chain form.

In order to define view rules the user must specify the assigned predicate in a DECLARE specification

as follows:
ViewDeclaration ::= IdentKommalList ’:’ ’view’ BinaryPredicateType ’;°’
BinaryPredicateType ::= NodeType ’->’ SetOrNodeType .
SetOrNodeType ::= FunctorCall | NodeType .
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Rules which define this assigned predicate are assumed to be view rules and are automatically
inline-expanded in other rules. Note that only one view rule per view assigned predicate may exist.
Global sets which assemble the assigned predicate elements can be choosen from any set or list
functor.
DECLARE
// view rule declaratiomns

viewedgel: view Block -> conslist(Block);
viewedge2: view Block -> conslist(Block);

RULES

// view rule definitions. They do not lead to code!
viewedgel(B1,B2) :- base(B1,B3),base(B3,B2).

viewedge2(B1,B2) :- base(B1,B3),base(B3,B4),viewedgel(B4,B2).

// rule with view edge call. View edges are expanded.

LinearBlocks(Proc,Block), viewedge2(Block,Block2), dep(Block2,Block3)
==>

base(Block,Block3)

3.9 Fixpoint checks

OPTIMIX knows three kinds of fixpoint detection for strata: direct fixpoint check, central neighbor set
comparison, and local neighbor set comparison. These detection methods have different runtime costs.
Not all of them are apt for all XGRS.

The first method is probably the fastest. It can be used if the functor functions which are used
to perform graph manipulations, give back a change flag, if something has changed. Then functor
functions for edge addition are queried if they have changed something. Direct fixpoint checking is
also chosen, if no rule of the stratum is edge additive, i.e. if all rules manipulate nodes.

Central neighbor set comparison runs a bit slower. It compares the neighbor sets of order loop
nodes before and after a fixpoint loop. It memorizes the old values of neighbor sets of order loop nodes
by copying or assignment.

If an assigned edge of a stratum does not start at an order loop node, local neighbor set comparison
is performed. This is probably the slowest mode: It copies/memorizes old values of neighbor sets each
time the source node of the assigned edge is traversed.

Option flags can be used to override the default modes (section 3.6.1).
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Chapter 4

Meta-Optimizations for XGRS code
generation

OPTIMIX knows how to optimize the evaluation of several kinds of specifications. In order to avoid
confusion with program optimization we call this meta-optimization. However, note that all this may
be topic of implementation restrictions, see section 6.1.

4.1 Bitset optimization

A rule is bitset optimizable, if all incoming edges to the target node of an assigned edge are implemented
by bitsets. If so, for the rule bitset operations are generated; otherwise normal object-based code
generation is used.

The following rule is bitset optimizable, if we suppose that EC_DSAVE_QUT, EC_DSAVE_IN, and
EC_TRANSP are implemented as SETF(Stmt). The rule test graphs is a directed acyclic graphs, all
assigned edges are added in forward direction, and all edges incoming to the target node of the
assigned edge s are have bitset functors..

EC_DSAFE_IN(Block,Expr) :- EC_TRANSP(Block,Expr), EC_DSAFE_OUT(Block,Expr).
The generated code is

for (_onceindex = 1; _onceindex > 0; _onceindex--)
{
/* path test [Block]-EC_TRANSP->[Expr] */
Block = OLoopRawNode_O;
/* bitset predicate test EC_TRANSP 32, 44 %/
/* if result set not already created, create it */
if (Result_Block_EC_TRANSP_Expr == NULL)
Result_Block_EC_TRANSP_Expr = SETF_mirEXPR_EC_create(mirBasicBlock_mirBasicBlock_get_EC_TRANSP(Block),
SETF_init_full);
else
SETF_mirEXPR_EC_full(Result_Block EC_TRANSP_Expr);
SETF_mirEXPR_EC_inter2(Result_Block EC_TRANSP_Expr,mirBasicBlock_mirBasicBlock_get_EC_TRANSP(Block));
SETF_mirEXPR_EC_inter2(Result_Block EC_TRANSP_Expr,mirBasicBlock_mirBasicBlock_get_EC_DSAFE_0UT(Block));
SETF_mirEXPR_EC_union2(mirBasicBlock_mirBasicBlock_get_EC_DSAFE_IN(Block),Result_Block EC_TRANSP_Expr) ;
/* end path test [Block]-EC_TRANSP->[Expr] x*/
} /* end of rule fake for-loop */

4.2 Bidirectional edge optimization

If a functor provides bidirectional implementation (e.g. hgraph), OPTIMIX can use both directions
for code generation. During the computation of the edge-disjoing path cover of the rule test graphs,
OPTIMIX selects one of the directions. Thus bidirectional edge optimization completes bidirectional
graph functor edges in order to find better paths for code generation.

