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Credits

Coq is a proof assistant for higher-order logic, allowing the development of computer programs
consistent with their formal specification. It is the result of about ten years of research of the Coq
project. We shall briefly survey here three main aspects: the logical language in which we write
our axiomatizations and specifications, the proof assistant which allows the development of verified
mathematical proofs, and the program extractor which synthesizes computer programs obeying
their formal specifications, written as logical assertions in the language.

The logical language used by Coq is a variety of type theory, called the Calculus of Inductive
Constructions. Without going back to Leibniz and Boole, we can date the creation of what is
now called mathematical logic to the work of Frege and Peano at the turn of the century. The
discovery of antinomies in the free use of predicates or comprehension principles prompted Russell
to restrict predicate calculus with a stratification of types. This effort culminated with Principia
Mathematica, the first systematic attempt at a formal foundation of mathematics. A simplification
of this system along the lines of simply typed A-calculus occurred with Church’s Simple Theory
of Types. The A-calculus notation, originally used for expressing functionality, could also be used
as an encoding of natural deduction proofs. This Curry-Howard isomorphism was used by N. de
Bruijn in the Automath project, the first full-scale attempt to develop and mechanically verify
mathematical proofs. This effort culminated with Jutting’s verification of Landau’s Grundlagen in
the 1970’s. Exploiting this Curry-Howard isomorphism, notable achievements in proof theory saw
the emergence of two type-theoretic frameworks; the first one, Martin-Lof’s Intuitionistic Theory
of Types, attempts a new foundation of mathematics on constructive principles. The second one,
Girard’s polymorphic A-calculus Fw, is a very strong functional system in which we may repre-
sent higher-order logic proof structures. Combining both systems in a higher-order extension of
the Automath languages, T. Coquand presented in 1985 the first version of the Calculus of Con-
structions, CoC. This strong logical system allowed powerful axiomatizations, but direct inductive
definitions were not possible, and inductive notions had to be defined indirectly through functional
encodings, which introduced inefficiencies and awkwardness. The formalism was extended in 1989
by T. Coquand and C. Paulin with primitive inductive definitions, leading to the current Calculus
of Inductive Constructions. This extended formalism is not rigorously defined here. Rather, nu-
merous concrete examples are discussed. We refer the interested reader to relevant research papers
for more information about the formalism, its meta-theoretic properties, and semantics. However,
it should not be necessary to understand this theoretical material in order to write specifications.
It is possible to understand the Calculus of Inductive Constructions at a higher level, as a mixture
of predicate calculus, inductive predicate definitions presented as typed PROLOG, and recursive
function definitions close to the language ML.

Automated theorem-proving was pioneered in the 1960’s by Davis and Putnam in propositional
calculus. A complete mechanization (in the sense of a semi-decision procedure) of classical first-
order logic was proposed in 1965 by J.A. Robinson, with a single uniform inference rule called
resolution. Resolution relies on solving equations in free algebras (i.e. term structures), using
the unification algorithm. Many refinements of resolution were studied in the 1970’s, but few
convincing implementations were realized, except of course that PROLOG is in some sense issued
from this effort. A less ambitious approach to proof development is computer-aided proof-checking.
The most notable proof-checkers developed in the 1970’s were LCF, designed by R. Milner and
his colleagues at U. Edinburgh, specialized in proving properties about denotational semantics
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recursion equations, and the Boyer and Moore theorem-prover, an automation of primitive recursion
over inductive data types. While the Boyer-Moore theorem-prover attempted to synthesize proofs
by a combination of automated methods, LCF constructed its proofs through the programming of
tactics, written in a high-level functional meta-language, ML.

The salient feature which clearly distinguishes our proof assistant from say LCF or Boyer
and Moore’s, is its possibility to extract programs from the constructive contents of proofs. This
computational interpretation of proof objects, in the tradition of Bishop’s constructive mathematics,
is based on a realizability interpretation, in the sense of Kleene, due to C. Paulin. The user
must just mark his intention by separating in the logical statements the assertions stating the
existence of a computational object from the logical assertions which specify its properties, but
which may be considered as just comments in the corresponding program. Given this information,
the system automatically extracts a functional term from a consistency proof of its specifications.
This functional term may be in turn compiled into an actual computer program. This methodology
of extracting programs from proofs is a revolutionary paradigm for software engineering. Program
synthesis has long been a theme of research in artificial intelligence, pioneered by R. Waldinger.
The Tablog system of Z. Manna and R. Waldinger allows the deductive synthesis of functional
programs from proofs in tableau form of their specifications, written in a variety of first-order logic.
Development of a systematic programming logic, based on extensions of Martin-Lof’s type theory,
was undertaken at Cornell U. by the Nuprl team, headed by R. Constable. The first actual program
extractor, PX, was designed and implemented around 1985 by S. Hayashi from Kyoto University.
It allows the extraction of a LISP program from a proof in a logical system inspired by the logical
formalisms of S. Feferman. Interest in this methodology is growing in the theoretical computer
science community. We can foresee the day when actual computer systems used in applications
will contain certified modules, automatically generated from a consistency proof of their formal
specifications. We are however still far from being able to use this methodology in a smooth
interaction with the standard tools from software engineering, i.e. compilers, linkers, run-time
systems taking advantage of special hardware, debuggers, and the like. We hope that Coq can be
of use to researchers interested in experimenting with this new methodology.

A first implementation of CoC was started in 1984 by G. Huet and T. Coquand. Its imple-
mentation language was CAML, a functional programming language from the ML family designed
at INRIA in Rocquencourt. The core of this system was a proof-checker for CoC seen as a typed
A-calculus, called the Constructive Engine. This engine was operated through a high-level notation
permitting the declaration of axioms and parameters, the definition of mathematical types and
objects, and the explicit construction of proof objects encoded as A-terms. A section mechanism,
designed and implemented by G. Dowek, allowed hierarchical developments of mathematical theo-
ries. This high-level language was called the Mathematical Vernacular. Furthermore, an interactive
Theorem Prover permitted the incremental construction of proof trees in a top-down manner, sub-
goaling recursively and backtracking from dead-alleys. The theorem prover executed tactics written
in CAML, in the LCF fashion. A basic set of tactics was predefined, which the user could extend
by his own specific tactics. This system (Version 4.10) was released in 1989. Then, the system was
extended to deal with the new calculus with inductive types by C. Paulin, with corresponding new
tactics for proofs by induction. A new standard set of tactics was streamlined, and the vernacular
extended for tactics execution. A package to compile programs extracted from proofs to actual
computer programs in CAML or some other functional language was designed and implemented
by B. Werner. A new user-interface, relying on a CAML-X interface by D. de Rauglaudre, was
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designed and implemented by A. Felty. It allowed operation of the theorem-prover through the ma-
nipulation of windows, menus, mouse-sensitive buttons, and other widgets. This system (Version
5.6) was released in 1991.

Coq was ported to the new implementation Caml-light of X. Leroy and D. Doligez by D. de
Rauglaudre (Version 5.7) in 1992. A new version of Coq was then coordinated by C. Murthy, with
new tools designed by C. Parent to prove properties of ML programs (this methodology is dual to
program extraction) and a new user-interaction loop. This system (Version 5.8) was released in
May 1993. A Centaur interface CTCoq was then developed by Y. Bertot from the Croap project
from INRIA-Sophia-Antipolis.

In parallel, G. Dowek and H. Herbelin developed a new proof engine, allowing the general
manipulation of existential variables consistently with dependent types in an experimental version
of Coq (V5.9).

The present version V5.10 of Coq is based on a generic system for manipulating terms with
binding operators due to Chet Murthy. A new proof engine allows the parallel development of
partial proofs for independent subgoals. The structure of these proof trees is a mixed representation
of derivation trees for the Calculus of Inductive Constructions with abstract syntax trees for the
tactics scripts, allowing the navigation in a proof at various levels of details. The proof engine
allows generic environment items managed in an object-oriented way. This new architecture, due
to C. Murthy, supports several new facilities which make the system easier to extend and to scale

up:

o User-programmable tactics are allowed

It is possible to separately verify development modules, and to load their compiled images
without verifying them again - a quick relocation process allows their fast loading

e A generic parsing scheme allows user-definable notations, with a symmetric table-driven
pretty-printer

Syntactic definitions allow convenient abbreviations

A limited facility of meta-variables allows the automatic synthesis of certain type expressions,
allowing generic notations for e.g. equality, pairing, and existential quantification.

In the Fall of 1994, C. Paulin-Mohring replaced the structure of inductively defined types and
families by a new structure, allowing the mutually recursive definitions. P. Manoury implemented
a translation of recursive definitions into the primitive recursive style imposed by the internal
recursion operators, in the style of the ProPre system. C. Munoz implemented a decision procedure
for intuitionistic propositional logic, based on results of R. Dyckhoff. J.C. Fillidtre implemented a
decision procedure for first-order logic without contraction, based on results of J. Ketonen and R.
Weyhrauch. Finally C. Murthy implemented a library of inversion tactics, relieving the user from
tedious definitions of “inversion predicates”.

Rocquencourt, Feb. 1st 1995
Gérard Huet
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Chapter 1

Introduction

This document is the Reference Manual of version V5.10 of the Coq proof assistant. A companion
volume, the Coq Tutorial, is provided for the beginners. It is advised to read the Tutorial first.
Additional documentation is described in chapter 15.

All services of the Coq proof assistant are accessible by interpretation of a command language.
A command is a string ended with a period.

Coq has an interactive mode in which commands are interpreted as the user types them in
from the keyboard and a compiled mode where commands are processed from a file. Other modes
of interaction with Coq are possible, through an emacs shell window, or through a customized
interface with the Centaur environment (CTCoq). These facilities are not documented here.

e The interactive mode may be used as a debugging mode in which the user can develop his
theories and proofs step by step, backtracking if needed and so on. The interactive mode is
run with the coqtop command from the operating system (which we shall assume to be some
variety of UNIX in the rest of this document).

e The compiled mode acts as a proof checker taking a file containing a whole development in
order to ensure its correctness. Moreover, Coq’s compiler provides an output file containing
a compact representation of its input. The compiled mode is run with the cogc command
from the operating system. Its use is documented in chapter 13.

Coq offers two kinds of services : logical services and operating services.
We divide the logical services in two main parts :

e a specification language in which the user axiomatizes his own theories. This specification
language is known as Gallina which mainly provides declaration and definition mechanisms.
It is documented in chapter 2.

e a proof editing mode providing tools for proof development. Proofs services are again of two

kinds :

— proofs pragmas such as switching on and off the proof editor, restarting a proof, etc ...
They are documented in chapter 3.

— tactics which are the implementation of logical reasoning steps. The whole chapter 4 is
devoted to their documentation.
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For a more fundamental understanding of the logical framework, we urge the user of Coq to
read chapter 6.

The so-called operating services are :

e a file system service including modules facilities

displaying features
user’s syntax handling

miscellaneous pragmas

They are documented in chapter 5.

Notations In the rest of this document, Coq’s grammar terminals will be written in typewriter

font.
1.

2.

Non-terminals are
Fwterm which denotes an F,, term (see section 5.6.6).

ident which denotes an identifier in the usual sense. Characters such as _ and ’ are allowed
to appear in identifiers, besides alpha-numerical characters.

. num which denotes a positive natural number (e.g. a sequence of digits with no blanks).
. pattern which denotes any CIC-term belonging to a restricted class (see section 2.5.5).
. ref which is either an ident or a num.

. string which denotes any sequence of characters enclosed between two ".

tac which denotes any simple tactic’s name or composed tactical (see section 4.11).

. term which denotes any CIC-term (see section 2.2).

. sort which denotes one of the special Cic-constants called a sort (see section 6.1.1).

14



Chapter 2

The Gallina specification language

2.1 Lexical conventions

Blanks Space, newline and horizontal tabulation are considered as blanks. Blanks are ignored
but they separate tokens.

Comments Comments in Coq are enclosed between (* and *), and can be nested. Comments
are treated as blanks.

Identifiers Identifiers are sequences of letters, digits, _, $ and ’, that do not start with a digit
or ’. That is, they are recognized by the following regular expression

ident := (a..z|A..Z|_|$){a..z|A..2|0..9|_|$|’}T

Identifiers can contain at most 80 characters, and all characters are meaningful.

Integers Integers are sequences of digits, optionally preceded by a minus sign, that is

integer = [-]{0..9}7

Strings Strings are delimited by " (double quote), and enclosed a sequence of any characters
different from " and \, or one of the following sequences

Sequence | Character denoted

\\ backslash (\)

\" double quote (")

\n newline (LF)

\r return (CR)

\t horizontal tabulation (TAB)

\b backspace (BS)

\ddd the character with ASCII code ddd in decimal

Strings can be split on several lines using a backslash (\) at the end of each line, just before the
newline. For instance,

15



Coq < AddPath "$COQTOP/\
Coq < contrib/Rocq/LAMBDA".

is correctly parsed, and equivalent to

Coq < AddPath "$COQTOP/contrib/Rocq/LAMBDA".

Keywords
Definition DelPath
in Load
Orelse Proof
Reset Restore

Dependent
LoadPath
Qed

State

end
NewSyntax
Quit
Syntax

The following identifiers are reserved keywords, and cannot be employed otherwise:

Grammar
Non
Remove
with

Although they are not considered as keywords, it is inadvisable to use words of the following

list as identifiers:

Abort

Ccd
Compute
End
Fixpoint
Hint
Infix
Minimality
Node
Proofs
Require
Script
Silent
Token
Undo

Abstraction All

Chapter
Defined
Eval

Focus
Hypothesis
Inspect

ML

Opaque
Prop
Restart
Search
States
Transparent
Unfocus

Other keywords and user’s tokens

Check
Definition
Explain
for
Immediate
Lemma
Module
Parameter
Pwd
Resume
Section
Suspend
Tree
Variable

>>

Axiom
CheckGuard
Drop
Extraction
Go
Induction
Let
Modules
Parameters
Qed

Save

Set
Syntactic
Type
Variables

<>

bl

Begin
CoFixpoint
Elimination
Fact

Goal
Inductive
Local
Mutual
Print
Remark
Scheme
Show
Theorem
TypeSet
Write

The following sequences of characters are also keywords:

You can add new tokens with the command Token (see section 5.7.4). New tokens must be
sequences, without blanks, of characters taken from the following list:

<>/ \ -+

3 2

that do not start with a character from

$ _

lQ# Y%~ &7 x

~$ _a..zA..Z0..9

a..z A..Z "’ 0..9

Lexical ambiguities are resolved according to the “longest match” rule: when a sequence of the
previous characters can be decomposed into several different ways, then the first token is the
longest possible one (among all tokens defined at this moment), and so on.
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2.2 Basic syntax of terms

The basic set of terms form the Calculus of Inductive Constructions also called Cic. The formal
presentation of CIC is given in chapter 6. We give here (an approximation of) the syntax available
in Coq.

ident

sort

( binder ) term

[ binder ] term

[ lident ] term

[ ident = term ] term

( terms )

< term >Match term with terms end

term

< term >Case term of terms end

Fix ident { fixdecls }

< term >let ( letdecls ) = term in term
< term >let ( lident ) = term in term
< term >if term then term else term
terms term

term terms
ident

ident , lident

lident : term

lident

binder

sort Prop

Set

Type

Typeset

fixdecl

fixdecl with fixdecls

ident / num : term := term
binder

binder ; letdecls

fixdecls

fixdecl
letdecls

Remarks :
1. ( terms ) associates to the left.
2. The syntax [ lident ] term allows not to give types in abstractions.

3. The syntax [ ident = term ] term allows to define a S-redex.

Example : [x=T1]Ty is equivalent to ([x]Ty T1).

4. The syntax < term >let ( letdecls ) = term in term is a macro for a Match or a Case with
one only case.

Variants : The syntax < term >let ( lident ) = term in term is a variant of a precedent
but types are not needed in lident.
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5. The syntax < term >if term then term else term is a macro for Match or a Case with two
only cases.

2.3 Declarations

The declaration mechanism allows the user to specify his own basic objects. Declared objects play
the role of axioms or parameters in mathematics. A declared object is an ident associated to a
term. A declaration is accepted by Coq iff this term is a well-typed specification in the current
context of the declaration. This term is considered to be the type, or specification, of the ident.

2.3.1 Axiom ident : term.

This command links term to the name ident as its specification in the global context. The fact
asserted by term is thus assumed as a postulate.

Error message :
1. Clash with previous constant ident

Variants :

1. Parameter ident : term.
Is equivalent to Axiom ident : term
2. Parameters lident : term.

Links term to the names comprising the list lident

2.3.2 Variable ident : term.

This command links term to the name ident in the context of the current section. The name ident
will be unknown when the current section will be closed. One says that the variable is discharged.
Using the Variable command out of any section is equivalent to Axiom.

Error message :
1. Clash with previous constant ident
Variants :

1. Variables lident : term.
Links term to the names comprising the list lident

2. Hypothesis lident : term.
Is equivalent to Variables lident : term

See also : section 2.6

It is advised to use the keywords Axiom and Hypothesis for logical postulates (i.e. when the
assertion term is of sort Prop), and to use the keywords Parameter and Variable in other cases
(corresponding to the declaration of an abstract mathematical entity).
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2.4 Definitions

Definitions differ from declarations since they allow to give a name to a term whereas declarations
were just giving a type to a name. That is to say that the name of a defined object can be replaced
at any time by its definition. This replacement is called §-conversion (see section 6.3). A defined
object is accepted by the system iff the defining term is well-typed in the current context of the
definition. Then the type of the name is the type of term. The defined name is called a constant
and one says that the constant is added to the environment.

A formal presentation of constants and environment is given in section 6.4.

2.4.1 Definition ident := term.

This command binds the value term to the name ident in the environment, providing that term is
well-typed.

Error message :
1. Clash with previous constant ident
Variants :

1. Definition ident : termy := termy. It checks that the type of termsy is definitionally
equal to termy, and registers ident as being of type term;, and bound to value terms.

Error message :

1. In environment the term: termy does not have type term;. Actually, it has
type terms.

See also : sections 5.6.2, 4.4.4

2.4.2 Local ident := term.

This command binds the value term to the name ident in the environment of the current section.
The name ident will be unknown when the current section will be closed and all occurrences of
ident in persistent objects (such as theorems) defined within the section will be replaced by term.
One can say that the Local definition is a kind of macro.

Error message :
1. Clash with previous constant ident

Variants :

1. Local ident : term; := terms.
Checks that the type of terms is definitionally equal to term;, and registers ident as being of
type term;.

See also : sections 2.6, 5.6.2, 4.4.4
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2.5 Inductive definitions

This version of Coq contains a new implementation of inductive definitions. It is formally presented
in section 6.5.

2.5.1 Inductive ident : term := ident; : term; | .. | ident, : term,.

This command is used to define inductive types and inductive families such as inductively defined
relations. The name ident is the name of the inductively defined object and term is its type. The
names Ident;, .., ident,, are the names of its constructors and termi, .., term, their respective
types. The types of the constructors have to satisfy a positivity condition (see section 6.5.3) for
ident. This condition ensures the well-foundedness of the inductive definition. If this is the case,
the constants ident, identy, .., ident,, are added to the environment with their respective types. Ac-
cording to the arity of the aimed inductive type (e.g. the type of term), Coq provides a number of
destructors for ident. Destructors are named ident_ind, ident_rec or ident_rect which respectively
correspond to elimination principles on Prop, Set and Type. Note that ident_ind is always pro-
vided whereas ident_rec and ident_rect are not. The type of the destructors expresses structural
induction/recursion principles over objects of ident. The inductive definitions are formally detailed
in section 6.5. We give below two examples of the use of the Inductive definitions.
The set of natural numbers is defined as :

Coq < Inductive nat : Set := 0 : nat | S : nat -> nat.

The type nat is defined as the least Set containing 0 and closed by the S constructor. The
constants nat, 0 and S are added to the environment.

Now let us have a look at the elimination principles. They are three : nat_ind, nat_rec and
nat_rect. The type of nat_ind is :

Coq < Check nat_ind.

This is the well known structural induction principle over natural numbers, i.e. the second-order
form of Peano’s induction principle. It allows to prove some universal property of natural numbers
((n:nat) (P n)) by induction on n. Recall that (n:nat) (P n) is Gallina’s syntax for the universal
quantification Vn : nat - P(n).

The types of nat_rec and nat_rect are similar, except that they pertain to (P:nat->Set) and
(P:nat->Type) respectively . They correspond to primitive induction principles (allowing depen-
dent types) respectively over sorts Set and Type.

As a second example, let us define the even predicate :

Coq < Inductive even : nat->Prop :=
Coq < even_0 : (even 0)
Coq < | even_SS : (n:nat)(even n)->(even (S (S n))).

The type nat->Prop means that even is a unary predicate (inductively defined) over natural
numbers. The type of its two constructors are the defining clauses of the predicate even. The type
of even_ind is :

Coq < Check even_ind.
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From a mathematical point of vue it asserts that the natural numbers satisfying the predicate even
are just the naturals satisfying the clauses even_0 or even_SS. This is why, when we want to prove
any predicate P over elements of even, it is enough to prove it for 0 and to prove that if any natural
number n satisfies P its double successor (S (S n)) satisfies also P. This is indeed analogous to the
structural induction principle we got for nat.

Error message :

1. Non positive Occurrence in term;

2. Type of Constructor not well-formed
Variants :

1. Inductive ident [ params ] : term := identy:termy | .. | ident,:term,,.
Allows to define parameterized inductive types.
The syntax of params is ident’q:term’y, ..., ident’j:term’y.
For instance, one can define parameterized lists as :

Coq < Inductive list [X:Set] : Set :=
Cog < Nil : (1list X) | Coms : X->(list X)->(1list X).

Note that, in the type of Nil and Cons, we write (1ist X) and not just list.
The constants Nil and Cons will have respectively types

Coq < Check Nil.

and

Coq < Check Cons.

Types of destructors will be also quantified with (X:Set).

2. Inductive sort ident := ident;:term; | .. | ident,:term,,.
with sort being one of Prop, Type, Set, Typeset is equivalent to
Inductive ident : sort := ident;:termy; | .. | ident,:term,,.

3. Inductive sort ident [ params ]:= identi:termy | .. | ident,:term,,.
Same as before but with parameters.

See also : sections 6.5, 4.6.1

2.5.2 Mutual Inductive

This command is a new feature of Coq V5.10. It allows to define mutually recursive inductive types.
Its syntax is :

Mutual Inductive ident; : termy :=
ident! : termi}
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[ 1'den1;,:51 : term}

ny
with
with ident,, : term,, :=
ident?* : termT"
|
| identy’ : termy .
It has the same semantics as the above Inductive definition for each ident, .., ident,,. All

names identy, .., ident,, are simultaneously added to the environment. Then well-typing of con-
structors can be checked. Each one of the ident;, .., ident,, can be used on its own.

It is also possible to parameterize these inductive definitions. However, one should remark that
parameters correspond to a local context in which the whole set of inductive declarations is done.
For this reason, the parameters are shared between all inductive types and this context syntactically
appears between the Mutual and the Inductive keywords and not after the identifier as it is the
case for a single inductive declaration. The syntax is thus:

Mutual [params ] Inductive ident; : termy :=
ident% : term%

|
. 1 . 1

| 1dentn1 1 termy,,

with

with ident,, : term,, :=
identT* : termT"

|

| identy' : termsy .

Example : The typical example of a mutual inductive data type is the one for trees and forests.
We assume given two types A and B as variables. It can be declared the following way.

Coq < Variables A,B:Set.

Coq < Mutual Inductive tree : Set := mnode : A -> forest -> tree
Coq < with forest : Set := leaf : B -> forest
Coq < | cons : tree -> forest -> forest.

This declaration generates automatically six induction principles called respectively tree_rec,
tree_ind, tree rect, forest _rec, forest_ind, forest_rect. These ones are not the most gen-
eral ones but are just the induction principles corresponding to each inductive part seen as a single
inductive definition.

To illustrate this point on our example, we give the types of tree_rec and forest_rec.

Coq < Check tree_rec.

Coq < Check forest_rec.

Assume we want to parameterized our mutual inductive definitions with the two type variables A
and B, the declaration should be done the following way:

22



Coq < Mutual [A,B:Set] Inductive

Coq < tree : Set := mnode : A —> (forest A B) -> (tree A B)
Coq < with forest : Set := leaf : B -> (forest A B)
Coq < | cons : (tree A B) -> (forest A B) -> (forest A B).

Assume we define an inductive definition inside a section. When the section is closed, the variables
declared in the section and occuring free in the declaration are added as parameters to the inductive
definition.

2.5.3 The Record Macro

This version of Coq contains a macro called Record allowing the definition of records as is done in
many programming languages. Its syntax is :

Record ident [ params ] : sort := identy {
ident; : termy;
ident,, : term, .

The identifier ident is the name of the defined record and sort is its type. The identifier identy is
the name of its constructor. The identifiers identy, .., ident,, are the names of its fields and termy,
.., term,, their respective types. Note that the records may have parameters.

Example :
The set of rational numbers is defined by :

Coq < Record Rat : Set := mkRat {

Coq < top : nat;
Coq < bottom : nat;
Coq < Rat_cond : (gt bottom 0) Z}.

An important difference between our records and those of most programming languages is that
a field may depend on other fields appearing before it. For instance in the above example, the field
Rat_cond depends on the field bottom. Thus the order of the fields is important.

Let us now see the work done by the Record macro. First the macro generates a one-constructor
inductive definition of the following form :

Inductive ident [ params ] : sort :=
identy : (identy:term;) .. (ident,:term,) (ident params) .

To build a object of type ident, one should provide to the constructor identy with n terms filling
the fields of the record.

Let us define the rational 1/2. Following our definition, a rational number is defined by two
natural numbers and a proof that the second is strictly positive. Thus we must prove that 2 is
strictly positive. Let us just assume it as axiom. Try to prove it using tactics (see the chapter 3).

Coq < Axiom two_is_positive : (gt (S(S 0)) 0).
We have now all the ingredients to define 1/2 (we call it half).
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Coq < Definition half := (mkRat (S 0) (S(S 0)) two_is_positive).

Coq < Check half.

The macro generates also, when it is possible, the projection functions for destructuring a object
of type ident into its constituent fields. We give the field names to these projection functions.

For our example, these functions are top, bottom and Rat_cond. Let us show their behavior
on half.

Coq < Compute (top half).

Coq < Compute (bottom half).

Coq < Compute (Rat_cond half).

In the case where the definition of a projection function ident; is impossible, a warning is printed.

Warning :

1. Warning: ident; cannot be defined.
This message is followed by an explanation of this impossibility.
There may be three reasons :
(a) The name ident; already exists in environment (see section 2.3.1).
(b) The body of ident; uses a incorrect elimination for ident (see sections 2.5.4 and 6.5.5).

(c) The projections [ idents ] were not defined.
The body of term; uses the projections idents which are not defined for one of these
three reasons listed here.

Error message :

1. A record cannot be recursive
The record name ident appears in the type of its fields.
During the definition of the one-constructor inductive definition, all the errors of inductive

definitions, as described in section 2.5, may occur.

Variants :

1. Record ident [ params ] : sort := {
ident; : termy;
ident, : term, .

One can omit the constructor name in which case the system will use the name Build_ident.
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2.5.4 Fixpoint ident [ ident; : term; ] : term, := terms.

This command is a new feature of Coq V5.10. It may be used to define inductive objects using a
fixed point construction instead of the Match recursion operator. The meaning of this declaration is
to define ident a recursive function with one argument ident; of type term; such that (ident ident;)
has type terms and is equivalent to the expression terms. The type of the ident is consequentely
(identy : termy)terms and the value is equivalent to [ident; : termj]terms. The argument ident;
(of type term) is called the recursive variable of ident. Its type should be an inductive definition.

To be accepted, a Fixpoint definition has to satisfy some syntactical constraints on this re-
cursive variable. They are needed to ensure that the Fixpoint definition always terminates. For
instance, one can define the addition function as :

Coq < Fixpoint add [n:nat] : nat->nat := [m:nat]<nat>Case n of m
Coq < [p:nat](add p m) end.

The Case operator matches a value (here n) with the various constructors of its (inductive) type.
The remaining arguments give the respective values to be returned, as functions of the parameters
of the corresponding constructor. Thus here when n equals 0 we return m, and when n equals (S
p) we return (add p m). The Case operator is described in detail in section 6.5.5. The system
recognizes that in the inductive call (add p m) the first argument actually decreases because it is
a pattern variable coming from Case n of.

Variants :

e Fixpoint ident [ params ] : termy := terms.
Assume that params is ident’y : term’y, .., ident’y : term’;, ident’g : term?’y.
Then ident’y, .., ident’j are parameters usable in the definition body termsy and identy is

the recursion variable.

e Fixpoint ident; [ params; ] : term; := term)
with
with ident,, [ params, ] : term,, := term,,
Allows to define simultaneously ident, .., ident,,.

Example : The following definition is not correct:

Coq < Fixpoint wrongplus [n:nat] : nat->nat
Coq < := [m:nat]<nat>Case m of n [p:nat] (wrongplus n p) end.

because the declared decreasing argument n actually does not decrease in the recursive call. The
function computing the addition over the second argument should rather be written:

Coq < Fixpoint plus [n,m:nat] : nat := <nat>Case m of n [p:nat](plus n p) end.
The ordinary match operation on natural numbers can be mimicked the following way.

Coq < Fixpoint nat_match [C:Set;f0:C;fS:nat->C->C;n:nat] : C
Coq < := <C>Case n of fO [p:nat](fS p (nat_match C f0 £fS p)) end.
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The recursive call may not only be on direct subterms of the recursive variable n but also on a
deeper subterm and we can directly write the function mod2 which gives the remainder modulo 2
of a natural number.

Coq < Fixpoint mod2 [n:nat] : nat
Coq < := <nat>Case n of 0 [p:nat]l<nat>Case p of (S 0) [q:nat](mod2 q) end end.

In order to keep the strong normalisation property, the fixed point reduction will only be performed
when the argument in position of the recursive variable (whose type should be in an inductive
definition) starts with a constructor.

The Fixpoint construction enjoys also the with extension to define functions over mutually
defined inductive types or more generally any mutually recursive definitions.

Example : The size of trees and forests can be defined the following way:

Coq < Fixpoint tree_size [t:tree] : nat :=

Coq < <nat>Case t of [a:A][f:forest](S (forest_size f)) end

Coq < with forest_size [f:forest] : nat :=

Coq < <nat>Case f of [b:B](S 0)

Coq < [t:tree] [f’:forest] (plus (tree_size t) (forest_size f’))
Coq < end.

A generic command Scheme is able to build automatically various mutual induction principles. It
is described in section 8.5.

2.5.5 Recursive Definition

This command is a new feature of Coq V5.10. It is a high level tool for defining recursive functions.
Its syntax follows the schema :

Recursive Definition ident : term :=
pattern} .. pattern) => term;

I

| patterny* .. pattern] => termy,.

It can be compared to functions declarations in ML languages (see, for instance [73]).
The Recursive Definition command uses a heuristic which tries to derive a term satisfying the
specification. That is to say that Coq tries to find a term T such that for each ¢ € [1..m)],

(T patternzi .. .pattern;) =g.sterms;.
If such a term can be inferred then ident is defined as being T and all corresponding equational
theorems are provided. We refer the reader to section 15.4 for more details.

2.6 Section mechanism

The sectioning mechanism allows to organize a proof in structured sections. Then local declarations
become available (see section 2.4).
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2.6.1 Section ident
This command is used to open a section named ident.
Variants :

1. Chapter ident
Same as Section ident

2.6.2 End ident

This command closes the section named ident. When a section is closed, all local declarations are
discharged. This means that all global objects defined in the section are closed (in the sense of
A-calculus) with as many abstractions as there were local declarations in the section explicitely
occuring in the term. A local object in the section is not exported and its value will be substituted
in the other definitions.

Here is an example :

Coq < Section si.
Coq < Variables x,y : nat.
Coq < Local y’ :=y.
Coq < Definition x’ := (S x).
Coq < Print x’.
Coq < End sli.
Coq < Print x’.
Note the difference between the value of x’ inside section s1 and outside.
Error message :
1. Section ident does not exist (or is already closed)

2. Section ident is not the innermost section

Remark : Some commands such as Hint ident or Syntactic Definition which appear inside a
section are cancelled when the section is closed.
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Chapter 3

Proof handling

In Cog’s proof editing mode all toplevel commands remain available and the user has access to
specialized commands dealing with proof development pragmas documented in this section. He
can also use some other specialized commands called tactics. They are the very tools allowing the
user to deal with logical reasoning. They are documented in chapter 4.

When switching in editing proof mode, the prompt Coq < is changed into ident < where ident is
the declared name of the theorem (or lemma, ...) one wants to prove.

At each stage of a proof development, one has a list of goals to prove. Initially, the list consists
only in the theorem itself. After having applied some tactics, the list of goals contains the subgoals
generated by the tactics. At each state of a proof development one has a number of available
hypotheses we call the local context of the goal. Initially, the local context is empty. It is enriched
by the use of certain tactics (see mainly section 4.2.2). Different local contexts may be associated
to differents subgoals (see, for instance, section 4.6.1).

When a proof is achieved the message Subtree proved! is displayed. One can then store this
proof as a defined constant in the environment. Because there exists a correspondence between
proofs and terms of A-calculus, known as the Curry-Howard isomorphism [41, 3, 39, 44], Coq stores
proofs as terms of CIC. One calls those terms : proof terms.

Error message : When one attempts to use a proof editing command out of the proof editing
mode, Coq raises the error message : No focused proof.

3.1 Switching on/off the proof editing mode

3.1.1 Goal term

This command switches Coq to editing proof mode and sets term as the original goal. It associates
the name Unnamed_thm to the unnamed goal term.

Error message :

1. Proof objects can only be abstracted
2. A goal should be a type

3. repeated goal not permitted in refining mode

See also : section 3.1.3
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3.1.2 Qed

This command is available in interactive editing proof mode when the proof is completed. Then Qed
extracts a proof term from the proof script, switches back to Coq toplevel and attaches the extracted
proof term to the declared name of the original goal. This name is added to the environment as an
Opaque constant.

Error message :
1. Attempt to save an incomplete proof

2. Clash with previous constant ...
The implicit name is already defined. You have then to provide explicitly a new name (see
variant 2 below).

Variants :

1. Save
Is equivalent to Qed.

2. Save ident
Forces the name of the original goal to be ident.

3. Save Theorem ident
Is equivalent to Save ident

4. Save Remark ident
Defines the proved term as a local constant that will not exist anymore after the end of the
current section.

5. Defined
Defines the proved term as a transparent constant.

3.1.3 Theorem ident : term.

This command switches to interactive editing proof mode and declares ident as being the name of
the original goal term. When declared as a Theorem, the name ident is known at all section levels:
Theorem is a global lemma.

Error message : (see section 3.1.1)
Variants :

1. Lemma ident : term
Is equivalent to Theorem ident : term
2. Remark ident : term

Analogous to Theorem except that ident will be unknown after closing the current section.

3. Fact ident : term
Analogous to Theorem except that ident will be unknown after closing the section which is
above the current section but known after closing the current section.
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4. Definition ident : term
Analogous to Theorem, intended to be used in conjunction with Defined (see chapter 5 in
order to define a transparent constant).

3.2 Pragmas

3.2.1 Proof term

This command applies in proof editing mode. It is equivalent to Exact term; Save. That is, you
have to give the full proof in one gulp, as a proof term (see section 4.1.1).

3.2.2 Abort

This command cancels the current proof development, switching back to the previous proof devel-
opment, or to the Coq toplevel if no other proof was edited.

Error message :
1. No focused proof (No proof-editing in progress)
Variants :

1. Abort ident
Aborts the editing of the proof named ident.

2. Abort All
Aborts all current goals, switching back to the Coq toplevel.

3.2.3 Suspend

This command applies in proof editing mode. It switches back to the Coq toplevel, but without
cancelling the current proofs.

3.2.4 Resume

This commands switches back to the editing of the last edited proof.
Error message :

1. No proof-editing in progress
Variants :

1. Resume ident
Restarts the editing of the proof named ident.

Error message :

1. No such proof
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3.2.5 Undo

This command cancels the effect of the last tactic command. Thus, it backtracks one step.
Error message :

1. No focused proof (No proof-editing in progress)

2. Undo stack would be exhausted
Variants :

1. Undo num
Repeats Undo num times.

3.2.6 Restart

This command restores the proof editing process to the original goal.
Error message :

1. No focused proof to restart

3.2.7 Focus

Will focus the attention on the first subgoal to prove, the remaining subgoals will no more be
printed after the application of a tactic. This is useful when there are many current subgoals which
clutter your screen.

3.2.8 Unfocus

Turn off the focus mode.

3.2.9 Show

This command displays the current goals.
Variants :

1. Show num
Displays only the num-th subgoal.
Error message : no such goal

3.2.10 Clear ident

This command erases the hypothesis named ident in the local context of the current goal. Then
ident is no more displayed and no more usable in the proof development.

Error message :

1. ident is not among the assumptions.
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3.3 The hints list

The hints list is a data base of tactics for automated proof search. It associates to a constant a list
of tactics which may be tried when the head symbol of the goal to be solved is this constant.

The tactics that can be stored are mainly Apply ident (see section 4.3.3), Exact ident (see
section 4.1.1), or Unfold ident (see section 4.4.4).
Each tactic is stored with a numerical weight aiming to represent the ”cost” of the application of
this tactic in an automatic proof search. Tactics with a low cost are tried first.
See also : section 4.9

3.3.1 Hint ident

This command adds Apply ident to the hint list associated with the head symbol of the type of
ident. The cost of ident is the number of subgoals generated by Apply ident.

In case the inferred type of ident does not start with a product the tactic added in the hint
list is Exact ident. In case this type can be reduced to a type starting with a product, the tactic
Apply ident is also stored in the hints list.

Error message :

1. Bound head variable
The head symbol of the type of ident is a bound variable such that this tactic cannot be
associated to a constant.

2. ident cannot be used as a hint
The type of ident contains products over variables which do not appear in the conclusion. A
typical example is a transitivity axiom. In that case the Apply tactic fails, and thus is useless.

Variants :

1. Hint ident; .. ident,
Is equivalent to Hint ident;. .. Hint ident,

3.3.2 Immediate ident

This command adds Apply ident; Trivial to the hint list associated with the head symbol of
the type of ident. This tactic will fail if all the subgoals generated by Apply ident are not solved
immediately by the Trivial tactic which only tries priority 0 tactics.
This command is useful for theorems such that the symmetry of equality orn + 1 =m+1 —
n = m that we may like to introduce with a limited use in order to avoid useless proof-search.
The cost of this tactic (which never generates subgoals) is always 1, so that it is not used by
Trivial itself.

Error message :
1. Bound head variable
Variants :

1. Immediate ident; .. ident,
Is equivalent to Immediate ident;. .. Immediate ident,
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3.3.3 Hint Unfold ident

This command adds the tactic Unfold ident to the hint list that will only be used when the head
constant of the goal is ident. Its cost is 4.
Variants :

1. Hint Unfold ident; .. ident,
Is equivalent to Hint Unfold ident;. .. Hint Unfold ident,

3.3.4 Print Hint

This command displays the currently available hints list. Note that if an axiom or theorem has
been declared twice, it will appear only once.
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Chapter 4

Tactics

A deduction rule is a link between some (unique) formula, we call the conclusion and (several)
formulee we call the premisses. Indeed, a deduction rule can be read in two ways. The first one
has the shape : “if I know this and this then I can deduce this”. For instance, if I have a proof
of A and a proof of B then I have a proof of A A B. This is forward reasoning from premisses to
conclusion. The other way says : “to prove this I have to prove that and that”. For instance, to
prove A A B, I have to prove A and I have to prove B. This is backward reasoning which proceeds
from conclusion to premisses. We say that the conclusion is the goal to prove and premisses are the
subgoals. The tactics implement backward reasoning. When applied to a goal, a tactic replaces this
goal with the subgoals it generates. We say that a tactic reduces a goal to its subgoal(s).

Each (sub)goal is denoted with a number. The current goal is numbered 1. By default, a tactic
is applied to the current goal, but one can address a particular goal in the list by writing n:tac
which means “apply tactic tac to goal number n”.

Since not every rule applies to any statement, every tactic cannot be used to reduce any goal.
In other words, before applying a tactic to a given goal, the system checks that some preconditions
are satisfied. If it is not the case, the tactic raises an error message.

There are, at least, three levels of tactics. The simplest one implements basic rules of the logical
framework (see for instance Intro in section 4.2.2). The second level is the one of derived rules
which are built by combination of other tactics (see for instance Generalize in section 4.3.1). The
third one implements heuristics or decision procedures to build a complete proof of a goal (see for
instance Auto in section 4.9.1).

4.1 Brute force proofs

4.1.1 Exact term.

This tactic applies to any goal. It gives directly the exact proof term of the goal. Let T be our
goal, let p be a term of type U then Exact p succeeds iff T and U are convertible.

Error message :

1. Not an exact proof
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4.2 Basics

Tactics presented in this section implement the basic typing rules of CiC given in chapter 6.

4.2.1 Assumption.

This tactic applies to any goal. It implements the “Var” rule given in section 6.2. It looks in the
local context for an hypothesis which type is equal to the goal. If it is the case, the proof is ended
and the message Subtree proved! is displayed.

Error message :

1. No such assumption

4.2.2 Intro.

This tactic applies to a goal which is a product. It implements the “Lam” rule given in section 6.2.
In fact, only one subgoal will be generated as the other one can be automatically checked.

If the current goal is a dependent product (say : (x:T)U) and x is a name that does not exist
in the current context, then Intro puts x:T in the local context. Otherwise, it puts xn:T where
xn is a fresh name.

If the goal is a non dependent product (say : T => U) then it puts in the local context either
Hn:T (if the type of T is Set or Prop) or Xn:T (if the type of T is Typeset or Type) where Hn and
Xn are fresh identifiers.

In both cases the new subgoal is U.

Remark : In the case you have a non dependent product as a goal but you entered it under the
form of a dependent one (say: your entered (x:T)U where x does not occur in U) you will see the
goal printed as T->U but Intro will work as in the dependent case.

Error message :
1. Intro needs a product
Variants :

1. Intros.
Repeats Intro as often as it is possible. It is equivalent to the tactical Repeat Intro.

2. Intro ident.
Applies Intro but forces ident to be the name of the hypothesis.
Error message : name ident is already bound
Remark : Intro doesn’t check the whole current context. Actually, identifiers declared or
defined in required modules can be used as ident and, in this case, the old ident of the module
is no more reachable.

3. Intros ident; .. ident,.
Is equivalent to the tactical Intro ident;; .. ; Intro ident,.
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4. Intros until ident.
Repeats Intro until it meets a premiss of the goal having form (ident : term) discharges
the variable named ident of the current goal.
Error message : No such hypothesis in current goal

4.2.3 Cut term.

This tactic applies to any goal. It implements the “App” rule given in section 6.2. It is used when
one wants to prove the current goal (say : T) as a consequence of a statement U. That is to say that
Cut U transforms the current goal T into the two following subgoals : U => T and U.

Error message :

1. Not a proposition or a type
Arises when the argument term is neither of type Prop, Set, Type nor Typeset.

4.2.4 Change term.

This tactic applies to any goal. It implements the rule “Conv” given in section 6.3. Change U
replaces the current goal (say : T) with a U providing that U is well-formed and that T and U are
convertible.

Error message :
1. convert-concl rule passed non-converting term
Variants :

1. Change term in ident.
Not yet installed.

4.3 Some derived rules

4.3.1 Generalize term.

This tactic applies to any goal. Its main use is to enforce the current goal with a quantification. In
this case, term must be the name of a variable of the local context on which depends the current
goal. Assume that our current goal is some (P x) and that the local context contains x:T, then
Generalize x transforms the current goal into (x:T) (P x).

Remark : If term is not the name of a variable of the local context then Generalize t is equivalent
to the tactical Cut T; 2: Exact t where T is the type of t.

Variants :

1. Generalize ident; .. ident,.
Is equivalent to Generalize ident,; .. ; Generalize ident;. Note that the ident;’s are
processed from n to 1.
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4.3.2 Specialize term.
Is equivalent to Generalize term.

Variants :

1. Specialize term with ref; := termy .. ref, := term,.
It is to provide the tactic with some explicit values to instantiate premisses of term (see
section 4.3.6).
Error message : Metavariable wasn’t in the metamap
Arises when the informations provided in the binding list is not enough.

2. Specialize num term with ref:= term .. ref:= term.
No yet documented.

4.3.3 Apply term.

This tactic applies to any goal. The argument term can be either an hypothesis of the proof context
or a constant of the environment (axiom, theorem, ..). The tactic Apply tries to match the current
goal against the conclusion of the type term. If it succeeds, then the tactic returns as many subgoals
as the instantiations of the premisses of the type of term which are not simply hypotheses from the
proof context.

Error message :

1. Impossible to unify ... with ...
Since higher order unification is undecidable, the Apply tactic may fail when you think it
should work. In this case, if you know that the conclusion of term and the current goal
are unifiable, you can help the Apply tactic by transforming your goal with the Change or
Pattern tactics (see sections 4.4.5, 4.2.4).

2. Cannot refine to conclusions with meta-variables
This occurs when some instantiations of premisses of term are not deducible from the unifi-
cation. This is the case, for instance, when you want to apply a transitivity property. In this
case, you have to use the variant below : Apply .. with.

Variants :

1. Apply term with term; .. term,.
Provides Apply with explicit instantiations for all dependent premisses of the type of term
which do not occur in the conclusion and consequently cannot be found by unification. Notice
that term; .. term, must be given according to the order of premisses of the type of term.
Error message : Not the right number of missing arguments

2. Apply term with refi := term; .. ref, := term,.

Provides also Apply with values for instantiating premisses by associating explicitly variables
(or non dependent products) with their intended instance (see syntax in the next section).
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4.3.4 Absurd term.

This tactic applies to any goal. The argument term is any proposition P of type Prop. This tactic
applies False elimination, that is it deduces P from False, assuming that the current context is
inconsistent. It generates as subgoals ~P and P. It is very useful in proofs by cases, where certain
cases are impossible. Typically, when an hypothesis H is such that ~H may be deduced from the rest
of the context, Absurd H; Assumption will leave you with this sole proof obligation, independently
of the current goal.

Remark : It could be generalized to Set by the use of the axiom False rec.

4.3.5 Contradiction.

This tactic applies to any goal. The Contradiction tactic attempts to find in the current context
(after all Intros) one which is equivalent to False. It permits to prune irrelevant cases. This
tactic is a macro for the tactics sequence Intros; ElimType False; Assumption.

Error message :

1. No such assumption : when there is no assumption in the context that is equivalent to
False.

4.3.6 Binding list

A binding list is generally used after the with keyword in tactics. The general shape of a binding
list isrefiy := term; .. ref, := term, where refis either an ident or a num. It is used to provide
a tactic with a list of values (termy, .., term,) that have to be substituted respectively to refi, ..,
ref,. For all i € [1..n], if ref; is ident; then it references the dependent product ident;:T (for some
type T); if ref; is num; then it references the num;th non dependent premiss.