Thus the order of a rule test graph can be reduced to 1, if enough bidirectional functors are used.
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4.3 Index edge optimization

(only tested in CoSy-fSDL-mode)
If an XGRS has order 2, and uses attribute equality tests on its rule test root nodes, it can be
speed up by the use of index structures.

IndexDeclaration ::= ’INDEX’ Variable ’:’ IndexName [ ’FUNCTION’ IdentList ] ’;°.
IndexName ::= >HASHTABLE’ | ’PLAINTABLE’.

If an index is specified on a variable, the code generation changes as follows. First the order loop
node domain of the specified variable is traversed to collect all objects into the index structure. Then
the index is used as virtual edge between the two root nodes of the rule. This virtual edge is traversed
during rule test. The rule (and may be the stratum) gets order 1 and will be generated with other
rules that have the same (single) range.

Currently there are hash tables (multi-valued index) and plain pointer tables (one-valued).!
OPTIMIX emits calls to C modules which both can be found in the sol-library.

EARS EquivalenceOfExpressions()
{
RANGE il <= consset(Expression); i2 <= consset(Expression);
INDEX i2: HASHTABLE FUNCTIONS hash_Expression, compare_Expression;
RULES
simple_equal(il, i2) :-
Type(il,T1),Type(i2,T2), // two rule test root nodes: order 2
T1 == T2,
il © IntConst Value => V ,
i2 ~ IntConst Value => V1 ,
V==1V1 // attribute equality test

}
transforms logically into

EARS EquivalenceOfExpressions()

{

RANGE il <= consset(Expression); RULES
simple_equal(il, i2) :-
VirtualIndexEdge(il1,i2), // one rule test root node: order 1
Type(il,T1),Type(i2,T2),
T1 == T2,
il ~ IntConst Value => V ,
i2 ~ IntConst Value => V1 ,
VvV ==1V1

}

The index function may be accompanied with the following functions in order:
1. hash function: Hashes an object into a int hash value. C signature:

int hash(<NodeType> n);

2. compare function: compares two objects on equality. Should behave like strcmp: give back 0 if
object 1 is equal to object 2, -1 if smaller, 1 if greater. Example:

int compare_Expression(Expression e, Expression e2)

{

if (e->Kind == e2->Kind) return O;

1Only hash tables are tested yet.
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if (e->Kind > e2->Kind) return 1;
return -1;

}

If one of them is left out, OPTIMIX chooses a standard function (probably behaving inefficient).
Choosing appropriate hash functions is quite important. Also note that the hash function has to be
specified anyway: if it is left out, a dummy void function has to be specified instead.
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Chapter 5

Examples and Miscellaneous

5.1 AST /standalone-mode examples

Please refer to the example files in the subdirectories $0PTIMIXDIR/demo/examples and
$0PTIMIXDIR/demo/ast. The first directory contains several examples of this manual. The second
directory contains the following examples:

ccmir.ast A fragment of a real-life intermediate language: the CCMIR (Common COMPARE Me-
dium Intermediate Representation)

files.ast A fragment of some specification for file of different types.
reach.ox Reaching definitions for CCMIR.
example-reachable.ox Transtive closure.

exprtab.ox Expression equivalence for CCMIR.

dominators.ox Computing dominators on block graph.

facts.ox Example facts.

livecopies.ox Live copy information.

copyprop.ox Copy propagation transformation.