4.4 Conversion tactics

This set of tactics implements different restricted usages of the “Conv” rule given in section 6.3.

4.4.1 Red.

This tactic applies to a goal which have form (x:T1)..(xk:Tk)(c t1 .. tn) where c is a con-
stant. If c is transparent then it replaces ¢ with its definition (say t) and then reduces (t t1 ..
tn) according to [e-reduction rules.

Error message :
1. Term not reducible
Variants :

1. Red in ident.
Applies Red to the hypothesis named ident.
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4.4.2 Hnf.

This tactic applies to any goal. It replaces the current goal with its head normal form according
to the Bdi-reduction rules. Hnf does not produce a real head normal form but either a product or
an applicative term in head normal form or a variable.

Example : The term (n:nat) (plus (S n) (S n)) is not reduced by Hnf.

Remark : The § rule will only be applied to transparent constants (i.e. which have not been
frozen with an Opaque command; see section 5.6.1).

4.4.3 Simpl.

This tactic applies to any goal. Let T be our current goal. The tactic Simpl first applies B¢-
reduction rule to transform T into, say, T’. Then it expands transparent constants and tries to
reduce T’ according, once more, to St rules. But when the ¢ rule is not applicable then possible 6-
reductions are not applied. For instance trying to use Simpl on (plus n 0)=n will change nothing.

Variants :

1. Simpl in ident.
Applies Simpl to the hypothesis named ident.

4.4.4 Unfold ident.

This tactic applies to any goal. The argument ident must be the name of a defined transparent
constant (see section 2.4). The tactic Unfold applies the é rule to each occurrence of ident in the
current goal and then replaces it with its Bi-normal form.

Error message :
1. Constant is opaque
2. ident does not occur
Variants :

1. Unfold ident; .. Iident,.
Replaces stmultaneously identy, .., ident,, with their definitions and replaces the current goal
with its S¢ normal form.

2. Unfold num] .. num) ident; .. num] .. num?y ident,,.
The lists numi, .., num} and num?7, .., num; are to specify the occurrences of identy, .., identy,
to be unfold. Occurrences are located from left to right in the linear notation of terms.
Error message : bad occurrence numbers of ident;

4.4.5 Pattern term.

This command applies to any goal. The argument term must be a free subterm of the current goal.
The command Pattern performs [-expansion of the current goal (say T) by

1. replacing all occurrences of term in T with a fresh variable
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2. abstracting this variable

3. applying term to the abstracted goal

For instance, if T is (P t) when t does not occur in P then Pattern t transforms it into ([x:A] (P
x) t). This command has to be used, for instance, when an Apply command fails on matching.

Variants :

1. Pattern num; .. num, term.
Only the occurrences num; .. num,, of term will be considered for 8-expansion. Occurrences
are located from left to right.

2. Pattern num% .. numz1 termy; .. num( .. numg’“ term,, .

Will process occurrences numj, .., num;} of termy, .., num(], .., numy" of termy, starting
from term,,. Starting from a goal (P t;i...t.,,) with the t; which do not occur in P,
the tactic Pattern tj...t,, generates the equivalent goal ([x1:A1]... [xp, ARl (P x1...%p,)
t1...tm).

If ¢; occurs in one of the generated types A, these occurrences will also be considered and
possibly abstracted.

4.5 Introductions

Introduction tactics address goals which are inductive constants. They are used when one guesses
that the goal can be obtained with one of its constructors’ type.

4.5.1 Constructor num.

This tactic is a new feature of Coq V5.10. It applies to a goal such that the head of its conclusion
is an inductive constant (say I). The argument num must be less or equal to the numbers of
constructor(s) of I. Let ci be the i-th constructor of I, then Constructor i is equivalent to
Intros; Apply ci.

Error message :

1. Not an inductive product

2. Not enough Constructors
Variants :

1. Split.
Applies if T has only one constructor, typically in the case of conjunction AAB. It is equivalent
to Constructor 1.

2. Left., Right.
Apply if T has two constructors, for instance in the case of disjunction A V B. They are
respectively equivalent to Constructor 1 and Constructor 2.

3. Exists term.
Applies if I has only one constructor, for instance in the case of existential quantification
Jdz - P(x). Calling c this unique constructor, Exists t is equivalent to Apply c with t.
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4.6 Eliminations

Elimination tactics are useful to prove statements by induction. Indeed, they make use of the
elimination (or induction) principles generated with inductive definitions (see section 6.5).

4.6.1 Elim term.

This tactic applies to any goal. Basically, the type of the argument term must be an inductive
constant. Then according to the type of the goal, the tactic E1im chooses the right destructor and
applies it (as in the case of the Apply tactic). For instance, assume that our proof context contains
n:nat, assume that our current goal is T, with T of type nat->Prop, then Elim n is equivalent to
Apply nat_ind.

Error message :
1. Not an inductive product

2. Cannot refine to conclusions with meta-variables
As Elim uses Apply, see section 4.3.3 and the variant Elim .. with .. below.

Variants :

1. Elim term also works when the type of term starts with a product and the head symbol is
an inductive definition. In that case the tactic tries both to find an object in the inductive
definition and to use this inductive definition for elimination. In case of non-dependent
products in the type, subgoals are generated corresponding to the hypotheses. In the case of
dependent products, the tactic will try to find an instance for which the elimination lemma
applies.

2. Elim term with term; .. term,.
Allows the user to give explicitly the values for dependent premisses of the elimination schema.
All arguments must be given.
Error message : Not the right number of dependent arguments

3. ElimType term.
The argument term must be inductively defined. E1imType I is equivalent to Cut I; Intro
Hn; Elim Hn. But the hypothesis Hn will not appear in the context(s) of the subgoal(s).
Conversely, if t is a term of (inductive) type I then Elim t is equivalent to E1limType I; 2:
Exact t.
Error message : simpl Impossible to unify ... with ... Arises when term needs
to be applied to parameters.

4. Induction ident.
Is equivalent to Intros until ident; Pattern ident; Elim ident.

5. Induction num.
Is analogous to Induction ident but for the num-th non-dependent premiss of the goal.
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4.6.2 Case term.

This tactic is a new feature of Coq V5.10. The type of term must be inductively defined. The tactic
Case is used to perform case analysis without recursion.

Variants :

1. Case term with term; .. term,,.
Analogous to Elim .. with above.

2. Destruct ident.
Is equivalent to the tactical Intro Until ident; Case ident.

3. Destruct num.
Is equivalent to Destruct ident but for the num-th non dependent premiss of the goal.

4.7 Equality

These tactics use the predefined equalities eq: (A:Set)A->A->Prop defined in file Logic.v (see
section refEquality), and implicitly used in the syntax t=u and eqT : (A:Type)A->A->Prop defined
in file Logic_Type.v, and implicitly used in the syntax t==u. In the following, the notation t=u
will represent either one of these two equalities.

4.7.1 Rewrite term.

This tactic applies to any goal. The conclusion of the type of term must have the conclusion
termy=termsy. Then Rewrite term replaces every occurrence of term; by terms in the goal.
Remark : In case terms contains occurrences of variables bound in the type of term, the tactic
tries first to find a subterm of the goal which matches this term in order to find a closed instance
term’s of terms then all instances of term’s will be replaced.

Error message :
1. No equality here
Variants :

1. Rewrite -> term.
Is equivalent to Rewrite term

2. Rewrite <- term.

Uses the equality termi=termsy from right to left

4.7.2 Replace term; with term,.

This tactic applies to any goal. It replaces all free occurrences of term; in the current goal with
termy and generates the equality terms=term; as a subgoal. It is equivalent to Cut termj=terms;
Intro Hn; Rewrite Hn. Clear Hn.
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4.7.3 Reflexivity.

This tactic applies to a goal which has the form t=u. It checks that t and u are convertible. It is
equivalent to Apply refl equal.

Error message :
1. Not a predefined equality

2. Impossible to unify ... With ...

4.7.4 Symmetry.

This tactic applies to a goal which have form t=u and changes it into u=t.

4.7.5 Transitivity term.

This tactic applies to a goal which have form t=u and transforms it into the two subgoals t=term
and term=u.

4.8 Equality and inductive sets

We describe in this section some special purpose tactics dealing with equality and inductive sets.

4.8.1 Simple Discriminate.

This tactic applies to a goal which has the form ~term;=terms. The terms term; and terms must
belong to an inductive set. The Simple Discriminate tactic is a special purpose tactic for proving
trivial disequalities such as “0=(S n). It checks that the head symbols of the head normal forms
of term; and terms are not the same constructor. When this is the case, the current goal is solved.

Error message :

1. Simple Discriminate should be applied to a pair of terms built with
different constructors

4.8.2 Discriminate ident

This is a special purpose tactic for proving any goal from an absurd hypothesis stating that, two
structurally different terms of an inductive set are equal. For example, from the hypothesis (S (S
0))=(S 0) we can derive by absurdity any proposition. Let ident be a hypothesis of type term; =
terms in the local context, term; and terms are elements of an inductive set. To build the proof,
the tactic traverses the normal forms* of term; and termsy looking for a couple of subterms u and
w (u subterm of the normal form of term; and w subterm of the normal form of terms), placed
respectively in the same positions and, whose head symbols are different constructors. If such a
couple of subterms exists, then the proof of the current goal is ended and the message Subtree
proved! is displayed, otherwise the tactic fails arising an error message.

*Recall: opaque constants will not be expanded by é reductions
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Error message :

1. i¢d Not a discriminable equality occurs when the type of the specified hypothesis is an
equation but does not verify the expected preconditions.

2. id Not an equation occurs when the type of the specified hypothesis is not an equation.

4.8.3 Discriminate.

Discriminate applies to a goal of the form ~ termi=terms and its semantics is equivalent to the
sequence : Unfold not; Intro ident ; Discriminate ident.

Error message :

1. goal does not satisfy the expected preconditiomns.

4.8.4 Injection ident num; .. num,.

This tactic applies to a goal which has the form term; = terms. The terms term; and terms must
belong to an inductive type. The name ident must be the name of an hypothesis whose type is
some t=u. The sequence num; .. num, is a position (or a path) in t and u. The Injection tactic
is based on the fact that constructors of inductive sets are injections. That means that if ¢ is a
constructor of an inductive set, and (c 1) and (c t3) are two terms that are equal then #; and
are equal too.

Then, the tactic Injection checks that the normal forms of term; and terms are subterms of
position num; .. num, in the normal form of (respectively) t and u, then it checks that the path
from the roots of t and u to (respectively) term; and terms, always meets the same constructor.
For instance, under the hypothesis H: (S n)=(S m), the tactic Injection H 1 will prove n=m.

Error message :
1. not an equality

2. incorrect path
Arises when the given path num; .. num, exceeds the depth of the current goal

3. can not perform injection in the specified hypothesis
Arises when the specified hypothesis does not have the expected type

4. the result of the injection does not correspond to the current subgoal
Arises when the equality resulting from the injection is not convertible with the current goal

4.8.5 Injection ident

If ident is an hypothesis of type term; = terms, then this tactic behaves as applying injection as
deep as possible to derive the equality of all the subterms of term; and terms placed in the same
positions. For example, from the hypothesis (S (S n))=(S (S (S m)) we may derive n=(S m). To
use this tactic term; and termsy should be elements of an inductive set and they should be neither
explicitly equal, nor structurally different. We mean by this that, if n; and ny are their respective
normal forms, then :
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e n; and ny should not be syntactically equal,

e there must not exist any couple of subterms u and w, u subterm of n; and w subterm of n, ,
placed in the same positions and having different constructors as head symbols.

If these conditions are satisfied, then, the tactic derives the equality of all the subterms of term; and
terms placed in the same positions and puts them as antecedents of the current goal. Beware that
Injection yields always an equality in a sigma type whenever the injected object has a dependent

type.
Example : Let’s consider the type of dependent lists :

Coqg < Inductive listn : nat->Set :=
Coq < nil: (listn 0) | cons: (n:nat) nat-> (listn n)-> (listn (S n)).

Injection H derives that n=0, but instead of the equality 1=nil it yields an equality in the
sigma type {n:nat & (listn n)}:

(existS nat [nO:nat](listn n0) O nil)=(existS nat [nO:nat](listn n0) 0 1)

By now, we do not have any tactic that given the hypothesis (cons 0 n nil)=(cons 0 0 1)
can derive the equality in the dependent type <(1istn 0)>nil=1. These kind of equalities can be
used to perform rewriting.

Error message :

1. 2d is not a projectable equality occurs when the type of the hypothesis 2d does not
verify the preconditions.

2. id Not an equation occurs when the type of the hypothesis ¢d is not an equation.

4.8.6 Injection.

If the current goal is of the form ~ term;=terms, the tactic calculates the head normal form of the
goal and then behaves as the sequence: Unfold not; Intro ident; Injection ident.

Error message : goal does not satisfy the expected preconditions

4.8.7 Simplify_eq ident

Let ident be the name of a hypothesis of type term =terms in the local context. If term; and terms
are structurally different (in the sense described for the tactic Discriminate), then, Simplify eq
behaves as Discriminate ident otherwise it behaves as Injection ident.

4.8.8 Simplify_eq.

This tactic is defined on top of the previous one. If the current goal is of the form ~ #; = 5, then
this tactic calculates the head normal form of the goal (like with the tactic Hnf) and then behaves
as the sequence Intro ident; Simplify eq ident.

fIn the file equality.mli you can find the functions Subst, HypSubst, RevSubst and RevHypSubst that perform
this kind of rewriting.
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4.9 Automatizing

4.9.1 Auto.

This tactic implements a Prolog-like resolution procedure to solve the current goal. It first tries
to solve the goal using the Assumption tactic, then it reduces the goal to an atomic one using
Intros and introducing the newly generated hypotheses as hints. Then it looks at the list of
tactics associated to the head symbol of the goal and tries to apply one of them (starting from
the tactics with lower cost). This process is recursively applied to the generated subgoals. The
maximal search depth is 5 by default.

Variants :

1. Auto num
Forces the search depth to be num.

Remark : Auto either solves the goal or else acts as Idtac and does not change the goal.

See also : section 3.3

4.9.2 Trivial.

This tactic is a restriction of Auto for doing hypotheses and hints of cost 0. Typically it solves
goals such as trivial equalities X = X.
See also : section 3.3

4.9.3 Prolog [ term; ...term, ] num.

This tactic, implemented by Chet Murthy, is based upon the concept of existential variables of
Gilles Dowek, stating that resolution is a kind of unification. It tries to solve the current goal using
the Assumption tactic, the Intro tactic, and applying hypotheses of the local context and terms
of the given list [ term; ...term, ]. It is more powerful than Auto since it may apply to any
theorem, even those of the form (x:4) (P x) -> Q where x does not appear free in Q. The maximal
search depth is num.

Error message :

1. Prolog failed
The Prolog tactic was not able to prove the subgoal.

4.9.4 Tauto.

This tactic, due to César Munoz [57], implements a decision procedure for intuitionistic proposi-
tional calculus based on the contraction-free sequent calculi LIT* of R. Dyckhoff [33]. Note that
Tauto succeeds on any instance of an intuitionistic tautological proposition such as (x:nat)x=0
-> x=0.
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4.9.5 Intuition.

The tactic Intuition takes advantage of the search-tree builded by the decision procedure involved
in the tactic Tauto. It uses this information to generate a set of subgoals equivalent to the original
one (but simpler than it) and applies the tactic Auto to them [57].

For instance, the tactic Intuition applied to the goal

((x:nat) (P x))/\B->((y:nat) (P y))/\(P 0)\/B/\(P 0)
replaces it by the equivalent one:
((x:nat)(P x) => B —> (P 0))

and then uses Auto which completes the proof.

4.9.6 Linear.

The tactic Linear, due to Jean-Christophe Fillidtre [34], implements a decision procedure for Direct
Predicate Calculus, that is first-order Gentzen’s Sequent Calculus without contraction rules [49, 8].
Intuitively, a first-order goal is provable in Direct Predicate Calculus if it can be proved using each
hypothesis at most once.

Unlike the previous tactics, the Linear tactic does not belong to the initial state of the system,
and it must be loaded explicitly with the command

Coq < Cd "$COQTOP/tactics/contrib/linear".

Coq < Require Linear.

For instance, assuming that even and odd are two predicates on natural numbers, and a of type
nat, the tactic Linear solves the following goal

Coq < Lemma example : (even a)
Coq < => ((x:nat) ((even x)->(odd (S x))))
Coq < -> (Ex [y:nat](odd y)).

You can find examples of the use of Linear in theories/DEMOS/DemoLinear.v.

Variants :

1. Linear with ident; .. ident,.
Is equivalent to apply first Generalize ident; .. ident, (see section 4.3.1) then the Linear
tactic. So one can use axioms, lemmas or hypotheses of the local context with Linear in this
way.

Error message :
1. Not provable in Direct Predicate Calculus

2. Found n classical proof(s) but no intuitionnistic one !
The decision procedure looks actually for classical proofs of the goals, and then checks that
they are intuitionnistic. In that case, classical proofs have been found, which do not corre-
spond to intuitionnistic ones.
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4.10 Developing certified program

This section is devoted to powerful tools that Coq provides to develop certified programs. We just
mention below the main features of those tools and refer the reader to chapter 12 and references
[60, 61] for more details and examples.

4.10.1 Realizer Fwterm.

This command associates the term Fwterm to the current goal. The Fwterm’s syntax is described
in the chapter 12. It is an extension of the basic syntax for Coq’s terms. The Realizer is used
as a hint by the Program tactic described below. The term Fwterm intends to be the program
extracted from the proof we want to develop.

See also : chapter 12, section 5.6.6

4.10.2 Program.

This tactic tries to make a one step inference according to the structure of the Realizer associated
to the current goal.

Variants :

1. Program_all.
Is equivalent to Repeat (Program Orelse Auto) (see section 4.11).

See also : chapter 12

4.11 Tacticals

We describe in this section how to combine the tactics provided by the system to write synthetic
proof scripts called tacticals. The tacticals are built using tactic operators we present below.

4.11.1 Idtac

The constant Idtac is used as a “pseudo tactic” which leaves any goal unchanged.

4.11.2 Do num tac

This tactic operator repeats num times the tactic tac. It fails when it is not possible to repeat num
times the tactic.

4.11.3 tac; Orelse tacy

The tactical tac; Orelse tace tries to apply tac; and, in case of a failure, applies tacy. It associates
to the left.

4.11.4 Repeat tac

This tactic operator repeats tac as long as it does not fail.
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4.11.5 tac; Then tacy

This tactic operator is a generalized composition for sequencing. The tactical tac; Then taco applies
tacy to all the subgoals generated by tac;. Then associates to the left.

Variants :

1. tacy; tacs
Is shorter syntax for tac; Then tacy

4.11.6 tac; [ tac; | ...| tac, ]

This tactic operator is a generalization of the precedent tactics operator. The tactical tac; [ tac;
| ... | tac, ] applies tac; to the i-th subgoal generated by tac.

4.11.7 Try tac

This tactic operator applies tactic tac, and catches the possible failure of tac, it never fails.
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Chapter 5

Other commands

5.1 Loadpath

5.1.1 Pwd.

This command calls the pwd UNIX command. It displays the current path.

5.1.2 Cd string.

This command calls the UNIX cd command. It changes the current directory according to string
which can be any UNIX valid path.

Variants :

1. Cd.
Is equivalent to Cd "$COQTOP"

5.1.3 AddPath string.

This command adds the path string to the current loadpath.

5.1.4 DelPath string.

This command removes the path string from the current loadpath.

5.1.5 Print LoadPath.

This command displays the current loadpath.

5.1.6 Add ML Path string.

This command adds the path string to the current Caml Light loadpath (see the command Declare
ML Module in the section 5.3).
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5.2 Loading files

When making a large development, one wants to divide it into several separate files. Then Coq
offers the possibility of loading different parts of a whole development stored in separate files. Their
contents will be loaded as if they were entered from the keyboard. This means that the loaded files
are ASCII files containing sequences of commands for Coq’s toplevel. This kind of file is called a
script for Coq. The standard (and default) extension of Coq’s script files is .v.

5.2.1 Load ident.

This command loads the file named ident.v, searching successively in each of the directories spec-
ified in the loadpath.

Variants :

1. Load string.
Loads the file denoted by the string string, where string is any complete filename in the UNIX
sense. Then the ~” and .. abbreviations are allowed as well as shell variables. If no extension
is specified, Coq will use the default extension .v

2. Load Verbose ident., Load Verbose string
Display, while loading, the answers of Coq to each command (including tactics) contained in
the loaded file

See also : section 5.8.3
Error message :
1. Can’t find file ident on loadpath

See also : section 5.1

5.3 Compiled files

This feature allows to build files for a quick loading. When loaded, the commands contained in a
compiled file will not be replayed. In particular, proofs will not be replayed. This avoids a useless
waste of time.

Remark : A module containing an open section cannot be compiled.

5.3.1 Compile Module ident.

This command is a new feature of coq V5.10. It loads the file ident.v and plays the script it
contains. Declarations, definitions and proofs it contains are ”packaged” in a compiled form : the
module named ident. A file ident.vo is then created. The file ident.v is searched according to the
current loadpath. The ident.vo is then written in the directory where ident.v was found.
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Variants :

1. Compile Module ident string.

Uses the file string.v or string if the previous one does not exist to build the module ident.
In this case, string is any string giving a filename in the UNIX sense (see chapter 1).

2. Compile Verbose Module ident.
Verbose version of Compile : shows the contents of the file being compiled

3. Compile Verbose Module ident string.
Verbose version of Compile : shows the contents of the file being compiled.

Error message :

1. You cannot open a module when there are things other than Modules and Imports
in the context.
The only commands allowed before a Compile Module command are Require, Read Module
and Import. The useful way to compile modules is in fact by the cogc command.

See also : sections 5.6.1, 5.1, chapter 13

5.3.2 Read Module ident.

Loads the module stored in the file ident, but does not open it : its contents is invisible to the user.

5.3.3 Require ident.

This command loads and opens (imports) the module stored in the file ident. If the module required
has already been loaded, Coq displays the following warning : ident already imported.

If a module A contains a command Require B then the command Require A loads the module
B but does not open it.

Variants :

1. Require Export ident.
This command acts as Require ident. When it appears in another module identy, it specifies
that the names defined by ident will be exported by identy and consequentely visible after
the command Require identy.

2. Require Implementation ident
By now, is the same as Require.

Error message :

1. Can’t find file toto on loadpath
The command did not find the UNIX file toto.vo. Either toto.v exists but is not compiled
or toto.vo is in a directory which is not in your LoadPath.

Remark : The Require of CoqV5.10 differs from the one of CoqV5.8. Indeed, in the previous
version, Require acted as a clever Load for .v files ended with the Provide. In the new version,
the command Require concerns only compiled modules.

See also : chapter 13
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5.3.4 Module ident.

This command is used only by the coqc script, and is not intended to be used in another way.
Therefore it is not documented here.

5.3.5 Write Module ident.

Similarly to the previous one, this command is used only by the coqgc script, and is not intended
to be used in another way. Therefore it is not documented here.

See also : chapter 13

5.3.6 Print Modules.

This command shows the currently loaded and currently opened (imported) modules.

5.3.7 Declare ML Module string; .. string,.

This commands loads the Caml Light compiled files string; ... string, (dynamic link). It is mainly
used to load tactics dynamically (see chapter 11). The files are searched into the current Caml
Light loadpath (see the command Add ML Path in the section 5.1). Loading of Caml Light files is
only possible under coqtop (not under coq).

5.4 States and Reset

5.4.1 Reset ident.

This command removes all the objects in the environment since ident was introduced, including
ident. ident may be the name of a defined or declared object as well as the name of a section. One
cannot reset over the name of a module or of an object inside a module.

Error message :

1. cannot reset to a nonexistent object

5.4.2 Save State ident.

Saves the current state of the development (mainly the defined objects) such that one can go back
at this point if necessary.

Variants :

1. Save State ident string.
Associates to the state of name ident the string string as a comment.

5.4.3 Print States.

Prints the names of the currently saved states with the associated comment. A state Initial is
automatically built by the system.
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5.4.4 Restore State ident.
Restores the set of known objects in the state ident.

Variants :

1. Reset Initial.
Is equivalent to Restore State Initial and goes back to the initial state (like after the
command cogtop).

5.4.5 Remove State ident.

Remove the state ident from the states list.

5.4.6 Write States string.

Writes the current list of states into a UNIX file string. coq for use in a further session. This file can
be given as the inputstate argument of the commands coqtop and coqc. A command Restore
State ident is necessary afterwards to choose explicitly which state to use (the default is to use
Initial).

5.5 Displaying

5.5.1 Print ident.

This command displays on the screen informations about the declared or defined object ident.

Error message :

1. ident not declared

5.5.2 Print All.

This command displays informations about the current state of the environment, including sections
and modules.

5.5.3 Inspect num.

This command displays the num last objects of the current environment, including sections and
modules.

5.5.4 Print Proof ident.

Not yet documented.

5.5.5 Print Section ident.

Not yet documented
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5.6 Requests to the environment

5.6.1 Opaque ident.

This command forbids the unfolding of the defined object ident by tactics using §-conversion.

By default, Theorem and its alternatives are stamped as Opaque. This is to keep with the usual
mathematical practice of proof irrelevance: what matters in a mathematical development is the
sequence of lemma statements, not their actual proofs. This distinguishes lemmas from the usual
defined constants, whose actual values are of course relevant in general.

See also : sections 4.4, 4.9, 3.1.3

5.6.2 Transparent ident.

This command is the converse of Opaque. By default, Definition and Local declare objects as
Transparent.

Error message :

1. Can not set transparent.
It is a constant from a required module or a parameter.

See also : sections 4.4, 4.9, 3.1.3

5.6.3 Check ident.
This command displays the type of ident.

Variants :

1. Check term.
Displays the type of term.

5.6.4 Eval term.

This command gives the g-normal form of term.

5.6.5 Compute term.

This displays the S6t-normal form of term.

5.6.6 Extraction ident.

This command displays the Fw-term extracted from ident. The name ident must refer to a de-
fined constant or a theorem. The Fw-term is extracted from the term defining ident when ident
is a defined constant, or from the proof-term when ident is a theorem. The extraction is pro-
cessed according to the distinguishing between Set and Prop; that is to say, between logical and
computational content (see section 6.1.1).
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Error message :
e Non informative term

See also : chapter 12

5.6.7 Search ident.

This command displays the name and type of all theorems of the current context whose statement’s
conclusion has the form (ident t1 .. +tn). This command is very useful to remind the user of
the name of library lemmas.

5.7 User’s syntax facilities

We present in this section some syntaxic facilities which are new features of Coq V5.10. We will
only sketch them here and refer the interested reader to chapter 9 for more details and examples.

5.7.1 Syntactic Definition ident := term.

This command is a new feature of coq V5.10. It defines ident as an abbreviation with implicit
arguments. Implicit arguments are denoted in term by ? and they will have to be synthesized by
the system.

Remark : Since it may contain dont’t care variables 7, the argument term of the Syntactic
Definition cannot be typechecked at definition time. But each of its subsequent usages will be.
See also : chapter 9

5.7.2 Syntax ident; identy << grammar-pattern >>.

This command is a new feature of coq V5.10. It adresses the extensible grammar mechanism of
Coq. It allows ident, to be parsed and pretty-printed as specified in grammar-pattern. Many
examples of the Syntax command usage may be found in the PreludeSyntax file (see directory
$COQTOP/theories/INIT).
See also : chapters 9, 10

5.7.3 Grammar ident; ident, := grammar-rule.

This command is a new feature of CoqV5.10. It allows to give explicitly new grammar rules for
parsing the user’s own notation. It may be used instead of the two above syntaxic pragmas. But
it can also be used by an advanced Coq’s user who programs his own tactics.

See also : chapters 9, 10, 4

5.7.4 Token string.

This command is a new feature of CoqV5.10. It allows the user to define a new token string, for
instance to define new grammar rules through the commands Grammar or Infix. Lexical ambiguities
are resolved according to the “longest match” rule. See the section 2.1 for more details.
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5.7.5 Infix num string ident.

This command is a new feature of CoqV5.10. It declares a prefix operator ident as infix, with the
syntax term string term. num is the precedence associated to the operator; it must lie between
6 and 9. The infix operator string associates to the right. string must be a legal token. Both
grammar and pretty-print rules are automatically generated for string.

5.8 Miscellaneous

5.8.1 Quit.

This command permits to quit Coq.

5.8.2 Drop.

This command permits to leave Coq temporarily and enter the caml-light toplevel. The caml
command go();; will allow subsequently to return to Coq’s toplevel in the same state. This is
used mostly as a debug facility by Coqg’implementors and does not concern the casual user.

5.8.3 Begin Silent.

This command turns off the normal displaying.

5.8.4 End Silent.

This command turns the normal display on.
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Chapter 6

The Calculus of Inductive
Constructions

The underlying formal language of Coq is the Calculus of Inductive Constructions (CIC in short).
It is a formulation of type theory including the possibility of inductive constructions.
One important feature of type theories is that they manipulate two sorts of objects, namely terms
and types. Types describe classes to which terms can belong. Any object handled in the formalism
must ezplicitly belong to a type. For instance, the statement “for all z, P” is not allowed in type
theory; you must say instead : “for all z belonging to T, P”. The expression “z belonging to T” is
written “z:T7”. One also says : “r is of type T”.

The purpose of this part is to precisely present the typing rules of the system and introduce
various theoretical notions that must be understood in order to use the Coq commands.

An introduction to various related typed lambda-calculi can be found in [3]. A formal study of
the Calculus of Inductive Constructions can be found in [74].

6.1 The terms

In most type theories, one usually makes a syntactic distinction between types and terms. This is
not the case for Cic which defines both types and terms in the same syntactical structure. This is
because the type-theory itself forces terms and types to be defined in a mutual recursive way and
also because similar constructions can be applied to both terms and types and consequently can
share the same syntactic structure.

For instance the type of functions will have several meanings. Assume nat is the type of natural
numbers then nat — nat is the type of functions from nat to nat, nat — Prop is the type of unary
predicates over the natural numbers. For instance [z : nat](z = z) will represent a predicate P,
informally written in mathematics P(z) = z = z. If P has type nat — Prop, (P z) is a proposition,
furthermore (x : nat)(P z) will represent the type of functions which associate to each natural
number n an object of type (P n) and consequently represent proofs of the formula “Vz.P(z)”.

6.1.1 Sorts

Types are seen as terms of the language and then should belong to another type. The type of a
type is always a constant of the language called a sort.
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The two basic sorts in the language of CiC are Set and Prop.

The sort Prop intends to be the type of logical propositions. If M is a logical proposition then
it denotes a class, namely the class of terms representing proofs of M. An object m belonging to
M witnesses the fact that M is true. An object of type Prop is often called a predicate.

The sort Set intends to be the type of usual sets such as booleans, naturals, lists etc. Objects
of type Set are said to be constructive families.

These sorts themselves can be manipulated as ordinary terms. Consequently sorts also should
be given a type. Because assuming simply that Set has type Set leads to an inconsistent theory,
we have infinitely many sorts in the language of Cic . These are, in addition to Set and Prop two
hierarchies of universes Type(i), Typeset(i) for any integer i. We call S the set of sorts which is
defined by :

S = {Prop, Set, Type(i), Typeset(:)|i € N}

The sorts enjoy the following properties : Prop:Type(0), Set:Typeset(0), Type(z): Type(i + 1) and
Typeset(z): Typeset(i + 1).

The user will never mention explicitly the index 7 when referring to the universe Type(i). One
only writes Type or Typeset. The system itself generates for each instance of Type or Typeset a new
index for the universe and checks that the constraints between these indexes can be solved. From
the user point of view we consequently have Type :Type and Typeset: Typeset.

We shall precise in the typing rules the constraints between the indexes.

Remark. The existence of two distinct hierarchies of sorts Prop and Type versus Set and Typeset
is related to the mechanism of extracting programs from proofs. The system will never extract
any information from objects (called logical or non-computational) whose type belongs to Prop or
Type. At the opposite any object A belonging to Set is interpreted in a constructive way as a
specification and any object a belonging to A can be interpreted as a program which is correct
with respect to the specification A. From the typing point of view, the system prevents the use of
a non-computational object in the construction of a computational object. This insures that it is
always possible to erase the non-computational part in a consistent way.

6.1.2 Constants

Besides the sorts, the language also contains constants denoting objects in the environment. These
constants may denote previously defined objects but also objects related to inductive definitions
(either the type itself or one of its constructors or destructors).

Remark. Inother presentations of Cic, the inductive objects are not seen as external declarations
but as first-class terms. Usually the definitions are also completely ignored. This is a nice theoretical
point of view but not so practical. An inductive definition is specified by a possibly huge set of
declarations, clearly we want to share this specification among the various inductive objects and
not to duplicate it. So the specification should exist somewhere and the various objects should refer
to it. We choose one more level of indirection where the objects are just represented as constants
and the environment gives the information on the kind of object the constant refers to.
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Our inductive objects will be manipulated as constants declared in the environment. This roughly
corresponds to the way they are actually implemented in the Coq system. It is simple to map this
presentation in a theory where inductive objects are represented by terms.

6.1.3 Language

Types. Roughly speaking types can be separated into atomic and composed types.

An atomic type of the Calculus of Inductive Constructions is either a sort or is built from a
type variable or an inductive definition applied to some terms.

A composed type will be a product (z : T)U with T and U two types.

Terms. A term is either a type or a term variable or a term constant of the environment.

As usual in A-calculus, we combine objects using abstraction and application.

More precisely the language of the Calculus of Inductive Constructions is built with the following
rules :

1. the sorts Set, Prop, Type, Typeset are terms.
2. constants of the environment are terms.
3. variables are terms.

4. if z is a variable and T', U are terms then (z : T)U is a term. If x occurs in U, (z : T)U reads
as “for all z of type T, U”. As U depends on z, one says that (z : T)U is a dependent product.
If  doesn’t occurs in U then (z : T)U reads as “if T then U”. A non dependent product can
be written : T — U.

5. if z is a variable and T, U are terms then [z : T|U is a term. This is a notation for the
A-abstraction of A-calculus [5]. The term [z : T|U is a function which maps elements of T to

U.

6. if T and U are terms then (7 U) is a term. The term (T U) reads as “T applied to U”.

Notations. Application associates to the left such that (¢ ¢1...t,) represents (... (¢t t1)...t,).
The products and arrows associates to the right such that (x : A)B — C — D represents (z :
A)(B — (C — D)). One uses sometimes (z,y : A)B or [z,y : A]B to denote the abstraction or
product of several variables of the same type. The equivalent formulation is (z : A)(y : A)B or

[z: Ally: AlB

Free variables. The notion of free variables is defined as usual. In the expressions [z : T|U and
(z : T)U the occurrences of z in U are bound. They are represented by de Bruijn indexes in the
internal structure of terms.

Substitution. The notion of substituting a term 7" to free occurrences of a variable x in a term
U is defined as usual. The resulting term will be written U{z/T'}.
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6.2 Typed terms

As objects of type theory, terms are subjected to type discipline. The well typing of a term depends
on a set of declarations of variables we call a contezt. A context I' is written [z1 : T1;..;2, : T}
where the x;’s are distinct variables and the T;’s are terms. If I' contains some x : T, we write
(z : T) € I" and also z € I. Contexts must be themselves well formed. The notation I' :: (y : T')
denotes the context [z1 : T1;..;2y, : Tn;y : T|]. The notation || denotes the empty context.

We define the inclusion of two contexts I' and A (written as I' C A) as the property, for all
variable x and type T, if (z:T) € I then (z : T) € A. We write |A| for the length of the context
A which is n if A'is [z1 : T1; .20 : Ty

A variable x is said to be free in I' if I' contains a declaration y : T such that z is free in T.

Environment. Because we are manipulating constants, we also need to consider an environment
E. We shall give afterwards the rules for introducing new objects in the environment. For the
typing relation of terms, it is enough to introduce two notions. One which says if a name is defined
in the environment we shall write ¢ € E and the other one which gives the type of this constant in
E. We shall write (¢: T) € E.

In the following, we assume FE is a valid environment. We define simultaneously two judgments.
The first one E[['| F ¢ : T means the term ¢ is well-typed and has type T in the environment E and
context I'. The second judgment WF(E)[I'] means that the environment E is well-formed and the
context I is a valid context in this environment. It also means a third property which makes sure
that any constant in £ was defined in an environment which is included in T" *.

A term t is well typed in an environment E iff there exists a context I' and a term T such that
the judgment E[I'] F¢: T can be derived from the following rules.

W-E W (IDIN]
W ElNFT:s se€8 z¢lUE
_S WF(E)L :: (z: T)]
N WA(E) WA (BT
E[I'] F Prop : Type(p) E[I'] F Set : Typeset(q)
WF(E)I[ i<j WF(E)I] i<j
E[L] = Type(i) : Type(s) E[I'] F Typeset(z) : Typeset(j)
V. WF(E)T] (z:T)el
. EMFa:T
WF(E)T] (c:T)€eE
Const E|Fc:T
Prod EI+FT:sy El:=(x:T)|FU:sy s € {Prop,Set} or s3 € {Prop,Set}

EF(z:T)U : sy

*This requirement could be relaxed if we instead introduced an explicit mechanism for instantiating constants.
At the external level, the Coq engine works accordingly to this view that all the definitions in the environment were
built in a sub-context of the current context.
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ENFT:¢@G) E[Lz(z:T)FU:t(y) tt e{Type Typeset} i <k j<k
EF (z:T)U : t(k)

ElF(z:TYU:s E[l:z(z:T)|Ft:U

Lam EfkF[z:T)t: (z:T)U
ElFt:(z:U)T E[kFu:U
App E[)F (tu): T{z/u}

6.3 Conversion rules

B-reduction. We want to be able to identify some terms as we can identify the application of a
function to a given argument with its result. For instance the identity function over a given type
T can be written [z : T]z. We want to identify any object a (of type T') with the application
([x : Tz a). We define for this a reduction (or a conversion) rule we call j3 :

([x: Tt u)>g t{z/u}

We say that t{z/u} is the S-contraction of ([z : T|t u) and, conversely, that ([z : T|t u) is the
B-expansion of t{x/u}.

According to B-reduction, terms of the Calculus of Inductive Constructions enjoy some funda-
mental properties such as confluence, strong normalization, subject reduction. These results are
theoretically of great importance but we will not detail them here and refer the interested reader
to [13].

t-reduction. A specific conversion rule is associated to the inductive objects in the environment.
We shall give later on (section 6.5.4) the precise rules but it just says that a destructor applied to
an object built from a constructor behaves as expected. This reduction is called t-reduction and is
more precisely studied in [66, 74].

6-reduction. In the environment we also have constants representing abbreviations for terms. It
is legal to identify a constant with its value. This reduction will be precised in section 6.4.1 where
we define well-formed environments. This reduction will be called §-reduction.

Convertibility. Let us write ¢t>u for the relation ¢ reduces to u with one of the previous reduction
B, or 6.

We say that two terms ¢; and t9 are convertible (or equivalent) iff there exists a term u such
that 1 >...>w and £t > ... >u. We note t; =gs, to.

The convertibility relation allows to introduce a new typing rule which says that two convertible
well-formed types have the same inhabitants.

At the moment, we did not take into account one rule between universes which says that any
term in a universe of index ¢ is also a term in the universe of index ¢ 4+ 1. This property is
included into the conversion rule by extending the equivalence relation of convertibility into an
order inductively defined by :

1. if M =gs, N then M <gs, N,
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2. if ¢ < j then Type(z) <gs, Type(j) and Typeset(z) <gs, Typeset(j),
3. if T =gs, U and M <gs, N then (x : T)M <gs, (x : U)N.
The conversion rule is now exactly :

EFU:S EFt:T T<gs U
E|Ft:U

Conv

n-conversion. An other important rule is the 7-conversion. It is to identify terms over a dummy
abstraction of a variable followed by an application of this variable. Let T be a type, t be a term
in which the variable  doesn’t occurs free. We have

[:T)(t z)>t

Indeed, as x doesn’t occurs free in ¢, for any u one applies to [z : T|(¢ z), it S-reduces to (¢ u). So
[ : T](t =) and t can be identified.
Remark : The n-reduction is not taken into account in the convertibility rule of Coq.

Normal form. A term which cannot be any more reduced is said to be in normal form. There
are several ways (or strategies) to apply the reduction rule. Among them, we have to mention
the head reduction which will play an important role (see chapter 4). Any term can be written as
[z1 : Th] ... [zk : Tk)(to t1--.t,) where g is not an application. We say then that ¢y is the head of
t. If we assume that ¢g is [z : T]uo then one step of -head reduction of ¢ is :

1 :Th] .. [z s Te)(Jz : Tlug tr ... tn) > [z1 : T ... [z s Te)(uo{x/t1} to.. . tn)

Iterating the process of head reduction until the head of the reduced term is no more an abstraction
leads to the B-head normal form of t :

to..> T [z s Tel(v ug o um)

where v is not an abstraction (nor an application). Note that the head normal form must not be
confused with the normal form since some u; can be reducible.

Similar notions of head-normal forms involving § and ¢ reductions or any combination of those
can also be defined.

6.4 Definitions in environments

We now give the rules for manipulating objects in the environment. Because a constant can depend
on previously introduced constants, the environment will be an ordered list of declarations. When
specifying an inductive definition, several objects will be introduced at the same time. So any
object in the environment will define one or more constants.

In this presentation we introduce two different sorts of objects in the environment. The first
one is ordinary definitions which give a name to a particular well-formed term, the second one is
inductive definitions which introduce new inductive objects.
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6.4.1 Rules for definitions

Adding a new definition. The simplest objects in the environment are definitions which can
be seen as one possible mechanism for abbreviation.

A definition will be represented in the environment as Def(I")(c := ¢ : T') which means that c is
a constant which is valid in the context I" whose value is ¢t and type is T.

b-reduction. If Def(T')(c:=1¢:T) is in the environment E then in this environment the é-reduc-
tion ¢4 t is introduced.
The rule for adding a new definition is simple :

ElFt:T c¢ EUT
WEF(E; Def(I')(c:=t : T))[I']

Def

6.4.2 Derived rules

From the original rules of the type system, one can derive new rules which change the context of
definition of objects in the environment. Because these rules correspond to elementary operations
in the Coq engine used in the discharge mechanism at the end of a section, we state them explicitly.

Mechanism of substitution. One rule which can be proved valid, is to replace a term c by its
value in the environment. As we defined the substitution of a term for a variable in a term, one can
define the substitution of a term for a constant. One easily extends this substitution to contexts
and environments.

WEF(E;Def(T')(c:=t:T); F)[A]
WF(E; F{c/t})[A{c/t}]

Substitution Property :

Abstraction. One can modify the context of definition of a constant ¢ by abstracting a constant
with respect to the last variable = of its defining context. For doing that, we need to check that
the constants appearing in the body of the declaration do not depend on z, we need also to modify
the reference to the constant ¢ in the environment and context by explicitly applying this constant
to the variable z. Because of the rules for building environments and terms we know the variable
x is available at each stage where ¢ is mentioned.

WF(E;Def(I' :: (z: U))(c:=t:T); F)[A] WF(E)[L]
WF(E;Def(T')(c:= [z : Ult: (x : U)T); F{c/(c z)})[A{c/(c x)}]

Abstracting property :

Pruning the context. We said the judgment WF(E)[['] means that the defining contexts of
constants in E are included in I'. If one abstracts or substitutes the constants with the above rules
then it may happen that the context I' is now bigger than the one needed for defining the constants
in E. Because defining contexts are growing in F, the minimum context needed for defining the
constants in F is the same as the one for the last constant. One can consequently derive the
following property.

WF(E;Def(A)(c:=t:T))[T]
WEF(E;Def(A)(c:=t:T))[A]

Pruning property :
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6.5 Inductive Definitions

A (possibly mutual) inductive definition is specified by giving the names and the type of the
inductive sets or families to be defined and the names and types of the constructors of the inductive
predicates. An inductive declaration in the environment can consequently be represented with two
contexts (one for inductive definitions, one for constructors).

Stating the rules for inductive definitions in their general form needs quite tedious definitions.
We shall try to give a concrete understanding of the rules by precising them on running examples.
We take as examples the type of natural numbers, the type of parameterized lists over a type A,
the relation which state that a list has some given length and the mutual inductive definition of
trees and forests.

6.5.1 Representing an inductive definition

We have to slightly complicate this representation with the two contexts for definitions and con-
structors. An inductive declaration can be done in whatever context we want, consequently we
have, as for definitions, to keep track of the defining context of variables. But of course we may
also want to use a definition in an alternative context. For definition this is done using the abstrac-
tion/application mechanism. Just doing a generalization on the types in the inductive declaration
is not satisfactory because it loses some information that is useful when deriving the destructor
operator’. Consequently we keep track of two contexts, one is the defining context and the other
one is the abstracted context also called the context of parameters of the definition. An induc-
tive definition can be used in whatever context which extends the defining contexts, and will be
explicitly applied to terms which instantiate the parameters.

We write Ind(T')[I'p]( T'r :=T¢ ) an inductive definition valid in a context I' with parameters
I'p, a context of definitions I'; and a context of constructors I'c.

The occurrences of the variables of I'p in the contexts I'; and I'¢ are bound.

Examples. The inductive declaration for the type of natural numbers will be :
Ind([])[[J]]( nat:Set:= O : nat,S: nat — nat )
The declaration for parameterized lists is :
Ind([])[A : Set]( list : Set := nil : list,cons : A — list — list )
The declaration for lists of length n is :
Ind([])[A : Set] (Length : (list A) — nat — Prop :=
Lnil : (Length (nil A) O)

| Leons : (a: A)(I: (list A))(n : nat)(Length [ n) —
(Length A (cons A al) (S n)))

fThis problem is a bit technical and probably not yet well-understood at the theoretical level. The intuition is
that an instance of an inductive definition does not necessarily have an inductive structure, but if we first abstract
the inductive declaration and then reinstantiate it then we want to recover the initial structure. That is why we keep
this context of parameters as large as possible.
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The declaration for a mutual inductive definition of forests and trees is :
Ind([])[[J]( tree : Set, forest : Set := node : forest — tree, emptyf : forest, consf : tree — forest — forest )

These representations are the ones obtained as the result of the Coq declaration :

Coq < Inductive Set nat := 0 : nat | S : nat -> nat.

A

Coq < Inductive list [A : Set] : Set :=

Coq < nil : (list A) | comns : A -> (list A) -> (list A).

Coq < Inductive Length [A:Set] : (list A) -> nat -> Prop :=

Coq < Lnil : (Length A (nil A) 0)

Coq < | Lecons : (a:A)(1l:(1list A)) (n:nat)

Coq < (Length A 1 n)->(Length A (cons A a 1) (S mn)).

Coq < Mutual Inductive tree : Set := node : forest -> tree

Coq < with forest : Set := emptyf : forest | consf : tree -> forest -> forest.

6.5.2 Types of inductive objects
We have to give the type of constants in an environment E which contains an inductive declaration.