5.2 CoSy-fSDL-mode examples

Here we will present some short examples for CoSy-fSDL mode. We assume a basic block graph is
defined in a procedure as follows. In CoSy this can be done in a view specification of an engine. We
that the basic block graph has already been constructed and entered into relation BlockGraph.

domain mirProcBody <
BlockGraph: SGRAPH(mirBasicBlock),
ReverseBlocks: SGRAPH(mirBasicBlock),
ReachableBlocks: SGRAPH(mirBasicBlock),

Dominators: SGRAPH(mirBasicBlock),

SelfDom: SGRAPH(mirBasicBlock),

USED: BIPUNI(mirBasicBlock,mirLocal),
Livein: BITUNI(mirBasicBlock,mirLocal,Livein),
Liveout: BITUNI(mirBasicBlock,mirLocal,Liveout)
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Then we may write the following specifications.

/* Compute the inverse of the basic block */
EARS ComputeReverse()

{

RANGE b <= BlockGraph; // implicit parameter graph BlockGraph
RULES
ReverseBlocks(b,bl) :- BlockGraph(bi,b).

This EARS of order 1 just builds up the reverse basic block graph, a relation ReverseBlocks. The
automatic-parameter-range declaration tells that the order loop variable is to be initialized from the
node domain of graph BlockGraph. The following shows how the generated routine may be called
from C code (CoSy):

BlockGraph = mirProcBody_get_BlockGraph(procbody) ;

// or:
// BlockGraph = SGRAPH_mirBasicBlock_create();
// add also some nodes with addnode functions..

mirProcBody_set_ReverseBlocks (SGRAPH_mirBasicBlock_create());

ReverseBlocks = mirProcBody_get_ReverseBlocks(procbody);

CopyNodes (BlockGraph, ReverseBlocks); // should copy the nodes of the SGRAPH
ComputeReverse (BlockGraph, ReverseBlocks);

The order of the parameter graphs to ComputeReverse is alphabetically.
The next example computes dominator analysis. The first stratum initializes. Initially all nodes
dominate all others except that the entry node does not dominate anyone.

EARS ComputeDominators()

{

-

}

RANGE b <= Dominators; bl <= Dominators;
RULES

Dominators(b,bl) :- BlockGraph.pred(b,PredecessorBlock).

// initially a node dominates each other node.

// The dominators of the entry node, however, are left empty.
SelfDom(b,b). // this predicate is used for adding each node to a

// set Dominators during the processing in ComputeDominators

RANGE b <= BlockGraph;
RULES

// a node dominates another if all predecessors dominate the other
Dominators(b,bl) :- FORALL p: BlockGraph.pred(b,p), Dominators(p,bl).
Dominators(b,bl) :- SelfDom(b,bl).

BlockGraph.pred(b,p) denotes all predecessors of b in the graph BlockGraph. For these p also the
dominator relation to b1 must hold. Note that b and bl are existentially quantified variables while p
is all-quantified. The rule with predicate SelfDom is necessary because currently additions of single
nodes to sets (in clauses) is not possible, everything has to be expressed in terms of edges (predicates).

OPTIMIX provides functor transparency, i.e. it is transparent which functors have been used to
implement the graphs. This is automatically infered from the data model. The code for the graph
navigations (functor method calls, access function calls) is generated accordingly.

The call sequence in a calling program could be:

ComputeDominators(BlockGraph, Dominators, SelfDom);

Note: The non-ground facts are computed first in each stratum.
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5.2.1 Live Variables: MAY dataflow analysis

It is also possible to specify MAY data flow analysis. For that we need a bipartite graph functor
(e.g. in CoSy-fSDL BIPUNI). It serves to represent the information which variables live at which
basic block, here at which entry and exit of which block (LIVEIN, LIVEOUT). We also need the

information per each basic block, which local variables have been used in a basic block (USED).

EARS LiveVariables()
{
RANGE b <= LIVEOUT;
RULES

LIVEQUT(b,0) :- BlockGraph.succ(b,bl), LIVEIN(b1,o0).
LIVEIN(b,o0) :— USED(b,0).
LIVEIN(b,o0) :- LIVEQUT(b,o0).

}

A variable is live at the entry of a block, if it is used in the block, or if it is live at the exit of the
block. A variable is live a the exit of the block, if it lives at the entry of a successor block.