Ind-Const Assuming I'p is [p1 : Pi;...;pr : B, Tris [I1 : Ag;.. .51 @ Ag), and T is e :

Ci;...50n: Cpl,
|nd(r)[rp]( Ir:=Dc)eE j=1...k
(Lj:(pr:P1)...(pr: P)Aj) €E
|nd(r)[rp]( I;:=Tc)eE i=1.n
(ci:(pr:Pr)...(pr: P)CA{L /(I p1-..pr)}j=1.k) € E

Example. We have (list : Set — Set), (cons : (A : Set)A — (list A) — (list A)),
(Length : (A : Set)(list A) — nat — Prop), tree : Set and forest : Set.
From now on, we write list4 instead of (list A) and Length, for (Length A).

Parameters. The parameters introduce a distortion between the inside specification of the in-
ductive declaration where parameters are supposed to be instantiated (this representation is ap-
propriate for checking the correctness or deriving the destructor principle) and the outside typing
rules where the inductive objects are seen as objects abstracted with respect to the parameters.

In the definition of list or Length A is a parameter because what is effectively inductively defined
is list4 or Length 4 for a given A which is constant in the type of constructors. But when we define
(Length 4 I n), I and n are not parameters because the constructors manipulate different instances
of this family.

6.5.3 Well-formed inductive definitions

We cannot accept any inductive declaration because some of them lead to inconsistent systems.
We restrict ourselves to definitions which satisfy a syntactic criterion of positivity. Before giving
the formal rules, we need a few definitions :
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Definitions A type T is an arity of sort s if it is the sort s or a product (z : T)U with U an
arity of sort s. (For instance A — Set or (A : Prop)A — Prop are arities of sort respectively Set
and Prop).

A type of constructor of I is either a term (I ;... t,) or (z : T)C with C a type of constructor
of I. Tt will be said to satisfy the positivity condition with respect to a constant X if X does not
occur in t; and occurs only strictly positively in each domain of product T'.

The constant X occurs strictly positively in (X t1... t,) if it does not occur in ¢; and occurs
strictly positively in (z : T)U if it does not occur in T' and occurs strictly positively in U.

Example For instance X occurs strictly positively in A — X but notin X — Aor (X — 4A) - A
or X * A or (list X) assuming the notion of product and lists were already defined. In the last
two cases it is easy to define an equivalent (possibly mutual inductive) definition which enjoys the
positivity condition.

Correctness rules. We shall now describe the rules allowing the introduction of a new inductive
definition.

W-Ind Let E be an environment and I', 'p, I';, I'¢ are contexts such that 'y is [I1 : Ag;...; [ : Ag]
and I is [e1 : Cj..50 0 Gl
(ED5TplF Aj:si)j=1k (B[L;Tp T F Citsp)iz1.m
WF(E; Ind(T)[Tp]( Ty :=Tc ))[I

providing the following side conditions hold :

e k>0, I, ¢; are different names for j =1...k andi=1...7n,
e for j =1...k we have A; is an arity of sort s; and I; ¢ ' U E,

e for i = 1...n we have C; is a type of constructor of I, which satisfies the positivity
condition for Iy ... Iy and ¢; ¢ T U E.

One can remark that there is a constraint between the sort of the arity of the inductive type and
the sort of the type of its constructors which will always be satisfied for impredicative sorts (Prop
or Set) but may generate constraints between universes.

Recursive arguments of constructors. From the specification of the inductive definition, one
can easily define a notion of recursive arguments for a constructor. Namely when looking at the
type of ¢ which has the shape (p1 : P1)...(pr : P)(z1 : Th) ... (zr : T.)(Ij p1...Dr t1...1s) the
recursive arguments will correspond to 7; in which one of the I; occurs.

One needs to define carefully this notion over the abstracted type, because as soon as we
instantiate a constructor with paramaters one could by just inspecting the instantiated type find
more recursive arguments than the real ones.

For instance we can perfectly define (list (list nat)), then (cons (list nat)) has type (list nat) —
(list (list nat)) — (list (list nat)) even if list occurs in the type of the first argument we do not want
to consider it as part of the structural induction on lists.
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6.5.4 Destructors

The specification of inductive definitions with arities and constructors is quite natural. But we still
have to say how to use an object in an inductive type.

This problem is rather delicate. There are actually several different ways to do that. Some of
them are logically equivalent but not always equivalent from the computational point of view or
from the user point of view.

From the computational point of view, we want to be able to define a function whose domain is
an inductively defined type by using a combination of case analysis over the possible constructors
of the object and recursion.

Because we need to keep a consistent theory and also we prefer to keep a strongly normalising
reduction, we cannot accept any sort of recursion (even terminating). So the basic idea is to restrict
ourselves to primitive recursive functions and functionals.

For instance, assuming a parameter A : Set exists in the context, we want to build a function
Igth of type listy — nat which computes the length of the list, so such that (Igth nil) = O and
(Igth (cons A a 1)) = (S (Igth 1)). We want these equalities to be recognized implicitely and taken
into account in the conversion rule.

From the logical point of view, we have built a type family by giving a set of constructors. We
want to capture the fact that we do not have any other way to build an object in this type. So
when trying to prove a property (P m) for m in an inductive definition it is enough to enumerate
all the cases where m starts with a different constructor.

In case the inductive definition is effectively a recursive one, we want to capture the extra
property that we have built the smallest fixed point of this recursive equation. This says that we
are only manipulating finite objects. This analysis provides induction principles.

For instance, in order to prove (I : list4)(Length 4 I (Igth 1)) it is enough to prove :

(Length 4 nil (Igth nil)) and
(a: A)(l: listy)(Length 4 I (Igth 1)) — (Length, (cons A a l) (Igth (cons A a 1))).

which given the conversion equalities satisfied by Igth is the same as proving : (Length 4 nil O)
and
(a: A)(l: listy)(Length 4 I (Igth 1)) — (Length, (cons A a l) (S Igth 1)).

One conceptually simple way to do that, following the basic scheme proposed by Martin-Lof in
his Intuitionistic Type Theory, is to introduce for each inductive definition an elimination operator.
At the logical level it is a proof of the usual induction principle and at the computational level it
implements a generic operator for doing primitive recursion over the structure.

But this operator is rather tedious to implement and use. We choose in this version of Coq
to factorize the operator for primitive recursion into two more primitive operations as was first
suggested by Th. Coquand in [16]. One is the definition by case analysis. The second one is a
definition by guarded fixpoints.

The Case...of ...end construction.

The basic idea of this destructor operation is that we have an object m in an inductive type I and
we want to prove a property (P m) which in general depends on m. For this, it is enough to prove
the property for m = (¢; uj ...up) for each constructor of I.
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This proof will be denoted by a generic term :
<P>Case mof f1... f, end

If in this expression m is a term built from a constructor (¢; u; ... up) then the expression will be-
have as it is specified with i-th branch and will reduce to (f; u1...up) according to the t-reduction.

This is the basic idea which is generalized to the case where I is an inductively defined n-ary
relation (in which case the property P to be proved will be a n + 1-ary relation).

Non-dependent elimination. When defining a function by case analysis, we build an object
of type I — C and the minimality principle on an inductively defined logical predicate of type
A — Prop is often used to prove a property (z : A)(I ) — (C z). This is a particular case of the
dependent principle that we stated before with a predicate which does not depend explicitly on the
object in the inductive definition.

For instance, a function testing whether a list is empty can be defined as :

[l : listq]<[H : listq]bool > Case [ of true [a : A][m : list4]false end

Remark. In the system the expression, without mentioning the dummy abstraction can also be
directly interpreted. <bool>Case [ of true [a : A][m : list4]false end

Allowed elimination sorts. An important question for building the typing rule for Case is what
can be the type of P with respect to the type of the inductive definitions.

Remembering that the elimination builds an object in (P m) from an object in I it is clear that
we cannot allow any combination.

For instance we cannot in general have [ is a non-computational object and P is a computational
family. But the other way is safe with respect to our interpretation we can have I a computational
object and P a non-computational one, it just corresponds to proving a logical property of a
computational object.

Also if T is in one of the sorts {Prop, Set}, one cannot in general allow an elimination over a
bigger sort such as Type or Typeset. But this operation is safe whenever I is a small inductive type,
which means that all the types of constructors of I are small with the following definition :

(I t1...ts) is a small type of constructor and (z : T)C is a small type of constructor if C' is and if
T has type Prop or Set.

We call this particular elimination which gives the possibility to compute a type by induction
on the structure of a term, a strong elimination.

We define now a relation [I : A|B] between an inductive definition I of type A, an arity B which
says that an object in the inductive definition I can be eliminated for proving a property P of type
B.

The [I : A|B] is defined as the smallest relation satisfying the following rules :

[(I z): A'|B|

Prod [I:(z:A)A'|(z: A)B']

I is a singleton definition

[I : Set|I — Set|

Prop [I : Prop|I — Prop]
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s € {Prop,Set} I is a small inductive definition ¢ € {Type, Typeset}

Set
: [I : Set|I — s] [T : Set|T — t(3)]
Type s € {Prop, Set, Type(j)|j <}
[I : Type(z)|I — s]
Typeset s € {Prop, Set, Type(j), Typeset(j)|j < i}

[I : Typeset(i)|] — s]
Notations. We write [I|B] for [ : A|B] where A is the type of I.

Warning : strong elimination In previous versions of Coq, for a small inductive definition, only
the non-informative strong elimination on Type was allowed, because strong elimination on Typeset
was not compatible with the current extraction procedure. In this version, strong elimination
on Typeset is accepted but a dummy element is extracted from it and may generate problems if
extracted terms are explicitly used such as in the Program tactic or when extracting ML programs.

Singleton elimination A new feature of this version is the possibility to do an informative
elimination a non informative singleton definition. A singleton definition has only one constructor
and all the argument of this constructor are non informative. In that case, there is a canonical way
to interpret the informative extraction on an object in that type, such that the elimination on sort
s is legal. Typical examples are the conjunction of non-informative propositions and the equality.
In that case, the term eq_rec which was defined as an axiom, is now a term of the calculus.

Coq < Print eq_rec.

Coq < Extraction eq_rec.

Type of branches. Let ¢ be a term of type C, we assume C is a type of constructor for an
inductive definition I. Let P be a term that represents the property to be proved. We assume r is
the number of parameters.
We define a new type {c: C}¥ which represents the type of the branch corresponding to the
¢ : C constructor.
{c: (I p1...pr tl...tp)}P = (Pt... tyo)

{c:(z:T)C}F =(z:T){(cz): C}F

We write {c}? for {c: C}¥ with C the type of c.

Examples. For listy the type of P will be listy — s for s € {Prop, Set, Type(z), Typeset(i)}.
{(cons A)}¥ = (a: A)(I:listy)(P (cons A a l)).

For Length 4, the type of P will be (I : list4)(n : nat)(Length, [ n) — Prop and the expression
{(Lcons A)}* is defined as :
(a: A)(l:listg)(n : nat)(h: (Length, I n))(P (cons A al) (Sn) (Lcons A alnl)).
If P does not depend on its third argument, we find the more natural expression :

(a: A)(l:listg)(n : nat)(Length, I n) — (P (cons A al) (S n)).
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Typing rule. Our very general destructor for inductive definition enjoys the following typing
rule :

ElNFc: I qr---qrt1...ts) ELJFP:B [(Iq...q)|B] (E[L)F fi:{(cp, q1- ..qT)}P),-:L_l

C
ase El'lF<P>Casecof fi...frend: (P t;...t5 ¢)

provided I is an inductive type in a declaration Ind(A)[I'p]( I';:=T¢ ) with [I'p| = r,
Fc=lc1:Ch;...5¢q 0 Ay and ¢y, ... ¢p, are the only constructors of I.

Example. For list and Length the typing rules for the Case expression are (writing just ¢t : M

instead of E[I'] F- ¢ : M, the environment and context being the same in all the judgments).

l:listgy P:listy —s fr:(P (nil A)) fy:(a:A)(l:listy)(P (cons A al))
<P>Caselof fi foend: (P c)

H : (Length, L N)
P : (l:listg)(n : nat)(Length, [ n) — Prop
1 : (P (il A) O Lnil)
fa:(a:A)(:listg)(n : nat)(h: (Length, I n))(P (cons A a n) (S n) (Lcons A aln h))
<P>Case H of fj foend: (P L N H)

Definition of (-reduction. We still have to define the t-reduction in the general case.
A t-redex is a term of the following form :

<P>Case (¢c;p1...pr ay...ay) of fi...f; end

with ¢; the i-th constructor of the inductive type I with r parameters.
The t-contraction of this term is (f; aq ... a,,) leading to the general reduction rule :

<P>Case (¢; p1...pr Q1-..Qm) of f1...fnend>, (fiar...am)

6.5.5 Fixpoint definitions

The second operator for elimination is fixpoint definition. This fixpoint may involve several mutu-
ally recursive definitions. The basic syntax for a recursive set of declarations is

Fix {fi:A1:=t1... fn: Ap:=t,}
The terms are obtained by projections from this set of declarations and are written Fix f;{f1 :
Ay =ty fn: Ay =t}
Typing rule
The typing rule is the expected one for a fixpoint.

(BTl F Aj:si)i=1.n (BD, fr: A1, fa: An] B i Ay )
ET)FFix fi{fi: Ay :=t1 ... fn: Ap =15} : A;

1=1...n

Fix
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Any fixpoint definition cannot be accepted because non-normalizing terms will lead to proofs
of absurdity.

The basic scheme of recursion that should be allowed is the one needed for defining primitive
recursive functionals. In that case the fixpoint enjoys special syntactic restriction, namely one of
the arguments belongs to an inductive type, the function starts with a case analysis and recursive
calls are done on variables coming from patterns and representing subterms.

For instance in the case of natural numbers, a proof of the induction principle of type

(P : nat — Prop)(P O) — ((n : nat)(P n) — (P (S n))) — (n: nat)(P n)
can be represented by the term:

[P : nat — Prop][f : (P O)][g : (n: nat)(P n) — (P (S n))]
Fix h{h : (n : nat)(P n) := [n: nat|]< P >Case n of f [p: nat](g p (h p)) end}

Before accepting a fixpoint definition as being correctly typed, we check that the definition is
“guarded”. A precise analysis of this notion can be found in [?].

The first stage is to precise on which argument the fixpoint will be decreasing. The type of this
argument should be an inductive definition.

For doing this the syntax of fixpoints is extended and becomes

Fix fz{fl/kl A =1 fn/kn P Ap = tn}

where k; are positive integers. Each A; should be a type (reducible to a term) starting with at least
k; products (y; : By)...(yx, : Bk;)AL and By, being an inductive type.

Now in the definition #;, if f; occurs then it should be applied to at least k; arguments ant the
k;-th argument should be syntactically recognized as structurally smaller than yy,

The definition of being structurally smaller is a bit technical.

The main rules are the following:
Given a variable y of type an inductive definition in a declaration Ind(I')[['p]( I'; :==T'¢ ) where I'y
is [l : Av;...5 Ik : Ay, and T is [e1 : Ch;.. . 5¢p 0 Cp). The terms structurally smaller than y are :

e (¢t u),[z : u]t when ¢ is structurally smaller than y .

o <P>Casecof fi...f, end when each f; is structurally smaller than y.
If c is y or is structurally smaller than y, its type is an inductive definition I, part of the
inductive declaration corresponding to y. Each f; corresponds to a type of constructor C, =
(y1 : B1)...(yx : Bg)(I a1...ax) and can consequently be written [y; : Bi]...[yx : By}lgi-
(B; is obtained from B; by substituting parameters variables) the variables y; occurring in
gi corresponding to recursive arguments B; (the ones in which one of the I; occurs) are
structurally smaller than y.

The following definitions are correct, we enter them using the Fixpoint command as described in
section 2.5.4 and show the internal representation.

Coq < Fixpoint plus [n:nat] : nat -> nat :=
Coq < [m:nat]<nat>Case n of m [p:nat] (S (plus p m)) end.

Coq < Print plus.
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Coq < Fixpoint 1lgth [A:Set;1l:(list A)] : nat :=
Coq < <nat>Case 1 of 0 [a:A]J[1’:(list A)](S (1gth A 1°)) end.

Coq < Print lgth.

Coq < Fixpoint sizet [t:tree] : nat

Coq < := <nat>Case t of [f:forest](S (sizef f)) end

Coq < with sizef [f:forest] : nat

Coq < := <nat>Case f of 0O [t:tree][f:forest] (plus (sizet t) (sizef f)) end.

Coq < Print sizet.

Reduction rule

Let F be the set of declarations : f1/ky : Ay :=t1... fn/kn : An = t,. The reduction for fixpoints
is :

(Fix fi{F} a1...ak,) >, ti{(fe/Fix fe{F})k=1.n}

when ay; starts with a constructor. This last restriction is needed in order to keep strong normal-
ization and corresponds to the reduction for primitive recursive operators.
We can illustrate this behavior on examples.

Coq < Goal (n,m:nat)(plus (S n) m)=(S (plus n m)).
Coq < Reflexivity.

Coq < Abort.

Coq < Goal (f:forest)(sizet (node £f))=(S (sizef f)).
Coq < Reflexivity.

Coq < Abort.

But assuming the definition of a son function from tree to forest:

Coq < Definition sont : tree -> forest := [t]<forest>Case t of [f]f end.
The following is not a conversion but can be proved after a case analysis.

Coq < Goal (t:tree)(sizet t)=(S (sizef (sont t))).

A

(* this one fails *)
Reflexivity.

Coq
Coq

A

Coq < Destruct t.

Coq < Reflexivity.
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The Match ...with ...end expression

A unary Match...with ...end. The Match operator which was a primitive notion in older pre-
sentations of the Calculus of Inductive definitions is now just a macro definition which generates
the good combination of Case and Fix operators in order to generate an operator for primitive
recursive definitions. It always considers an inductive definition as a single inductive definition.

The following examples illustrates this feature.

Coq
Coq

Coq

Coq
Coq
Coq
Coq

< Definition nat_pr : (C:Set)C->(nat->C->C)->nat->C
< :=[C,x,g,n]<C>Match n with x g end.

< Print nat_pr.

< Definition forest_pr

< : (P:forest->Set) (P emptyf)->((t:tree) (f:forest) (P £)->(P (consf t £)))
< ->(f:forest) (P £)
< := [C,x,g,n]<C>Match n with x g end.

The principles of mutual induction can be automatically generated using the Scheme command
described in section 8.5.

6.6 Coinductive types

The implementation contains also coinductive definitions, which are types inhabited by infinite
objects. For more information see the additional documentation referenced in section 15.5.
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Chapter 7

Theories Library

A number of libraries, containing various developments of Coq axiomatizations, is available in the
theories directory. This is further structured into a basic library INIT of elementary logical and
mathematical notions, various specific libraries for sets, lists, arithmetic, algebra. A large area
contrib (at the same level than theories) of user-contributed contains more specific libraries.
This chapter briefly reviews these developments.

7.1 INIT

This area concerns the basic axiomatizations which are available in the standard Coq system, plus
a few optional ones. The standard ones, which are loaded when the system is built, in order
to initialize the global context, are the ones listed in the Prelude module: Logic, Datatypes,
Specif, Peano, and Wf. The optional ones, which are needed in various circumstances, comprise:
Logic_Type, and Classical.

7.1.1 Logic

The Logic module starts with the definition of the standard (intuitionistic) logical connectives,
explained as inductive constructions. Their usual infix syntax can be found in the module Logic-
Syntax.

Propositional Connectives

First, we find propositional calculus connectives:

Coq < Inductive True : Prop := I : True.

Coq < Inductive False : Prop := .

Coqg < Definition not := [A:Prop] A->False.

Coq < Inductive and [A,B:Prop] : Prop := conj : A -> B -> A/\B.
Coq < Section Projectionms.

Coq < Variables A,B : Prop.
Coq < Theorem projl : A/\B -> A.
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Coq < Theorem proj2 : A/\B -> B.

Coq < End Projections.

Coq < Inductive or [A,B:Prop] : Prop
Coq < 1= or_introl : A -> A\/B
Coq < | or_intror : B -> A\/B.

Coq < Definition iff := [P,Q:Prop] (P->Q) /\ (Q->P).
Coq < Definition IF := [P,Q,R:Prop] (P/\Q) \/ ("P/\R).

Coq < Hint I conj or_introl or_intror.

Quantifiers

Then we find first-order quantifiers:

Coq < Definition all := [A:Set][P:A->Prop] (x:4) (P x).

Coq < Syntactic Definition All := (all 7).

A

Coq < Inductive ex [A:Set;P:A->Prop] : Prop
Coq < 1= ex_intro : (x:A)(P x)->(ex A P).

Coq < Syntactic Definition Ex := (ex 7).

Coq < Inductive ex2 [A:Set;P,Q:A->Prop] : Prop

Coq < := ex_intro2 : (x:A)(P x)->(Q x)->(ex2 A P Q).
Coq < Syntactic Definition Ex2 := (ex2 7).
Equality

Then, we find equality, defined as an inductive relation. That is, given a Set A and an x of type A,
the predicate (eq A x) is the smallest which contains x. This definition, due to Christine Paulin-
Mohring, is equivalent to define eq as the smallest reflexive relation, and it is also equivalent to
Leibniz’ equality.

Coq < Inductive eq [A:Set;x:A] : A->Prop
Coq < := refl_equal : (eq A x x).

Coq < Hint refl_equal.

It is possible to write x=y for (eq 7 x y). The type of the arguments x and y is automatically
synthesized (look at the LogicSyntax.v file, for more details).
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Lemmas

Finally, a few easy lemmas are provided.

Coq < Theorem absurd : (A:Prop) (C:Prop) A -> "A -> C.

Coq < Section equality.

Coq < Variable A,B : Set.
Coq < Variable £ : A->B.
Coq < Variable x,y,z : A.

Cog < Theorem sym_equal : x=y -> y=x.

Coqg < Theorem trans_equal : x=y -> y=z -> x=z.

Cog < Theorem f_equal : x=y -> (f x)=(f y).

Coq < Theorem sym_not_equal : ~“(x=y) -> “(y=x).

Coq < End equality.

Coq < Immediate sym_equal sym_not_equal.

7.1.2 Datatypes

Next, we find the definition of the basic data-types of programming, again defined as inductive
constructions over the sort Set.

Programming

Coq < Inductive unit : Set := tt : unit.

Coq < Inductive bool : Set := true : bool

Coq < | false : bool.
Coq < Inductive nat : Set := 0 : nat
Coq < | S : nat->nat.

Note that zero is the letter 0, and not the numeral 0.
We then define the disjoint sum of A+B of two sets A and B, and their product A*B.

Coq < Inductive sum [A,B:Set] : Set
Coq < :=inl : A -> A+B
Coq < | inr : B -> A+B.

Coq < Inductive prod [A,B:Set] : Set := pair : A -> B -> AxB.
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Coq < Section projectioms.

Coq < Variables A,B:Set.

Coq < Definition fst := [H:AxB]<A> Case H of [x:A][y:Blx end.

Coq < Definition snd := [H:AxB]<B> Case H of [x:A][y:Bly end.

Coq < End projections.

(fst 7 7).

(snd ? 7).

Coq < Syntactic Definition Fst

Coq < Syntactic Definition Snd :

Coq < Hint pair inl inr.

7.1.3 Specif

The Specif module concerns notions about Sets that contain logical information. The usual infix
syntax can be found in the module SpecifSyntax.

For instance, given A:Set and P:A->Prop, the construct {x:A | (P x)} (in abstract syntax
(sig A P)) is a Set. We may build elements of this set as (exist x p) whenever we have a
witness x:A with its justification p: (P x).

From such a (exist x p) we may in turn extract its witness x: A (using an elimination construct
such as Case) but not its justification, which stays hidden, like in an abstract data type. In technical
terms, one says that sig is a “weak (dependent) sum”. A variant sig2 with two predicates is also
provided.

Coq < Inductive sig [A:Set;P:A->Prop] : Set

Coq < := exist : (x:A)(P x) -> (sig A P).

Coq < Inductive sig2 [A:Set;P,Q:A->Prop] : Set

Coq < 1= exist2 @ (x:A)(P x) > (@ x) -> (sig2 AP Q).

A “strong (dependent) sum” {x:A & (P x)} may be also defined, when the predicate P is now
defined as a Set constructor.

Coq < Inductive sigS [A:Set;P:A->Set] : Set
Coq < 1= existS : (x:A)(P x) -> (sigS A P).
Coq < Section projectioms.

Coq < Variable A:Set.

Coq < Variable P:A->Set.

Coq < Definition projS1i := [H:(sigS A P)]<A> Case H of [x:A][h:(P x)]x end.

Coq < Definition projS2 := [H:(sigS A P)]<[H:(sigS A P)](P (projSi H))>
Coq < Case H of [x:A][h:(P x)]h end.

Coq < End projectiomns.

Coq < Inductive sigS2 [A:Set;P,Q:A->Set] : Set
Coq < 1= existS2 : (x:A)(P x) > (Q x) > (sigS2 AP Q).
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A related non-dependent construct is the constructive sum {A}+{B} of two propositions A and
B.

Coq < Inductive sumbool [A,B:Prop] : Set
Coq < := left : A -> ({A}+{B})
|

Coq < right : B -> ({A}+{B}).

Coq < Hint left right.

This sumbool construct may be used as a kind of indexed boolean data type. An intermediate
between sumbool and sum is the mixed sumor which combines A:Set and B:Prop in the Set A+{B}.

Coq < Inductive sumor [A:Set;B:Prop] : Set
Coq < := inleft : A -> (A+{B})
Cog < | inright : B -> (A+{B}).

Cog < Hint inleft inright.

We may define variants of the axiom of choice, like in Martin-Lof’s Intuitionistic Type Theory.

Coq < Lemma Choice : (S,S’:Set) (R:S5->S’->Prop) ((x:8){y:S’I (R x y)})

Coq < => {£:5->3’[(z:8)(R z (£ z))}.

Coq < Lemma Choice2 : (S,S’:Set)(R:S5->S’->Set) ((x:8){y:S’ & (R x y)})

Coq < -> {£:5->5” & (z:S)(R z (£f z))}.

Coq < Lemma bool_choice : (S:Set)(R1,R2:S->Prop) ((x:S){(R1 x)}+{(R2 x)}) ->
Coq < A{f:S->bool | (x:8)( ((f x)=true /\ (R1 x))

Coq < \/ ((f x)=false /\ (R2 x)))}.

The next construct builds a sum between a data type A:Set and an exceptional value encoding
errors:

Coq < Inductive Exc [A:Set] : Set := value : A->(Exc A)
|

Coq < error : (Exc A).

This module ends with two axioms, relating the sorts Set and Prop in a way which is consistent
with the realizability interpretation.

Coq < Axiom False_rec : (P:Set)False->P.

Coq < Axiom eq_rec : (A:Set)(a:A)(P:A->Set) (P a)->(b:A) a=b -> (P b).
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7.1.4 Peano
This module gives a few elementary properties of natural numbers, together with the definitions of

predecessor, addition and multiplication.

Cog < Theorem eq_S : (n,m:nat) n=m -> (S n)=(S m).

Coq < Definition pred : nat->nat
Coq < := [n:nat] (<nat>Case n of (* 0O *) O
Coq < (* S u *) [u:nat]u end).

Coq < Theorem pred_Sn : (m:nat) m=(pred (S m)).

Coq < Theorem eq_add_S : (n,m:nat) (S n)=(S m) -> n=m.

Coq < Immediate eq_add_S.
Coq < Theorem not_eq_S : (n,m:nat) “(n=m) -> “((S n)=(S m)).

Coq < Hint not_eq_S.

Coq < Definition IsSucc : mnat->Prop
Coq < := [n:nat] (<Prop>Case n of (* 0 *) False
Coq < (x* S p *) [p:nat]True end).

Coq < Theorem 0_S : (n:nat) “(0=(S n)).

Coq < Theorem n_Sn : (n:nat) ~(n=(S n)).

Coq < Fixpoint plus [n:nat] : nat -> nat :=
Coq < [m:nat] (<nat>Case n of

Coq < (x 0 *) m

Coq < (x S p *) [p:nat](S (plus p m)) end).

Coq < Lemma plus_n_0 : (n:nat) n=(plus n 0).

Coq < Hint plus_n_0.

Coq < Lemma plus_n_Sm : (n,m:nat) (S (plus n m))=(plus n (S m)).

Coq < Hint plus_n_Sm.

Coq < Fixpoint mult [n:nat] : nat -> nat :=
Coq < [m:nat] (<nat> Case n of (*x 0 *) O
Coq < (x* S p *) [p:nat](plus m (mult p m)) end).

Coq < Lemma mult_n_0 : (n:nat) O=(mult n 0).
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Coq < Hint mult_n_0.

Coq < Lemma mult_n_Sm : (n,m:nat) (plus (mult n m) n)=(mult n (S m)).

Coq < Hint mult_n_Sm.

Finally, it gives the definition of the usual orderings le, 1t, ge, and gt.

Coq < Inductive le [n:nat] : nat -> Prop
Coq < := le_n : (le n n)
Coq < | 1e_S : (m:nat)(le n m)->(le n (S m)).

Coq < Hint le_n le_S.

Coq < Definition 1t := [n,m:nat](le (S n) m).
Coq < Hint Unfold 1lt.
Coq < Definition ge := [n,m:nat](le m n).

Coq < Hint Unfold ge.

Coq < Definition gt := [n,m:nat](lt m n).

Coq < Hint Unfold gt.

Properties of these relations are not initially known, but may be required by the user from
modules Le and Lt. Finally, Peano gives some lemmas allowing pattern-matching, and a double
induction principle.

Coq < Theorem nat_case : (n:nat) (P:nat->Prop) (P 0)->((m:nat) (P (S m)))->(P n).

Coq < Theorem nat_double_ind : (R:nat->nat->Prop)

Coq < ((n:nat)(R 0 n)) -> ((m:nat)(®R (S n) 0))
Coq < -> ((n,m:nat)(Rn m)->(R (S n) (S m)))
Coq < -> (n,m:nat) (R n m).

7.1.5 Wf¢f

The W module contains the basics of well-founded induction.

Coq < Chapter Well_founded.
Coq < Variable A : Set.
Coq < Variable R : A -> A -> Prop.

Coqg < Inductive Acc : A -> Prop
Coq < := Acc_intro : (x:A) ((y:A)(R y x)->(Acc y))->(Acc x).

Coq < Lemma Acc_inv : (x:A) (Acc x) -> (y:A)(R y x) -> (Acc y).
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Coq < Transparent Acc_inv.

Coq < Section AccRec.

Coq < Variable P : A -> Set.

Coq < Variable F : (x:A)((y:A)(R y x)->(Acc y))->((y:A)(R y x)->(P y))->(P x).

Coq < Fixpoint Acc_rec [x:A;a:(Acc x)] : (P x)
Coq < := (F x (Acc_inv x a) ([y:A]J[h:(R y x)](Acc_rec y (Acc_inv x a y h)))).

Coq < End AccRec.
Coq < Definition well_founded := (a:A) (Acc a).

Coq < Theorem well_founded_induction :
Coq < well_founded ->
Coq < (P:A->Set) ((x: M) ((y:ADR y x)->(P y))->(P x))->(a:A) (P a).

Coq < End Well_founded.

7.2 Other general-purpose libraries

7.2.1 Logic_Type

This module contains the definition of logical quantifiers axiomatized at the Type level.

Coq < Definition allT := [A:Type] [P:A->Prop] (x:4) (P x).
Coq < Syntactic Definition A1llT := (allT 7).

Coq < Section universal_quantification.

Coq < Variable A : Type.

Coq < Variable P : A->Prop.

Coq < Theorem inst : (x:A) (A11lT P)->(P x).

Coq < Theorem gen : (B:Prop) (f:(y:A)B->(P y))B->(A11lT P).

Coq < End universal_quantification.

Coq < Inductive exT [A:Type;P:A->Prop] : Prop
Coq < := exT_intro : (x:A)(P x)->(exT A P).

Coq < Syntactic Definition ExT := (exT 7).

Coqg < Inductive exT2 [A:Type;P,Q:A->Prop] : Prop
Coq < := exT_intro2 : (x:A)(P x)>(Q x)->(exT2 A P Q).

Coq < Syntactic Definition ExT2 := (exT2 7).

Finally, it defines Leibniz equality x==y when x and y belong to A:Type.
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Coq < Inductive eqT [A:Type;x:A] : A -> Prop

Coq < := refl_eqT : (eqT A x x).
Coq < Hint refl_eqT.

Coq < Section Equality_is_a_congruence.

Coq < Variables A,B : Type.

Coq < Variable f : A->B.

Coq < Variable x,y,z : A.

Coq < Lemma sym_eqT : (x==y) -> (y==x).

Coq < Lemma trans_eqT : (x==y) -> (y==z) -> (x==z).
Coq < Lemma congr_eqT : (x==y)->((f x)==(f y)).

Coq End Equality_is_a_congruence.

Coq < Immediate sym_eqT.

<
<
Coq < Inductive eqTS [A:Typeset;x:A] : A -> Prop
Coq < := refl_eqTS : (eqTS A x x).

It is possible to write x==y for (eqT 7 x y). The type of the arguments x and y is automatically
synthesized (look at the Logic_TypeSyntax.v file, for more details).

7.2.2 Classical

The module Classical contains the rudiments of classical reasoning, starting with the excluded
middle axiom, and with various versions of de Morgan’s laws.

Beware. Classical is not provided in the default initialization of the system, you must require
it explicitly (with Require Classical) if you need classical reasoning.

Coq < Axiom classic: (P:Prop)(P \/ “(P)).
Coq < Lemma NNPP : (p:Prop)~(~(p))->p.

Coq < Lemma not_all_ex_not : (P:nat->Prop) ("((n:nat)(P n)) ->
(Ex [n:nat]~(P n))).

A

Coq
Coq < Lemma not_ex_all_not : (P:nat->Prop) ~(Ex [n:nat](P n)) -> (n:nat)” (P n).
Coq < Lemma ex_not_not_all : (P:nat->Prop) (Ex [n:nat]”(P n)) -> “(n:nat)(P n).

Coq < Lemma all_not_not_ex : (P:nat->Prop) ((n:nat)~(P n)) -> “(Ex [n:nat](P n)).

7.3 User contributions

Numerous user contributions are provided in the directory contrib. If you wish to add a contri-
bution to Cogs library, write to Gerard.Huet@inria.fr.
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Chapter 8

Tactics for inductive types and
families

This chapter details a few special tactics useful for inferring facts from inductive hypotheses. They
can be considered as tools that macro-generate complicated uses of the basic elimination tactics for
inductive types.

The first section presents inversion tactics and the second describes a command Scheme for
automatic generation of induction schemes for mutual inductive types.

8.1 Generalities about inversion

When working with inductive predicates, we are very often faced to some of these situations :

e we have an inconsistent instance of an inductive predicate in the local context of hypotheses.
Thus, the current goal can be trivially proved by absurdity. This situation arises frequently
when reasoning by induction on several arguments of an inductive predicate.

e we have an hypothesis that is an instance of an inductive predicate, and the instance has
some variables whose constraints we would like to derive.

The inversion tactics are very useful to simplify the work in these cases. Inversion tools can be
classified in three groups :

1. tools for inverting an instance without stocking the inversion lemma in the context : Simple
Inversion, Inversion and Inversion_clear.

2. tools for generating and stocking in the context the inversion lemma corresponding to an
instance : Derive Inversion, Derive Inversion_clear.

3. tools for inverting an instance using an already defined inversion lemma : Use Inversion.

As inversion proofs may be large in size, we recommend the user to stock the lemmas whenever
the same instance needs to be inverted several times.
Let’s consider, for example purposes, the type 1listnat of lists of natural numbers :

Cog < Inductive listnat : Set := nil : listnat | cons : nat->listnat->listnat.
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and the predicate concat such that (concat x y z) holds only when z is the list concatenation
ofx and y :

Coq < Inductive concat : listnat->listnat ->listnat->Prop :
Coq < conc_nil : (x:listnat) (concat nil x x)

Coq < | conc_cons : (x,y,z:listnat) (n:nat)

Coq < (concat x y z) -> (concat (cons n x) y (cons n z)).

In the examples, we will use the following variables :

Coq < Variable P,Q,R: nat -> Prop.

8.2 Inverting an instance

e Simple Inversion mamehyp
Let namehyp be an hypothesis of type (I f) in the local context. Let I is an inductive
predicate. Then, Simple Inversion applied to namehyp derives for each constructor ¢; of
1, all the necessary constraints that should hold for the instance (I t_> to be proved by c;.

Suppose we have the following goal :

Coq < Show.

The inductive type concat defines the smallest set closed by the constructors conc_nil and
conc_cons. That means, that all instances of this type should be constructed by composition
of these operators.

Thus, from H we would deduce n=m and (concat x y z), for the only constructor that allows
to prove this kind of instance is conc_cons. More generally, given a certain instance Y of
an inductive type, we can inspect all the constructors of the type, to determine for each one,
the set of constraints that should be verified for Y to be proved with this constructor. This
is commonly known as inverting the predicate. Simple Inversion performs this task.

Simple Inversion applied to H yields two subgoals. The first one will contain in its context,
all the constraints that should hold for (concat (cons n x) y (cons m z)) to be con-
structed by conc_nil. Obviously, some of them will be inconsistent and will allow to prove
the goal just by discrimination. The context of the second subgoal contains the informative
constraints corresponding to the constructor conc_cons :

Coq < Simple Inversion H.

Coq < Show 2.

As we said, the first subgoal can be proved easily by discriminating on HO. The second
one has the interesting constraints : from H1 we can deduce (by injection) that nO=n and
x0=x, analogously, from H3 we derive nO=m and z0=z. Then it is not difficult to derive that
(concat x y z).
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e Inversion namehyp
If the type of namehyp in the local context is (I f), where I is an inductive predicate then, this
tactic behaves as Simple Inversion deriving all the constraints and making the following
simplifications :

— if among the derived constraints, there is one that is a discriminable equality, then it
proves the branch automatically by discrimination.

— if no discriminable equality was derived, it applies all possible injections in order to
obtain rules for rewriting in the conclusion.

Coq < Undo.

Coq < Inversion H.

The branch corresponding to conc_nil was automatically eliminated. The goal to prove
corresponds to the constructor conc_cons. Note that the hypotheses (cons n0 x0)=(cons n
x) and (cons n0 z0)=(cons m z) had been simplified, and a substitution has been done on
the goal using the constraint n=m.

e Inversion_clear namehyp
This tactic behaves as Inversion but it erases the inverted hypothesis and the simplified
equations from the local context.

Coq < Undo.

Coq < Inversion_clear H.

Now we have the goal substituted and the expected hypothesis (concat x y z) resulting
from the inversion. Note that H has disappeared from the context : Inversion_clear always
replaces the inverted hypothesis by the derived constraints.

Variants :

1. Inversion mnamehyp in hy...h,
Let hy ... h,, be identifiers in the local context. This tactic behaves as generalizing A ... Ay,
and then performing Inversion.

2. Inversion_clear mnamehyp in hi...h,
Let hq ... h,, be identifiers in the local context. This tactic behaves as generalizing hq ... hy,
and then performing Inversion_clear.

8.3 Deriving the inversion lemmas

The tactics Inversion and Inversion_clear work on a certain instance (I %) of an inductive
predicate. At each application, they inspect the given instance and derive the corresponding inver-
sion lemma. If we have to inverse the same instance several times it is recommended to stock the
lemma in the context and just reusing it whenever we need it.
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The families of commands Derive Inversion and Derive Inversion_clear allow to generate
the inversion lemma from a given instance. In next section we describe the tactic Use Inversion
that refines the goal with a specified inversion lemma.

e Derive Inversion name with (Z:7T)(I %)
Let I be an inductive predicate. This command generates and stocks the inversion lemma
corresponding to the instance (Z : f)([ t) with the name name in the global environment.
When applied it is be equivalent to having inverted the instance with the tactic Inversion.

e Derive Inversion_clear name with (&:7T)(I t)
Let I be an inductive predicate. This command generates and stocks the inversion lemma cor-
responding to the instance (7 : ’f’) (I f) with the name name in the global environment. When
applied it is be equivalent to having inverted the instance with the tactic Inversion_clear.

For example, to invert the instance (concat (cons n x) y (cons m z)) we can do :

Coq < Derive Inversion_clear leminvl with
Coq < (n,m:nat)(x,y,z:1listnat) (concat (cons n x) y (cons m z)).

We can inspect the generated lemma by Check, its type is :

Coq < Check leminvl.

The derived inversion lemmas are adequate for inverting the instance with which it was
generated. The tactic Derive applied to different instances yields different lemmas. In
general, if we invert an instance (Z : f)(I t) the inversion lemma will expect a predicate of
type (Z : f)Prop as first argument. The reason is that Derive considers the global variables
occurring in the instance as ”constants”.

For example, if we define :

Coq < Variable a,b:nat.

Coq < Variable 11,12,13:1listnat.

Coq < Derive Inversion_clear leminv_var with (concat (cons a 11) 12 (comns b 13)).
The derived lemma is different to leminvi :

Coq < Check leminv_var.

Note that while leminv_var expects a proposition as argument, leminv1 expects a predicate.

Variants :

1. Derive Inversion name namehyp
Let namehyp have type (I f) in the local context (I is an inductive predicate). Then, this
command has the same semantics as Derive Inversion name with (Z: f)(I t) where Z are
the free variables of (I ) declared in the local context (variables of the global context are
considered as constants).
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2. Derive Inversion_clear num name namehyp
Let namehyp have type (I f) in the local context (I an inductive predicate). Then, this
command has the same semantics as Derive Inversion_clear name with (& : ’f)(] t)
where Z are the free variables of (I ) declared in the local context (variables of the global
context are considered as constants).

If we do this on our example:

Coq < Undo.

We can stock the inversion lemma corresponding to H :

Coq < Derive Inversion_clear leminv2 H.

The type of leminv2 is the same as leminv1’s for both lemmas were built from the same
instance :

3. Derive Inversion num name namehyp
This command behaves as Derive Inversion name namehyp performed on the goal number
num.

4. Derive Inversion_clear num name namehyp
This command behaves as Derive Inversion_clear name namehyp performed on the goal
number num.

8.4 Using already defined inversion lemmas

e Use Inversion namehyp leminv
Let namehyp have type (I t_> (I an inductive predicate) in the local context, and leminv be
an inversion lemma. Then, this tactic refines the current goal with this lemma.

To invert H we can use either leminv1 or leminv2 :

Coq < Use Inversion H leminv2.

In this case applying leminv1 or leminv?2 is the same because both lemmas were built from
the same instance and have the same type. This is not the case of leminv_var. Suppose we
have the following goal :

Coq < Show.

When we apply leminvl, the system will refine the current goal with this lemma. For
that it instantiates the lemma with the predicate [n,m:nat] [x,y,z:1listnat] (P n) of type
nat->nat->listnat->listnat->listnat->Prop:

Coq < Use Inversion H leminvl.

If we use leminv_var the result is different :

Coq < Undo.
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Coq < Use Inversion H leminv_var.

No rewriting was done using the fact that a=b, the lemma was applied as expected to the
proposition (P a). Beware when using inversion lemmas generated from instances with global
variables. In a certain sense the inversion we obtain is partial, as not necessarily all the
constraints are neither explicit nor used.

Variants :

1. Use Inversion nmamehyp leminv in hy ... h,
This tactic has the same semantics as the previous one, but rewrites not only in the conclusion
but also in the hypotheses A ... h,.

8.5 Scheme

The Scheme command is a higher-level tool for generating automatically (possibly mutual) induction
principles for given types and sorts. Its syntax follows the schema :

Scheme ident; := Induction for term; Sort sort;

with

with ident,, := Induction for term,, Sort sort,,

termy ... term,, are different inductive types belonging to the same packages of mutual inductive

definitions. This command generates ident;...ident,, to be mutually recursive definitions. Each
term ident; proves a general principle of mutual induction for objects in type term;.

Example : The definition of principle of mutual induction for tree and forest over the sort Set
is defined by the command :

Coq < Scheme tree_forest_rec := Induction for tree Sort Set
Coq < with forest_tree_rec := Induction for forest Sort Set.

You may now look at the type of tree forest rec :
Coq < Check tree_forest_rec.

This principle involves two different predicates for trees and forests it also has three premisses
each one corresponding to a constructor of one of the inductive definition.

The principle tree _forest_rec shares exactly the same premisses, only the conclusion now
refers to the property of forests.

Coq < Check forest_tree_rec.

Variants : Scheme ident; := Minimality for term; Sort sort;
with
with ident,, := Minimality for term,, Sort sort,,

Same as before but define a non-dependent elimination principle more natural in case of inductively
defined relations.
Example : With the predicates odd and even inductively defined as :
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Coq < Mutual Inductive odd : nat->Prop :=

Coq < oddS : (n:nat)(even n)->(odd (S n))
Coq < with even : nat -> Prop :=

Coq < evenD : (even 0)

Cog < | evenS : (n:nat)(odd n)->(even (S n)).

The command following command generates a powerful elimination principle :

Coq < Scheme odd_even := Minimality for odd Sort Prop

Coq < with even_odd := Minimality for even Sort Prop.
The type of odd_even for instance will be :
Coq < Check odd_even.

The type of even_odd will share the same premisses but the conclusion will be (n:nat) (even

n)->(Q n).
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Chapter 9

Syntax Extensions

9.1 Introduction

The Coq system allows us to define syntactic constants. It provides also a more sophisticated
mechanism to extend the grammars of terms, vernacular commands and tactics.

Before starting the description of these features, we illustrate them by a detailed example. We
use also some pretty-printing rules (see the pretty-printing manual).

Our example corresponds to a beginning of a development on functions.

The term (explicit_comp A B C f g) is the function obtained by composing the functions
f:A->B and g:B->C.

Coq < Definition explicit_comp := [A,B,C:Set][f:A->B] [g:B->C]
Coqg < [a:A]l (g(£f a)).

We define also the extensional equality on functions explicit_ext. Two functions £ and g of
domain A and codomain B are equal if their application at each element to A are equal (on B). We
load the Logic module to be able to use the Leibniz equality “=".
Coq < Definition explicit_ext := [A,B:Set][f,g:A->B]
Coq < (x,y:80) (£ x)=(g x).

With these definitions, we will try to prove the associativity of functional composition. We
start by adding to the system the declarations we need.

Coq < Variable A, B, C, D : Set.
Coq <

Coq < Variable f : A -> B.

Coq <

Coq < Variable g : B —> C.

Coq <

Coq < Variable h : C -> D.
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In the current version of Coq, it is no longer necessary to give explicitly all the arguments of
an application. Indeed the system is able to synthesize some implicit arguments from the context.
However we should indicate the place of the implicit arguments : they are represented by the “?”
symbol. Thus, in our case we can write (explicit.comp ? 7 7 £ g) since the domain and
codomain of £ and g are implicitly given by their type. We will also write (explicit ext ? 7
f g).

The statement of the associativity of functional composition becomes :

Coq < Lemma Ass :

Coq <  (explicit_ext 7 7

Coq < (explicit_comp ? ? 7 (explicit_comp ? 7 ? £ g) h)
Coq < (explicit_comp ? 7 7 £ (explicit_comp ? 7 ? g h))).