5.2.2 BusyVariables: MUST dataflow analysis

If we want to solve a MUST data-flow analysis (intersection over all predecessors), we have to use an
all quantifier. The following EARS computes busy local variables, e.g. variables that are used in all
successor blocks or ar used in the block itself. The change is minimal.

EARS BusyVariables()

{
RANGE b <= BUSYIN;
RULES
BUSYOUT(b,0) :- FORALL bl: BlockGraph.succ(b,bl), BUSYIN(bi,o).
BUSYIN(b,0) :- USED(b,0).
BUSYIN(b,o) :- BUSYOUT(b,o).
}

In similar fashion available expressions or busy expressions can be solved.

5.3 The generated code

5.3.1 Outline of the generated code

The outline of a generated file is as follows. There may be differences how the code is generated for
one rule, whether a fixpoint evaluation is generated, etc.. Lines that are marked by a * appear as lists
of items.

Macros for debugging and target code
Global target codes (BEGIN, IMPORT, ..)
Macro definitions for opaques (only CoSy-fSDL)
Routine *:
Stratum *:
Stratum variable definitions
- order loop nodes
- fixpoint check variables
Evaluation of range declarations (get order loop node sets) *
Fact evaluation *
Index creation
Fixpoint loop:
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Order loops *:
Rule evaluations *:
Assigning of the source variables of each rule from order loop nodes
Rule code:
Rule variable definitions
FIRST code
Rule test:
Nested-loop join of all paths of edge-disjoint
path cover of the left-hand-side

Evaluation of join conditions

Transformation:
node allocations
edge deletions
edge additions
node marking/deletions

LAST code
Begin/Close procedures.

5.3.2 Manipulation and debugging of the generated code

We have tried to make the generated code as readable as possible. We hope users are able to read it
and also make modifications. One can use OPTIMIX to get a skeleton for one’s algorithm and then
modify and refine it by hand. A lot of typing can be avoided in this respect.

RCS and SCCS ids are already generated, so that files directly can be imported under change
control.

OPTIMIX generates some test code which is dependent on the flag 0XDEBUG. If you set this manually
in the code or set the ~-DOXDEBUG flag during a make, the running code will produce some test output.
Users also can insert target predicates with print-statements and #ifdef-switches in order to print
debug information.

However, the actual printing of the test output is dependent on the value of some option/variable
of/in the engine. This is

e -DUSE_SEQPAR_COSY If this compilation switch is set (in CoSy-fSDL-mode), then a query
in the option database of the engine is done for the string "oxdebug". Thus, if the engine has
got the option "oxdebug", then test output is printed.

In order to test the option, OPTIMIX generates a call to engineStateGet, which delivers the
engine state. It is assumed to have a field options, which contains the engine option database.
Thus the query is

if (engineStateGet->options != NULL)
/* test output */

Note that users must save the options into the engine state at engine initialization.

o -UUSE_SEQPAR _COSY If this compilation switch is un-set then the global variable
int oxdebug; is queried if output is to be printed. This is the normal case for AST-mode.
In Cosy-fSDL-mode this is useful only if everything is clustered into one process.

There is a second test print system which works in the same way. However, it prints less test
output and is dependent on the engine option "oxblip", or the global variable int oxblip;,
respectively.

RT no0195



Uwe Ajsmann

Output of graphs via VCG

All functors of the sol-library and all CoSy-fSDL-functors incooperate print routines which print a
graph in VCG format to a file. You may call these routines in a target predicate to look at the current
shape of a graph. You have to supply a function which provides a text label for each node. This
function takes a node and returns a label string which is printed in the file. E.g. for a hgraph this
works as follows:

{* extern char* labelfunction(<NodeType>);
hgraph_print_vcgfile("example.grl",graph, labelfunction); *}

5.3.3 Miscellaneous
Opaque attribute types

For opaques in CoSy-fSDL (scalar attributes) OPTIMIX generates a set of macros which it uses to
compare, assign and print. The user may redefine them.