We will show two methods to improve this cumbersome syntax.
Using syntactic definitions :
Syntactic definitions are macros giving names to terms, possibly untyped. In our case, we give

names to (explicit_comp ? 7 7?) and (explicit_ext ? 7), respectively comp and ext. Thus
(comp f g) is equivalent to (explicit comp ? ? 7 f g).

Coq < Syntactic Definition comp := (explicit_comp 7 7 7).
We do the same with explicit_ext.

Coq < Syntactic Definition ext := (explicit_ext ? 7).
We can now reformulate our goal.

Coq < Abort.

Coq <
Coq < Lemma Ass : (ext (comp (comp f g) h) (comp f (comp g h))).

Let us explain the result : during the parsing, the occurrences of comp ext are replaced by their
syntactic definition. Then the system replaced each occurrence of “?” by a term it synthesized.

A problem subsists : the goal is printed with all the synthesized terms, and thus it seems obscure.
The solution is to define pretty-printing rules that hide the synthesized terms. The following rule
will print (explicit_comp A B C £ g) as (comp f g), ignoring the three first arguments. See the
pretty-printing manual for the complete description of the Syntax command.

Coq < Syntax constr pp_comp <<(explicit_comp $A $B $C $f $g)>> 10
Coq < "comp " <$f:"Term":L> " " <$g:"Term":L>.

We write also a pretty-printing rule for explicit_ext that prints (explicit_ext A B £ g) as
(ext f g).

Coq < Syntax constr pp_ext <<(explicit_ext $A $B $f $g)>> 10
Coq < "ext " <$f:"Term":L> " " <$g:"Term":L>.
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To see the effect of these rules, we print the current goal.
Coq < Show.

Using grammar rules :

The previous solution is satisfactory, but is rather far from the usual mathematical notations.
The extensible grammars will help us to improve our syntax.

For functional composition, we want to use an infix operator “o”. Thus we enter a new grammar
rule saying that the generic terms “$f o $g” have to be interpreted as (explicit_comp ? 7 7
$f $g). The non-terminals command, command7 and command8 are explained later.

Coq < Abort.

Coq <

Coq < Grammar command command8 :=

Coq < [ command7($f) "o" command8($g) ] ->
Coq < [$0=<<(explicit_comp 7 7 7 $f $g)>>].

For (explicit_ext ? ? f g), we choose the “f =jext g” syntax since the “=”

already used for the Leibniz equality and that overloading is not provided in this current version
of Coq. Let us enter the corresponding grammar rule.

symbol is

Coq < Token "%".

Coq < Grammar command commandl :=
Coq < [ commandO($£f) "=" "%" "ext" commandO0($g) 1 ->
Coq < [$0=<<(explicit_ext 7 ? $f $g)>>].

The associativity statement becomes :
Cog < Lemma Ass : ((f o g) o h) =lext (f o (g o h)).

The [Recompiling 1 nonterminal(s)...] message indicates that the grammar was success-
fully extended, i.e. the two rules we add are not ambiguous.

We should change our pretty-printing rules in order to have a display in accordance with our
syntax.

Coq < Syntax constr pp_comp <<(explicit_comp $A $B $C $f $g)>> 10

Coq < <$f:"Term":L> " o " <$g:"Term":L>.

Coq <

Coq < Syntax constr pp_ext <<(explicit_ext $A $B $f $g)>> 1
Coq < <$f:"Term":L> " =" "§" "ext " <$g:"Term":L>.

The old rules of explicit_comp and explicit_ext are overridden by those we enter.
We verify the result of our new pretty-printing rules.

Coq < Show.

We are now going to describe in details syntactic definitions and extensible grammars.
The associativity proof is left to the reader.

Coq < Abort.
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9.2 Syntactic Definitions

The syntactic definitions define syntactic constants, i.e. give a name to a term possibly untyped
but syntactically correct. Their syntax is :

Syntactic Definition name := term .

Syntactic definitions behave like macros : every occurrence of a syntactic constant in an expres-
sion is immediately replaced by its body.

Let us extend our functional language with the definition of the identity function :

Coq < Definition explicit_id := [A:Set][a:A]a.

We declare also a syntactic definition id :

Coq < Syntactic Definition id := (explicit_id 7).

The term (explicit_id ?) is untyped since the implicit arguments cannot be synthesized.
There is no type check during this definition. Let us see what happens when we use a syntactic
constant in an expression like in the following example.

Coq < Eval (id 0).
First the syntactic constant id is replaced by its body (explicit_id ?) in the expression. Then
the resulting expression is evaluated by the typechecker, which fills in “?” place-holders.

The standard usage of syntactic definitions is to give names to terms applied to implicit argu-
ments “?”. In this case, a special command is provided :

Syntactic Definition name :=term | n .
The body of the syntactic constant is term applied to n place-holders “?”.
We can define a new syntactic definition id1 for explicit_id using this command. We changed
the name of the syntactic constant in order to avoid a name conflict with id.
Coq < Syntactic Definition idl := explicit_id | 1.
The new syntactic constant id1 has the same behavior as comp :
Coq < Eval (id1 0).
Warnings :
e Syntactic constants defined inside a section are no longer available after closing the section.

e We cannot see the body of a syntactic constant with a Print command.
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9.3 Extensible Grammars

The parsing process consists in reading an expression (a list of tokens) and deciding wether it
belongs to the language or not. If it is, the parser transforms the expression into an internal
form called AST (Abstract Syntax Tree). An expression belongs to the language if there exists a
sequence of grammar rules that recognize it. The transformation to AST is performed by executing
successively the actions bound to these rules. In Coq we can extend dynamically the language by
adding new rules. We are going to describe this mechanism.

A grammar rule consists of :

e a grammar name : defined by a parser entry and a non-terminal. One can have two non-
terminals of the same name if they are in different entries.

e a production : formed by a left member of production (LMP) and an action.

Let us comment the functional composition rule :

Grammar command command8 :=
[ command7($f) "o" command8($g) 1 ->
[$0=<<(explicit_comp 7 7 7 $f $g)>>].

The command above extends the grammar command command8, i.e. the grammar of entry
command and of non-terminal command8. The new production is :

[ command7($f) "o" command8($g) ] —> [$0=<<(explicit_comp 7 7 7 $f $g)>>]

[ command7($£f) "o" command8($g) ] is the LMP and
[$0=<<(explicitcomp ? 7 ? $f $g)>>] the action.
A grammar name can have parameters. They will be instantiated by ASTs during the applica-

tion of the grammar production. Parameters are separated by “;” and enclosed between “[” and

“] ” X

Coq < Grammar command commandl12[$pl;$p2] :=
Coq < [ command0($p3) 1 -> [$0=<<($p1=$p2)/\ ($p2=$p3)>>].

Grammars are dynamically extended by new productions as we need. A grammar name does
not have to be explicitly defined : it is defined by giving its first production. All rules of a same
grammar must have the same parameters. For instance, the following rule is refused because the
command commandl12 grammar has been already defined with two parameters.

Coq < Grammar command commandl2[$pl] := [ command5($c) 1 -> [$0=$c].

A grammar may have several or zero productions. Assume that the command command13 does
not exist. The next command defines it with zero productions; of course, it may be extended later.

Coq < Grammar command commandl3 := .
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9.3.1 Left Member of Productions (LMP)

A LMP is composed of a combination of tokens (enclosed between double quotes “"*” and “"”) and
grammar calls specifying the entry. It is enclosed between “[” and “]”.

The empty LMP, represented by [ ], corresponds to € in formal language theory.

A grammar call is done by entry : nonterminal(a;- - - ; a,]($id) where :

e entry nonterminal specifies the entry of the grammar, and the non-terminal.

® a7 ---a, are actions, arguments of the called grammar. They must correspond to the number
of parameters of the grammar entry nonterminal. Otherwise an error occurs with the mes-
sage “Bad number of arguments in the call of entry nonterminal”. This verification is
done during the use of the rule.

e $id is a metavariable that will receive the AST resulting from the call to the grammar.

The elements entry and ($id) are optional. The grammar entry can be omitted if it is the same
as the entry of the caller non-terminal. Also, ($id) is omitted if we do not want to get back the
AST result. Thus a grammar call can be reduced to a non-terminal.

When an LMP is used in the parsing process of an expression, it is analyzed from left to right.
Every token met in the LMP should correspond to the current token of the expression. As to the
grammars calls, they are performed in order to recognize parts of the initial expression.

For instance, let us see the behavior of the functional composition rules LMP.

Grammar command command8 :=
[ command7 ($£) "o" command8($g) 1 ->
[$0=<<(explicit_comp 7 7 7 $f $g)>>].

When this rule is selected, its LMP calls the grammar command command7. This grammar
recognizes a term that it binds to the metavariable $£. Then it meets the token “o” and finally
it calls the grammar command command8. This grammar returns the recognized term in $g. The
function composition rule constructs the term (explicit_comp 7 7 7 $f $g).

Warning : Metavariables are identifiers preceded by the “$” symbol. They cannot be replaced
by identifiers. For instance, if we enter the functional composition rule with identifiers and not
metavariables, an error occurs.

Coq < Grammar command command8 := [ command7(f) "o" command8(g) ] ->
Coq < [$0=<<(explicit_comp 7 7 7 £ g)>>].
Error: ident found which was not a metavariable: f

9.3.2 Actions

Every rule should generate an AST corresponding to the syntactic construction that it recognizes.
This generation is done by an action. Thus every rule is associated to an action.

As we have already seen in the previous examples, the LMP and the action are separated by
“_>77.

We distinguish two kinds of actions : the simple actions and the conditional actions.
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Simple Actions

A simple action is presented as a list enclosed between “[” and “]” of bindings separated by “;”.

Each binding has the form $id = pattern where $id is a metavariable and pattern the description
of an AST.

In each pattern may appear the metavariables defined at its left, i.e. parameters of the grammar,
results of grammar calls and the metavariables of the previous bindings.
Among the bound metavariables must appear the metavariable $0. Indeed the AST generated by
the action is the pattern bound to $0. All the bindings after the binding $0 are ignored.
Example 1 : When an action should generate a big term, we can use intermediate bindings to
construct it progressively. In the following example, from the syntax t1*+t2 we generate the term
(plus (plus t1 t2) (mult t1 t2)). For better clarity, we use the intermediate metavariables
$p1 and $p2.

Coq < Grammar command commandl :=

Coq < [ commandO($a) "*" "+" command0($b) ] ->
Coq < [$p1=<<(plus $a $b)>>; $p2=<<(mult $a $b)>>;
Coq < $0=<<(plus $p1 $p2)>>].

Let us give an example with this syntax :
Coq < Goal (0%+0)=0.
Example 2 : The rule below allows us to use the syntax t1#t2 for the term ~“t1=t2.
Coq < Grammar command commandl :=
Coq < [ commandO($a) "#" commandO($b) 1 ->
Coq < [$0=<<" ($a=$b)>>].
For instance, let us give the statement of the symmetry of # :

Cog < Goal (A:Set)(a,b:A) a#tb -> bi#a.

Example 3 : We extend the command commandl grammar with a rule that generates the term
t1=t2 /\ t2=t3 for the syntax t1=t2=t3.

Coq < Grammar command commandl :=
Coq < [ command0($x) "=" commandO($y) "="
Coq < command12[[$0=$x]; [$0=$y]1]1 ($r) 1 -> [$0=$r].

During the parsing of t1=t2=t3, t1 and t2 are recognized by the grammars command commandO
and are respectively bound to $x and $y. Then we call command command12 with the arguments

$x and $y. We show its unique production.

Grammar command command12[$pl;$p2] := [ commandO($p3) 1 ->
[$0=<<($p1=%$p2) /\ ($p2=$p3)>>].
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The parameters are instantiated by the arguments $x and $y, thus now $pl and $p2 bind
respectively the values of $x and $y, i.e. t1 and t2. The command command12 grammar recognizes
t3 that it binds to $p3. Finally it generates the term t1=t2/\t2=t3 that is bound to $r. The
result of the command command1l rule is also the value of $r.

As usual we check our new syntax on an example :

Coq < Goal (plus (S 0) 0)=(plus 0 (S 0))=(sS 0).

Example 4 : Finally we give an example to show the importance of the order of bindings. In the
example of *+, let us commute the last two bindings.
We change also the symbol *+ into +* to avoid ambiguity problems.

Coq < Grammar command commandl :=

Coq < [ commandO($a) "+" "*x" commandO($b) ] ->
Coq < [$p1=<<(plus $a $b)>>; $0=<<(plus $pl $p2)>>;
Coq < $p2=<<(mult $a $b)>>].

The parsing of 0 +* 0 fails because during the action interpretation, $p2 is used before it is
bound.

Coq < Eval 0 +x* 0.

Example 5 : Let us see what happens if we enter in the system a rule with an action that does
not bind $0.

Coq < Token "!".

Coq < Grammar command commandl :=

Coq < [ commandO($a) "!" "=" commandO0($b) ] ->
Coq < [$1=<<Ba#$b>>].

Nothing! The rule is accepted. Indeed, the verifications about the action of a rule are performed
only during the use of this rule as you see in the following example :

Coq < Check 0 !'= 0.

Conditional Actions
They are defined with the following syntax :
case $id of pattern; -> actiony | --- | pattern,, => action,, esac

The action to execute is chosen according to the value of the metavariable $id. This metavariable
should be previously bound (for example, during a grammar call or as a parameter).

The matching is performed from left to right. The selected action is the one associated to the
first pattern that matches the value of $id. This matching operation will bind the metavariables
appearing in the selected pattern.

Let us take an example. Suppose we want to change the syntax of dependent types. We
enter a grammar rule that recognizes terms of the form [t1 in t2|t3 where t1, t2 and t3 are
terms respectively recognizable by command lcommand, command command and command command
grammars.
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Coq < Grammar command commandQO :=

Coq < [ "I" lcommand($v) "in" command($type) "|"
Coq < command ($body) 1 ->

Coq < case $v of ($VAR $id) ->

Coq < [$0=<<($id:$type) $body>>] esac.

During the parsing of |t1 in t2|t3 by this rule, the bindings ($v,t1), ($type,t2) and ($body,t3)
are created. Then we compare the value of $v, i.e. t1, with the pattern ($VAR $id) (representing
the general form of a variable AST). If this matching succeeds, $id is bound to the identifier
contained in t1.

We reformulate the statement of the symmetry of # :

Coq < Goal |a in nat||b in nat| a#b -> b#a.

In the case where the matching fails, i.e. no case pattern matchs the metavariable $id, the
parsing fails and an error occurs. For instance :

Coq < Goal |(S 0) in nat]|0=0.

Our dependent type rule fails because (S 0) is not a variable.

Several case structures can be interwoven since each action; can be also a case structure. Of
course it should be finished by a simple action and the executed action will be the action finally
selected.

Let us extend our previous example to recognize the dependent types |t1,t2 in t3|t4. We
use two embedded case statements in order to verify that t1 and t2 are variables.

Coq < Grammar command commandO :=

Coq < [ "I" lcommand($vi) "," lcommand($v2) "in"

Coq < command ($type) "|" command($body) 1 ->

Coq < case $vi of ($VAR $id1) —->

Coq < case $v2 of ($VAR $id2) ->

Coq < [$0=<<($id1,$id2:$type) $body>>] esac
Coq < esac.

We may use this syntax to write the symmetry of # in a more readable way :

Coq < Goal |a,b in nat| a#b -> b#a.

9.3.3 Entries

All the given examples concern the predefined entry command. However there exist other predefined
entries. Each of them (except prim) possesses an initial grammar for starting the parsing process.
Four grammar entries are predefined.
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e command : it is the term entry. It allows to have a pretty syntax for terms. Its initial grammar
is command command. This entry contains several non-terminals, among them commandO to
command10 which stratify the terms according to priority levels (0 to 10).

Example : Let us see the grammar rules of conjunction and disjunction defined in the file
PreludeSyntax.v. Conjunction is defined with the non-terminal command6 and disjunction
with command7 : disjunction has a higher priority than conjunction. Thus A/\B\/C will be
parsed as A/\ (B\/C) and not as (A/\B)\/C. In the grammar rules, the character “\” must be
doubled since it is the escape character of strings in Camllight, the implementation language
of Coq.

Grammar command command6 :=
[ command5($c1) "/\\" command6($c2) ] ->
[$0=<<(and $c1 $c2)>>].

Grammar command command7 :=
[ command6($c1) "\\/" command7($c2) 1 —>
[$0=<<(or $c1 $c2)>>].

These priority levels allow us also to specify the order of associativity of operators. Thus
conjunction and disjunction associate to the right since in both cases the priority of the
right term (resp. command6é and command7) is higher than the priority of the left term (resp.
command5 and command6).

e vernac : it is the vernacular command entry, with vernac vernac as initial grammar. Thanks
to it, the developers can define the syntax of new commands they add to the system. As to
users, they can change the syntax of the predefined vernacular commands.

e tactic : it is the tactic entry with tactics tactic as initial grammar. This entry allows to
define the syntax of new tactics. See the tactics manual for more details.

e prim : it is the entry of the primitive grammars. The next section is devoted to it.
The user can define new entries.

Coq < Grammar newentry nonterm :=
Coq < [ "&" command:command($c) ] -> [$0=$c].

The grammars of new entries do not have an initial grammar. To use them, they must be called
(directly or indirectly) by grammars of predefined entries. We give an example of a (direct) call
of the grammar new-entry nonterm by command command. This following rule allows to use the
syntax a&b for the conjunction a/\b.

Coq < Grammar command command :=
Coq < [ command8($a) newentry:nonterm($b) ] ->

Coq < [$0=<<$a/\$b>>].
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It is interesting to note that the basic syntax of the system is described by the extensible
grammar mechanism. This syntax is described in the following files in the directory src/syntax.

e Command.v: term syntax.
e Tactic.v: vernacular command syntax.
e Vernac.v: tactic syntax.

To know the non-terminals in the predefined entries, on can consult these files.

9.3.4 Primitive Grammars

The primitive grammars are not defined by the extensible grammar mechanism. They are encoded
inside the system.
The prim entry contains the following non-terminals :

e ident : identifier grammar.

e number : number grammar.

e string : string grammar.

e unparsing : pretty-printing grammar.

e grammar_entry : grammar of the extensible grammar mechanism. It corresponds to the
non-terminal (Grammar_entry) in the figure 9.1.

e spat : pattern grammar.

e raw_command : AST grammar.

The primitive grammars are used as the other grammars; for instance the identifier grammar
call is done by prim:ident ($id).

These primitive grammars cannot be extended. However the user can define new non-terminals
in the prim entry, as for the other entries.

9.3.5 Patterns

Patterns describe AST to generate during the grammar rules application. They appear in the
action part of grammar rules.

In the general case, the user does not have to put explicitly an AST in the action of his rules.
Indeed, if the AST to generate corresponds to a well formed term, one can call a grammar to parse
it and to return the AST result. For instance, in the functional composition grammar, the pattern
bound to $0 is <<(explicit_comp ? 7 7 $f $g)>>.

Recall that this rule parses expressions of the form t1 o t2 and generates the term (explicit -
comp ? 7 7 t1 t2). This term is parsable by command command grammar. This grammar is
invoked on this term to generate an AST by putting the term between “<<” and “>>”.

We can also invoke the initial grammars of the other predefined entries.

105



<< t >> parses t with command command grammar.
e <:command:< t >> parses t with command command grammar.
e <:vernac:< t >> parses t with vernac vernac grammar.

e <:tactic:< t >> parses t with tactic tactic grammar.

For a complete description of patterns and AST, see the pretty-printing manual.
Warning : We cannot invoke other grammars than those we described.

9.3.6 Other examples

We give some applications to the entries vernac and tactic.

Example 1 : Thanks to the following rule, “| - term.” will have the same effect as “Goal term.”.
Coq < Token "-".

Coq < Grammar vernac vernac :=

Coq < L "|" "=" command:command($term) "." ] ->

Coq < [$0=<:vernac:<Goal $term.>>].

Coq < |- (A:Prop)A->A.

Example 2 : We can adapt the vernacular commands to use keywords in different languages
than english. Thus for instance, after entering the following rule the Recommencer command will
correspond to Restart.

Coq < Grammar vernac vernac :=
Coq < [ "Recommencer" "." ] -> [$0=<:vernac:<Restart.>>].

Example 3 : We can give names to repetitive tactic sequences. Thus in this example “IntSp”
will correspond to the tactic Intros followed by Split.

Coq < Grammar tactic simple_tactic :=
Coq < [ "IntSp" ] -> [$0=<:tactic:<Intros; Split>>].

Let us check that this works.

Coq < Goal (A,B:Prop)A/\B -> B/\A.

Coq < IntSp.
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9.3.7 A word on grammar compiling

The choice of the sequence of grammar rules to use in the parsing of an expression is done according
to an algorithm called the parsing method. This sequence should be unique otherwise we say that
there is ambiguity. The parsing methods are classified according to the grammar class they accept
as input. In our case, the method used is close to the LL(1) method. The LL(1) grammars are
those for which we can choose the grammar rule to apply by seeing only the current token in the
expression. There exists an algorithm to verify if a grammar is LL(1) or not; it is based on the
construction of two token sets firsts and nexts for each LMP.

In our case, we only construct the firsts set. The firsts set of a LMP is formed by the first tokens
of the expressions it can recognize. It contains € if the LMP can recognize the empty expression e.

We are going to describe briefly the method used by Coq to verify the non-ambiguity of a
grammar. If the grammar is non-ambiguous, it is transformed into a form called compiled grammar.
This processes of verification and transformation is called compilating.

Compilating a grammar counsists in factoring (i.e. taking the longest common factor) its LMP
that have the same firsts sets.

We execute recursively this operation on the new LMP (i.e. the initial LMP without their
common factor). There are two halting cases :

1. The LMP we process have the same firsts set but have no common factor. The grammar is
refused.

2. All the LMP we process have different firsts sets. The grammar is accepted and its compiled
form is the grammar with all the factorizations already performed. This grammar is stocked
in the compiled grammar table.

When we extend a grammar with one or several rules, we should recompile it but also recompile
all the grammars that mention it in their LMP. To avoid frequent recompilings, the new rules added
are not immediately compiled but only stocked in the uncompiled grammars table. The grammars
of this table are compiled when the system needs to consult the compiled grammars table, i.e. there
is no recompilings during a parsing using primitive grammars. During a recompiling, the system
prints the message [Recompiling n nonterminal(s)...] where n is the number of the grammars
it recompiles.

Example : A trivial (and frequent) example of ambiguous grammar is a grammar with two
identical LMP. The following rule has the same LMP that the function composition rule.

Coq < Grammar command command8 :=
Coq < [ command7($A) "o" command8($B) ] ->
Coq < [$0=<<($A /\ $B)>>].

This rule is not immediately compiled. It will be compiled when the system will do a parsing
with non-primitive grammars. For instance, to parse the command “Eval 0 *+ 0.”, the system

should recompile all the uncompiled grammars, command command8 in our case. An error occurs
and the rule is refused. The parsing does not fail and is done with the rules already compiled.

Coq < Eval 0 *+ O.
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Let us comment on the error message. It indicates that the extended grammar command
command8 is not LL(1) because after factorization, we obtain two empty [] LMP. These LMP
have the same firsts set ({€¢}) but do not have a common factor. It is the first halting case : the
extended grammar is refused.

More complicated cases of ambiguous grammars may arise. There is no universal solution : the
user itself should transform its grammar to be accepted by the system. However, it does not have
to remember all the rules entered in the system. Indeed the Print Grammar will do it for him.

Coq < Print Grammar command command8.

Note that the actions are printed as AST.

9.3.8 Limitations

The extensible grammar mechanism have two serious limitations.

e There is no command to remove a grammar rule. However there is a trick to do it. It is
sufficient to execute the “Reset” command on a constant defined before the rule we want to
remove. Thus we retrieve the state before the definition of the constant, then without the

grammar rule.
e Grammar rules defined inside a section are automatically removed after the end of this section :
they are available only inside it.
9.3.9 Extensible Grammar Syntax

It is possible to extend a grammar with several rules at once.