Unknown types in the generated code

For navigations in the generated code OPTIMIX has to define some variables. In CoSy-fSDL-mode,
sometimes their types are not known when the user compiles a generated file. This is the case for
SET_<NodeType>, if the functor application SET(<NodeType>) does not appear in the CCMIR nor
in view specifications. However, the generated file requires this type, because sets of NodeType are
constructed during the navigations. The solution is that the user has to instruct fsdc to generate the
domain with a CoSy-fSDL use SET(<NodeType>)-clause. Alternatively in some operator a dummy
definition for SET(mirBasicBlock) can be introduced so that the fsdc generates this type as a result
of this functor call.
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Chapter 6

Practice

6.1 Implementation restrictions

The names of predicates (and corresponding object fields) must be globally unique within one GRS.
This means that a predicate can be used only with one single type in a GRS. Field names may occur
in different objects, however, then only one of them may be refered to in a GRS. Otherwise the
typecheck-algorithm of OPTIMIX may deliver unexpected results.

It is currently not possible to define target code global variables for entire GRS, nor for a OPTIMIX-
module. It is only possible for a single stratum. Thus passing variables around between strata is not
easy. One trick is to include additional variables in the parameter list of the GRS. Then they are
known globally.

Note that currently it is very simple to add multiple edges between the same nodes in EGRAPHs.
Then the result of the generated routine may be unexpected.

Currently for non-recursive EARS no fixpoint evaluation is generated. This is only correct, if the
computed predicates do not rely on each other. The rules are currently not sorted along their rule
dependency graph. Be careful!

Note that the variables which are defined in patterns are not allowed to be used for further
navigation, only for the use in target predicates, e.g. to test attributes. Also it is not allowed to use
constant patterns. Constant comparisons are only allowed in equality tests (section 3.6.3).

Currently there is no automatic stratification of rules in strata.

The code generated for order loops may be buggy, because the implementation of the order algo-
rithm is tricky.

6.1.1 Bidirectional edge optimization

Bidirectional edge optimization does only work for one-component rule test graphs, because currently
we dont have a notion of an rule test graph with several components. For each of these a root must
be found, if the component is cyclic!! Currently this is done only for the rule test graph completely.
This results in a incorrect reduction of order because roots are forgotten.

6.1.2 Restrictions for modes

Several parts of the implementation have only been tested in AST- or CoSy-fSDL-mode. Thus incon-
sistencies are likely to appear. Please report them to the author.
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6.2 Things to come

We plan to support and maintain OPTIMIX in the next years. The following things are probable for
one of the next versions of OPTIMIX. Mail me if you need some different things.

1. Foreign functors. OPTIMIX should be able to deal with graph and set implementations which
are external. This will be achieved by a macro interface.

2. Termination of XGRS should be automatically checked.

3. Stratification of XGRS.

4. The designator operators for attributes of objects: V->attr.

6.3 Frequently asked questions

Question: For a certain variable OPTIMIX infers ’type mismatched’, i.e. multiple types.
What can I do?

Answer: There are several reasons for this. Reason 1: OPTIMIX infers two domains that
are compatible in CoSy-fSDL, but not in the flat form anymore, because in there the inheritance
information of CoSy-fSDL is lost. Then state a FINER assertion that one domain is finer than the
other and it should work.

Reason 2: There are really two different domains/types. Then help OPTIMIX by stating a type for
that variable. You can do this either by a DECLARE variable declaration, which holds for all rules
of a stratum. Or you can introduce pattern matching statements, whose type informations are then
exploited for the type check. Or you qualify a predicate name by a domain/operator specification.

Reason 3: It really was a flaw in your specification. Look into the flatform-file, which types occur
for your fields.

Question: For a certain variable OPTIMIX infers type <NonIdentifiedClass>

Answer: Probably in the specification there is a field whose type is not known, e.g. mis-typed.
If the field has a functor call type, one of the parameters may be unknown. Look at the field name of
the predicate in the line where the error occurs and look up its type in the data specification.

Question: My specification results in a larger order for my GRS than expected.

Answer: Maybe OPTIMIX has infered domains for the types of the root nodes of the rules
which are different, however are compatible according to the domain calculus. Then insert a FINER
statement at the beginning of the specification to tell OPTIMIX that two domains are compatible.
OPTIMIX will then choose the coarser domain as type of the root node.

Answer: Maybe your FINER specification must be more detailed. Currently there is no union
over different FINER specifications which contain the same tails. Be sure that you really specify all
finer domains of a domain in one line.

Question: I try to compile the generated engine with -DOXDEBUG. However, it does not
compile, because the field/variable oxdebug is unknown.

Answer (CoSy-fSDL): In order to use OXDEBUG you have to annotate the engine’s
state struct with a field int state->oxdebug. OPTIMIX-generated code then compares
engineStateGet->oxdebug with the value of the given command-line option option. If the state
does not have such a field, the engine does not compile. Also do not forget to save the value of the
command-line option oxdebug in the state.

Answer (AST /standalone): Please supply in your main program two variables

int oxdebug;
int oxblip;
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which are flags to guide the printing of the debugging output macros.

Question: I would like to specify an empty rule test in order to perform the rule’s
transformation always. However, OPTIMIX does not accept empty rule tests.

Answer 1: Try a non-ground fact. You may combine the with a target code, if you want.
Currently facts consisting only of target code do not work. The disadvantage is that facts are always
moved to the top of the generated code of a stratum.

Answer 2: Specify standalone matches on variables. The matches are generated, even if the
variable’s type is clear. Thus the rule test is not empty and the transformation will be generated also:

EARS ComputeTrafo(loop:Loop,MaxInstruction:Instruction)
{ RULES
(
MaxInstruction ~ STMT,
loop “ Loop
==>
new_instructions.last(loop,MaxInstruction)

~

}

Question: I’'m totally worried about this tool. How can I understand the weird

documentation?
Answer: Just relax and try optimix -poem. You are not the only one who is perplexed by graph

rewriting.
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Glossary

edge-disjoint path cover A covering of a graph with a set of paths, which intersect each other only
at their end points.

exhaustive graph rewrite system (XGRS) A variant of graph rewrite systems on relational
graphs, i.e. on graphs with one edge of a certain label between two nodes. Each rule adds
an edge but no node to a termination subgraph, thus the systems terminate

order A characteristic feature of a stratum or a GRS: the maximal number of root nodes of left hand
sides.

order loop A loop in the generated code which traverses a domain of a root node of some left hand
sides.

order loop node A node instantiated in an order loop.

nested-loop join A code generation method from DATALOG and relational algebra to evaluate rela-
tional queries.

node A variable which denotes a node of the rule test graph
pattern variable A variable set in a pattern. May be a node or a scalar variable.
rule test A left hand side of a graph rewrite system and a rule body of a DATALOG-query.

rule test graph, RTG A left hand side of a graph rewrite system consists of a graph, the rule test
graph.

rule transformation A right hand side of a graph rewrite system.

scalar variable A variable with scalar value. No rule test graph node.
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Generated Example

/* @(#)example-reachable.c 1.1 96/06/26 */

/% */
/% */
/* GENERATED CODE. MODIFICATIQONS WILL BE LOST */
/% */
/% */

/**x generated by optimix at Wed Jun 26 13:11:34 1996
Version: 1.1 linked at Date: Wed Jun 26 13:06:42 MET DST 1996
source : example-reachable.ox
view : example-reachable
LocalTests : ON
OptimizerQutputFileTrunc : example-reachable

output : example-reachable
*kk [
/% Module TransitiveClosure */

/* Debug macro. Switch on if you want test output. */

/* #define OXDEBUG */

/% for the next macro the engine state has to include an option component!! */
#ifdef OXDEBUG

#ifndef USE_SEQPAR_COSY

#define OXDEBUGBEGIN(number) {{ extern int oxdebug; if (oxdebug>number) {
#define OXDEBUGEND }}}

#else

#define 0XDEBUGBEGIN(number) { if (engineStateGet->options != NULL) { if (engineStateGet->oxdebug > (number)) {
#define OXDEBUGEND 1}}}

#endif

#endif

#ifdef OXDEBUG

#ifndef USE_SEQPAR_COSY

#define 0XBLIPBEGIN(number) {{ extern int oxblip; if (oxblip>number) {

#define OXBLIPEND }}}

#else

#define OXBLIPBEGIN(number) { if (engineStateGet->options != NULL) { if (engineStateGet->oxdebug > (number)) {
#define OXBLIPEND }}}

#endif

#endif

#ifdef OXDEBUG

#ifndef USE_SEQPAR_COSY

#define OXOPTBEGIN(Option) { if (options_IsSet(Option)) {

#define OXOPTEND }}

#else

#define OXOPTBEGIN(Option) { if (optionIsSet(engineStateGet->options,Option)) {
#define OXOPTEND }}

#endif

#endif

#define WRITENL fprintf(stderr,"\n");

/* includes */

# include "example-reachable.h"

# include <stdio.h>

#define TEST(x) if( !(x) ) continue;
#define ABSENT(x) if( (x) ) continue;

static void oxAbort (char *yyFunction)

extern void exit ();
(void) fprintf (stderr, "Error: module example-reachable, function %s failed", yyFunction)

exit (1);

static char rcsid[] = "$Id:$";

/* line 0 */

/* macro definitions for opaques */

/* help and debug routines */

/* Implementation of GRS */

/% */
/* It is assumed that several parameter graphs are given (in */
/* ascending alphabetical order). */
/* Some of them are assigned, others are only used for test. */
/* Note that the universes of the graphs concerning their node types */
/* MUST be the same. */
/* Nodes in the assigned graphs must be already in the graphs; */
/* this routine only computes the edges. */
/* TEST THIS CODE BEFORE YOU TRUST IT! */
/* ComputeReachableBlocks is a EARS(0). */
/% */

void ComputeReachableBlocks (consset BlockSet)
{

int _change, _fixcount;
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#ifdef OXDEBUG
OXDEBUGBEGIN(0)

fprintf(stderr,"ComputeReachableBlocks"); WRITENL;

O0XDEBUGEND
#endif /* OXDEBUG */
/* stratum code generati

on */

/%

/* stratum-18:6 is a recursive stratum with order 1. */

int _ULoopCounters[l];
short _order_onceindex;
unsigned char AllquantorFailFlag = (unsigned char)O;

/* order loop 0:

set or graph range */

Block OLoopNodeRepr_0;
Block OLoopRawNode_0;

consset 0LoopNod.
/* Indices x/

eSet_0;

/% Global: result sets */

#ifdef OXDEBUG
O0XDEBUGBEGIN (0)
fprintf(stderr,"stratum-
OXDEBUGEND

#endif /% OXDEBUG */

18:6"); WRITENL;

/* Get the order loop nodes from some tested graphs */

OLoopNodeSet_0 =

BlockSet;

/% Non-ground fact evaluation */

/* Index creation */
/* Rule evaluation */

_change = TRUE;
_fixcount = 0;
while (_change)

_change = FALSE;
#ifdef 0XDEBUG
0XDEBUGBEGIN(0)

fprintf(stderr,"enter fixpoint loop %d",_fixcount);WRITENL;

OXDEBUGEND

#endif /% OXDEBUG */
#ifdef 0XDEBUG
0XBLIPBEGIN(4)

fprintf(stderr,"enter fixpoint loop %d",_fixcount);WRITENL;

0XBLIPEND
#endif /% OXDEBUG */
_fixcount++;

/* rules with order loops */
_OLoopCounters[0] = 0;
consset_LOOP(0OLoopNodeSet_0,0LoopNodeRepr_0)

{

#ifdef OXDEBUG
0XBLIPBEGIN(4)

fprintf(stderr,"order loop O run %d ", _OLoopCounters[0]++);WRITENL;

0XBLIPEND
#endif /* OXDEBUG */

OLoopRawNode_0 = OLoopNodeRepr_0;

/* ready rule tests */

/* edge
#ifdef 0XDEBUG
OXDEBUGBEGIN (0)

fprintf(
0XDEBUGEND
#endif /* 0XDEBUG */

{

addition rule test 23, 4 */

stderr,"rule test 23, 4 "); WRITENL;

short _onceindex;
/* raw nodes */
Block b;

Block bil;

/* for edge with source node */

/* Nothing to be done for edge source of set edge */

#ifdef 0XDEBUG
0XDEBUGBEGIN(0)

/* for tested edge BlockGraph */
consset RuleNodeCursor_BlockGraph_bil;
consset RuleNodeSet_BlockGraph_bl;

/* pattern variables */
/* Local: result sets */

/* rule fake for-loop, executed only once.. */
for (_onceindex = 1; _onceindex > 0; _onceindex—-)

/* path test [b]l-BlockGraph->[b1] */
b = OLoopRawNode_0;
/* predicate test (set edge) BlockGraph 23, 29 */

fprintf(stderr,"predicate 23, 29 order loop node %s ", Tree_get_Label(b)); WRITENL;

OXDEBUGEND
#endif /% OXDEBUG */

FAILRULE23:

RuleNodeSet_BlockGraph_ bl = b->BlockGraph;
consset_LOOP(RuleNodeSet_BlockGraph_bl, bil)
{

/* evaluate first target predicates */

/% global attribute tests (join mode) */

/* evaluate join conditions */

/% assign all edges between tested nodes */

/* assign edge ReachableBlocks 23, 4 =/
_change |= consset_insert(b->ReachableBlocks,bl);

consset_ENDLOOP;
/* end path test [b]-BlockGraph->[b1i] */
/% Rule finish */

} /* end of rule fake for-loop */

} /* end of rule test 23, 4 */

/* edge
#ifdef OXDEBUG
0XDEBUGBEGIN(0)

RT no0195

addition rule test 24, 4 */
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fprintf(stderr,"rule test 24, 4 "); WRITENL;

0XDEBUGEND
#endif /* 0XDEBUG */
{

short _onceindex;
/* raw nodes */
Block b;

Block bil;

Block s;

/% for edge with source node */

/* Nothing to be done for edge source of set edge */

#ifdef 0XDEBUG
0XDEBUGBEGIN(0)

fprintf(stderr,"predicate

0XDEBUGEND
#endif /% OXDEBUG */

/* for tested edge BlockGraph */
consset RuleNodeCursor_BlockGraph_s;
consset RuleNodeSet_BlockGraph_s;

/* for tested edge ReachableBlocks */
consset RuleNodeCursor_ReachableBlocks_bl;
consset RuleNodeSet_ReachableBlocks_bil;

/% pattern variables */
/% Local: result sets %/

/* rule fake for-loop, executed only once.. */
for (_onceindex = 1; _onceindex > 0; _onceindex--)

/* path test [b]-BlockGraph->[s]-ReachableBlocks->[b1] */

b = OLoopRawNode_0;

/* predicate test (set edge) BlockGraph 24, 29 */

RuleNodeSet_BlockGraph_s = b->BlockGraph;
consset_LOOP(RuleNodeSet_BlockGraph_s, s)
{

24, 29 order loop mnode %s ", Tree_get_Label(b)); WRITENL;

/* predicate test (set edge) ReachableBlocks
RuleNodeSet_ReachableBlocks_bl = s->ReachableBlocks;

24, 46 */

consset_LOOP(RuleNodeSet_ReachableBlocks_bl, bl)

/* evaluate first target predicates */

/* global attribute tests (join mode) */

/* evaluate join conditions */

/* assign all edges between tested nodes */

/* assign edge ReachableBlocks 24, 4 */
_change |= consset_insert(b->ReachableBlocks,bl);

FATLRULE24:

consset_ENDLOOP;
¥
consset_ENDLOOP;

/* end path test [b]l-BlockGraph->[s]-ReachableBlocks->[bi] */

/* Rule finish */
} /* end of rule fake for-loop */

} /* end of rule test 24, 4 */

} /% end of order loop 0 */

consset_ENDLOOP;

/* single source path problems */

FAILSTRATUM_18_6:
}

/* end of fix point loop */

/* end of stratum stratum-18:6 */

i /* end of ComputeReachableBlocks */

/* Initialising and finishing */
/* line 0 */

void example-reachable_Begin ()

¥

/* line 0 */

void example-reachable_Close ()

[ ke sk s K ok o o Kok

Unendlich staun ich euch an, ihr Seligen, euer Benehmen,
wie ihr die schwindliche Zier traget in ewigem Sinn.
Ach wer’s verstuende zu bluehn: dem waer das Herz ueber alle
schwachen Gefahren hinaus und in der grossen getrost.
R.M. Rilke: Mandelbaeume in Bluete
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