Grammar univers nonterminal := production,

|  production,, .

Also, we can extend several grammar at the same time.

Grammar wunivers mnonterminal; := production}
s o1
|  production,, y
with
with  nonterminal, := production}
ionP
| production}, .

We give the exact syntax for the extensible grammar mechanism. We use the BNF notation.
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(Grammar)
(Entry)
(Grammar_entry)
(NonTerminal)
(Parameters)
(Production)
(LMP)
(Production_item)
(NonTerminalCall)
(Args)

(Res)

(Action)

(Binding)

(Case)

Grammar (Entry) (Grammar_entry) {with (Grammar_entry)} .
vernac | command | tactic | prim | (Identifier)
(NonTerminal) [(Parameters)] := [(Production) {| (Production)}]
(Identifier)

[ (Meta) {;(Meta)}] ]

(LMP) -> (Action)

[ {(Production_item)} 1

" (Token) " | (NonTerminalCall)

[(Entry) :] (NonTerminal) [(Args)] [(Res)]
[ [{(Action) {; (Action)}] ]

( (Meta) )

[ [{Binding)
case (Meta)
( (Action) )

(Binding)}] 1

{;
of (Case) {| (Case)} esac

(Meta) = (Pattern)

(Pattern) -> (Action)

Figure 9.1: Extensible Grammar Syntax
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Chapter 10

Writing your own pretty printing
rules

10.1 Introduction

The V5.10 version of Coq provides a mechanism for extending the vernacular’s parser and printer by
adding, in an interactive way, new grammar and printing rules. The printing rules will be stocked
into a table and will be recovered at the moment of the printing by the vernacular’s printer.

The user can now define new constants, tactics and vernacular phrases with his desired syntax.
The binding is dynamic. The printing rules for new constants should be written after the definition
of the constant. This is to ensure that the symbols occurring in the pattern of the rule will be
dynamically correctly bound. The rules should be outside a section if the user wants them to be
exported.

The printing rules corresponding to the heart of the system (primitive tactics, commands
and the vernacular language) are defined, respectively, in the files PPTactic.v, PPCommand.v and
PPVernac.v (in the directory src/syntax). These files are automatically loaded by the file main.ml
in the src directory. The user is not expected to modify these files unless he dislikes the way
primitive things are printed, in which case he will have to compile the system after doing the
modifications.

The system also uses the vernacular printer to report the vernacular phrases causing an error.
When extending the printer, the error reporting mechanism is also implicitly extended. One way
to test the printing rules for a certain phrase is to give it to Coq in a wrong environment, just to
look at the reported error message. When the system fails to find a suitable printing rule, a tag
#GENTERM appears in the message.

In the following we give some examples showing how to write the printing rules for the non-
terminal and terminal symbols of a grammar . We will test them frequently by inspecting the error
messages. Then, we give the grammar of printing rules and a description of its semantics. The
syntax of the patterns that can appear in either grammar or printing rules is described in section
10.4.
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10.2 The Printing Rules

10.2.1 The printing of non terminals

The printing is the inverse process of parsing. While a grammar rule maps an input string into an
abstract syntax tree (ast), a printing rule maps an ast into an output string. So given a certain
grammar rule, the printing rule can be obtained by inverting the grammar rule.

A printing rule is of the form :

Syntax wuniverse mame DPattern precedence printing_order rec_bindings.

where :

e universe is an identifier denoting the universe of the ast to be printed. There is a correspon-
dence between the universe of the grammar rule used to generate the ast and the one of the
printing rule :

Unw. Grammar | Uniwv. Printing

vernac vernac
tactic tactic
command constr

e name is an identifier corresponding to the name of the printing rule. A rule is identified by
both its universe and name, if there are two rules with both the same name and universe,
then the last one overrides the former.

e DPattern is a pattern that matches the ast to be printed. The syntax of patterns is very
similar to the patterns for grammar rules. A description of their syntax is given in section
10.4.

e precedence is positive integer indicating the precedence of the rule. In general the precedence
for tactics and vernacular phrases is 0. The universe of commands is implicitly stratified by
the hierarchy of the parsing rules. We have non terminals command0 , command]l, etc. The
idea is that objects parsed with the non terminal command; have precedence i. In most of
the cases we fix the precedence of the printing rules for commands to be the same number of
the non terminal with which is parsed.

e printing_order is the sequence of orders indicating the concrete layout of the printer.
e rec_bindings is used to deal with recursion in the printing rules and it is optional.

Example 1 : Defining the syntaz for new tactics
Let’s see the production of a new tactic MyExact with the same syntax as the primitive tactic
Exact :

Coq < Grammar tactic simple_tactic :=
Coq < [ "MyExact" comarg($c) ] -> [$0 = (MyExact $c)].

If we try to use MyExact 0 the system reports an error with the tag #GENTERM appearing in it :

112



Coq < MyExact O.

The vernacular’s printer does not know how to print that phrase. Considering that printing
rules for objects of comarg have already been defined, let’s see a possible rule for our tactic MyExact :

Coq <
Syntax tactic myexact <:tactic: <MyExact $c>> 0 "MyExact "<$c:"CommandArg":*>.

The universe of the tactics is tactic and the name of the rule is myexact. Between <:tactic: <
and >> we are allowed to use the syntax of tactics. The system will call the parser of tactics to
determine the structure of the ast. 0 is the precedence for tactics.

The printing order "MyExact " <$c:"CommandArg":*> tells to print the string MyExact fol-
lowed by its command argument. The string "CommandArg" gives information about the value of
$c and it is just for documentation purposes. The * tells not to put parentheses around the value

of $c.
Now if we try MyExact 0. We see it is well printed in the error message.

Coq < MyExact O.

Another way to obtain the printing rule is by inverting the grammar production using exactly
the same pattern of the grammar rule :

Cog < Syntax tactic myexact (MyExact $c) O "MyExact "<$c:"CommandArg":*>.

Example 2 : Defining the syntaz for new constants.
Let’s define the constant Xor in Coq :

Coq < Definition Xor := [A,B:Prop] A/\"B \/ ~“A/\B.

Given this definition, we may want to use the syntax of A X B to denote (Xor A B). To do that
we give the grammar rule :

Coq < Grammar command command7 :=
Coq < [ command6($c1l) "X" command7($c2) 1 -> [$0 = <<(Xor $ci1 $c2)>>].

Note that the operator is associative to the right. Now True X False is well parsed :
Coq < Goal True X False.
To have it well printed we extend the printer :

Coq < Syntax constr Pxor <<(Xor $t1 $t2)>> 7
Coq < <$ti:"term":L> " X " <$t2:"term":E>.

and now we have the desired syntax :
Coq < Show.
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Let’s comment the rule :
e constr is the universe of the printing rule.

e Pxor is the name of the printing rule.

<<(Xor $t1 $t2)>> is the pattern of the ast to be printed. Between << >> we are allowed
to use the syntax of command. Metavariables may occur in the pattern but preceded by $.

7 is the rule’s precedence and it is the same one than the parsing production (command7).

<$ti:"term":L> " X " <$t2:"term":E> are the printing orders, it tells to print the value
of $t1 then the symbol X and then the value of $t2.

The L in the little box <$t1:"term" :L> indicates not to put parentheses around the value of
$t1 if its precedence is less than the rule’s one. An E instead of the L would mean not to
put parentheses around the value of $t1 if its the precedence is less or equal than the rule’s
one. In the example before we saw that with the option * no parenthesis are written around
the value of $t1.

The associativity of the operator can be expressed in the following way :
<$tl:"term":L> " X " <$t2:"term":E> associates the operator to the right.

<$til:"term":E> " X " <$t2:"term" :L> associates to the left.

Note that while grammar rules are related by the name of non-terminals (command6 and
command?) printing rules are isolated. The Pzor rule tells how to print an ”Xor expression” but
not how to print its subterms. The printer looks up recursively the rules for the values of $t1 and
$t2. The selection of the printing rules is strictly determined by the structure of the ast to be
printed.

Example 3 : Forcing to parenthesize a new syntactic construction

You can force to parenthesize a new syntactic construction by fixing the precedence of its printing
rule to a number greater than 9. For example a possible printing rule for the Xor connector in the
prefix notation would be :

Coq < Syntax constr ex_imp <<(Xor $t1 $t2)>> 10
Coq < "X " <$tl:i"term":L> " " <$t2:"term":L> .

No explicit parentheses are contained in the rule, nevertheless, when using the connector, the
parentheses are automatically written :

Coq < Show.

A precedence higher than 9 ensures that the ast value will be parenthesized by default in
either the empty context or if it occurs in a context where the instructions are of the form
<$t:"string":L> or <$t:"string" :E>.

Example 4 : Dealing with list patterns in the syntaz rules
The following productions extend the parser to recognize a tactic called MyIntros that receives a
list of identifiers as argument as the primitive Intros tactic does :
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A

Coq
Coq
Coq

Grammar tactic my_ne_identarg_list :=
[ identarg($id) my_ne_identarg list($idl) ] -> [$0 = ($CONS $id $idl)]
| [ identarg($id) 1 -> [$0 = ($LIST $id)].

AN AN

Coq < Grammar tactic simple_tactic :=
Coq [ "MyIntros" my_ne_identarg list($idl) ] ->
Coq < [$0 =($0PER{MyIntrosWith} $id1)].

Al

The non terminal my_ne_identarg_list defines the non-empty lists of identifiers. The patterns
($CONS $id $idl) and ($LIST $id) are list patterns. The former denotes a list pattern of at least
one element, and the latter a list of exactly one element. The list pattern ($LIST) and ($NIL)
denote the empty list. Note that both the patterns ($CONS $id $idl) and ($LIST $id) may
denote a list of only one element.

To define the printing rule for MyIntros it is necessary to define the printing rule for the
non terminal my_ne_identarg list. In grammar productions the dependency between the non
terminals is explicit. This is not the case for printing rules, where the dependency between the rules
is determined by the structure of the pattern. So, the way to make explicit the relation between
printing rules is by adding structure to the patterns.

Coq < Syntax tactic myintroswith ($0PER{MyIntrosWith} $L) O
Coq < "MyIntros " <$IDLIST:"identifiers":*>
Coq < with $IDLIST:=($0PER{MYNEIDENTARGLIST} $L).

This rule says to print the string MyIntros and then to print the value of $IDLIST. This variable
is bound to the pattern ($0PER{MYNEIDENTARGLIST} $L). This is an example of printing rule with
bindings, in this case there is only one but there may be an arbitrary list of bindings after the with.

The operator $0PER{<id>} injects a list pattern into patterns. The name of the injection
MYNEIDENTARGLIST, was arbitrarily selected. The following rules indicate how to print an ast with
that structure :

Coq < Syntax tactic my_ne_identarg_list_cons

Coq < ($0PER{MYNEIDENTARGLIST} ($CONS $id $1)) 0

Coq < <$id :"Ident":*> " " <PTAIL:"Tail":x>

Coq < with $TAIL := ($0PER{MYNEIDENTARGLIST} $1).
Coq <

Coq < Syntax tactic my_ne_identarg_list_single

Coq <  ($OPER{MYNEIDENTARGLIST} ($LIST $id)) O

Coq < <$id :"Ident":*>.

The first rule says how to print a non-empty list, while the second one says how to print the list
with exactly one element. Note that the pattern structure of the binding in the first rule ensures
its use in a recursive way.

While the order of grammar productions is not relevant, the order of printing rules is. In
case of two rules whose patterns superpose each other the last rule is always chosen. In the
example, if the last two rules were written in the inverse order the printing will not work, for
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only the rule my_ne_identarg_list_cons would be recursively retrieved and there is no rule for the
empty list. Other possibilities would have been to write a rule for the empty list instead of the
my_ne_identarg_list_single rule.

Coq < Syntax tactic my_ne_identarg_list_nil ($0PER{MYNEIDENTARGLIST} ($LIST)) O.

This rule indicates to do nothing in case of the empty list. In this case there is no superposition
between patterns (no critical pairs) and the order is not relevant.

Example 5 : Defining constants with arbitrary number of arguments

Sometimes the constants we define may have an arbitrary number of arguments, the typical
case are polymorphic functions. Let’s consider for example the composition operator presented in
the documentation of grammars defined by :

Coq < Definition explicit_comp := [A,B,C:Set][f:A->B][g:B->C] [a:A] (g (f a)).
The following rule extend the parser :

Coq < Grammar command command6 :=
Coq <
[command5($cl) "o" command6($c2) 1 -> [$0=<<(explicit_comp ? ? ? $c1 $c2)>>].

Our first idea is to write the printing rule just by ”inverting” the production :

Coq < Syntax constr pp_comp <<(explicit_comp ? 7 7 $f $g)>> 6
Coq < <$f:"Term":L> "o" <$g:"Term":L>.

This rule is not correct : 7 is not allowed as a metavariable identifier for patterns in printing
rules. If we had used the pattern <<(explicit_comp $_ $_ $_ $f $g)>> instead, the rule will be
used only in rare cases : when the values associated to each occurrence of $_ are the same. The
reason is that $_ does not denote an anonymous metavariable.

The process of matching an ast with a pattern tests that all the ast values associated to the
same metavariable in the pattern are the same. There is no syntax for denoting anonymous
metavariables in patterns of printing rules. This means that, for every metavariable occurring
several times in the pattern, this test is done. In particular, for the identifier $_. This is an
important difference between the syntax of patterns in grammar rules and in printing rules. Here
is a correct version of this rule :

Coq < Syntax constr pp_comp <<(explicit_comp $1 $2 $3 $f $g)>> 6
Coq < <$f:"Term":L> "o" <$g:"Term":L>.

Let’s test the printing rule :

Coq < Definition Id := [A:Set][x:Alx.
Coq < Eval (Id nat) o (Id nat).
Coq < Eval ((Id nat)o(Id nat) 0).
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In the first case the rule was used, while in the second one the system failed to match the
pattern of the rule with the ast of ((Id nat)o(Id nat) 0). Internally the ast of this term is the
same as the ast of the application (explicit_comp nat nat nat (Id nat) (Id nat) 0) . When
the system retrieves our rule it tries to match an application of six arguments with an application
of five arguments (the ast of (explicit_comp $1 $2 $3 $f $g)). Then, the matching fails and
the term is printed using the rule for application.

Note that the idea of adding a new rule for explicit_comp for the case of six arguments does
not solve the problem, because of the polymorphism, we can always build a term with one argument
more. The rules for application deal with the problem of having an arbitrary number of arguments
by using list patterns. Let’s see these rules :

Coq < Syntax constr app ($OPER{APPLIST} ($CONS $H $T)) 10

Coq < [<hov 0> <$H:"Function":E> <$P2:"Argument":E> ]
Coq < with $P2:=($0PER{APPTAIL} $T).
Coq <

Coq < Syntax constr apptailcons ($OPER{APPTAIL} ($CONS $H $T)) 10
Coq < [1 1] <$H:"Arg":L> <$TL:"Tail":E> with $TL:=($0PER{APPTAIL} $T).

Coq < Syntax constr apptailnil ($O0PER{APPTAIL} ($LIST)) 10.
The first rule prints the operator of the application, and the second prints the list of arguments.

Then, one solution to our problem is to specialize the first rule of the application to the cases where
the operator is explicit_comp and the list pattern has at least five arguments :

Coq < Syntax constr pp_comp

Coq < ($0PER{APPLIST} ($CONS (CONST {#explicit_comp.cci}) ($CONS $1 ($CONS $2
Coq < ($CONS $3 ($CONS $f ($CONS $g $1))))))) 10

Coq < <$f:"Term":L> "o" <$g:"Term":L> " " <PL:" ":%>

Coq < with $L := ($OPER{APPTAIL} $1).

Now we can see that this rule works for any application of the operator :
Coq < Eval ((Id nat) o (Id nat) 0).
Coq < Eval ((Id nat->nat) o (Id nat->nat) [x:natlx 0).

In the examples presented by now, the rules have no information about how to deal with
indentation, break points and spaces, the printer will write everything in the same line without
spaces. To indicate the concrete layout of the patterns, there’s a simple language of printing
instructions that will be described in the following section.

10.2.2 The printing of terminals

The user is not expected to write the printing rules for terminals, this is done automatically.
Primitive printing is done for :

e arguments of the $PRIM operator. The grammar prim yields ast values that can be decom-
posed by patterns of the form ($PRIM $id) , then the printing of the value associated to $id
is done automatically.

Let’s see for example the rules for MyCd :
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Coq < Grammar vernac vernac :=
Cog < [ "MyCd" prim:string($dir) "." ] -> [$0 = (MYCD $dir)].
If we write the naive rule :

Coq < Syntax vernac mycd (MYCD $dir) O
Coq < "MyCd " <$dir:"string":*>.

It will not work :

Coq < MyCd "dir".

The metavariable $dir is bound to an ast value that should still be destructured by a pattern
having a $PRIM :

Coq < Syntax vernac mycd (MYCD ($PRIM $dir)) O

Coq < "MyCd " <$dir:"string":*>.
Now the result is correct :

Coq < MyCd "dir".
Sometimes printing rules may be different depending whether the terminal has been parsed
by prim:string or prim:ident, etc. For that there is a way to destructure a terminal with

$PRIM specifying the desired injection (or “type”). The possible injections are INT, STRING,
PATH, IDENT or DYN.

In the example of MyCd we would have written the rule with the injection STRING.
Coq < Syntax vernac mycd (MYCD ($PRIM $dir (SOME {STRING}))) O
Coq < "MyCd " <$dir:"string":*>.

e The ast values with pattern structure ($VAR $id).

For example, given the grammar rule :

Coq < Grammar tactic identarg := [ prim:ident($id) ] -> [$0 = ($VAR $id)].

Coq < Grammar tactic simple_tactic :=
Coq < [ "MyIntro" identarg($id)] -> [$0 = (MyIntrosWith $id)].

The following printing rule is correct :

Coq < Syntax tactic myintroswith (MyIntrosWith $id) O
Coq < "Intro " <$id:"identifier":*>.

The system knows how to print an ast value having the structure ($VAR value).
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10.3 Syntax for pretty printing rules

In the following we give the syntax for printing rules. The metalanguage conventions are the same
as those specified for the definition of the Pattern’s syntax in section 10.4.
Printing — Rule ::=
Syntax ident ident DPattern precedence printing order® rec_bindings .

are: precedence == int | [ int int int ]
rec_bindings == € | with binding™
binding = metav := patt

printing_order =

FNL

| string

| [ intint ]

| [ box printing_order* ]

| < metav : string : paren_rel >
box ::= < box_type int >

box_type == hov |hv|v|h
paren_rel = * | L | R

DPattern is almost the same set of patterns defined by Pattern*. The main differences are :

(a) there is no syntax for anonymous metavariables ($_ is just a common identifier).

(b) there is a new kind of pattern that allows to destructure ast the values generated by the
grammars prim. These patterns are of the form :

($PRIM metav )
($PRIM metav (SOME { inj 1}))
where inj may be INT, STRING, PATH, IDENT, DYN.

(c) the operator $APPEND is not available any more.

Note that while patterns in printing rules are destructive, patterns in the bindings of the printing
rules are constructive.

10.3.1 Pretty grammar structures

The basic structure is the printing order sequence. Each order has a printing effect and they are
sequentially executed. The orders can be :

*see the description of Pattern in section 10.4
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— printing orders

— printing boxes

Printing orders

Printing orders can be of the form :
e 'string " prints the string.
e FNL force a new line.

e < $id : comment : paren_rel > at the moment of the printing, $id is bound to an ast value.
The printer looks up the adequate printing rule for that ast value and applies recursively this
method. Recursion of the printing is determined by the pattern’s structure. comment is just
an arbitrary string used for documentation purposes. If ¢ is the ast value associated to $id,
then the meaning of paren_rel is the following :

L if ¢t ’s precedence is less than the rule’s one, then no parentheses
around t are written.

E if ¢ ’s precedence is less or equal than the rule’s one then no parentheses
around t are written.

* never write parentheses around t.

Printing boxes

The concept of formatting boxes is used to describe the concrete layout of patterns : a box may
contain many objects which are orders or subboxes sequences separated by breakpoints; the box
wraps around them an imaginary rectangle.

1. Box types
The type of boxes specifies the way the components of the box will be displayed and may be :

— h: to catenate objects horizontally.

— v : to catenate objects vertically.

— hv : to catenate objects as with an ”h box” but an automatic vertical folding is
applied when the horizontal composition does not fit into the width of the associated
output device.

— hov : to catenate objects horizontally but if the horizontal composition does not
fit, a vertical composition will be applied, trying to catenate horizontally as many
objects as possible.

The type of the box can be followed by a n offset value, which is the offset added to the
current indentation when breaking lines inside the box.
2. Boxes syntax

A box is described by a sequence surrounded by [ ]. The first element of the sequence is the
box type : this type surrounded by the symbols < > is one of the words hov, hv, v, v followed
by an offset. The default offset is 0 and the default box type is h.
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3. Breakpoints

Coq
Coq
Coq

Coq
Coq

Coq

Coq
Coq

Coq

Coq
Coq

Coq

In order to specify where the pretty-printer is allowed to break, one of the following break-
points may be used :

— [0 0] is a simple break-point, if the line is not broken here, no space is included
(?Cut”).

— [1 0] if the line is not broken then a space is printed (”Spc”).

— [i j] if the line is broken, the value j is added to the current indentation for the
following line; otherwise blank spaces are inserted (”Brk”).

Examples : It is interesting to test printing rules on ”small” and ”large” expressions in
order to see how the break of lines and indentation are managed. Let’s define two constants
and make a Print of them to test the rules. Here are some examples of rules for our constant
Xor :

< Definition A := True X True.

< Definition B := True X True X True X True X True X True X True
< X True X True X True X True X True X True.

< Syntax constr Pxor <<(Xor $t1 $t2)>> 6
< <$ti:"term":L> " X " <$t2:"term":E>.

This rule prints everything in the same line exceeding the line’s width.

< Print B.

Let’s add some break-points in order to force the printer to break the line before the operator :
< Syntax comnstr Pxor <<(Xor $t1 $t2)>> 6

< <$ti1:"term":IL> [0 1] " X " <$t2:"term" :E>.

< Print B.

The line was correctly broken but there is no indentation at all. To deal with indentation we
use a printing box :

< Syntax constr Pxor <<(Xor $t1 $t2)>> 6
< [<hov 0> <$ti1:"term":L> [0 1] " X " <$t2:"term":E> ].

With this rule the printing of A is correct, an the printing of B is indented.

< Print B.

If we had chosen the mode v instead of hov :
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Coq < Syntax constr Pxor <<(Xor $t1 $t2)>> 6
Coq < [<v 0> <$ti1:"term":L> [0 1] " X " <$t2:"term":E> ].

We would have obtained a vertical presentation :

Coq < Print A.

The difference between the presentation obtained with the hv and hov type box is not evident
at first glance. Just for clarification purposes let’s compare the result of this silly rule using
an hv and a hov box type :

Coq < Syntax constr Pxor <<(Xor $t1 $t2)>> 6

Coq < [<hv 0> "XXXXXXXXXXXXXXXXX XXX XX XXX XXX XXX XXX XXX XXX XXXXXXXXXXX"
Coq < 0 J 1 "

Coq < [0 0] WZZZZZZZZ7777Z77ZZ" ].

Coq < Print A.

Coq < Syntax constr Pxor <<(Xor $t1 $t2)>> 6

<
Coq < [<hov 0> "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
Coq < [00] M————mmmmmm e "

Coq < [0 01 "227722272777777Z" 1.

Coq < Print A.

In the first case, as the three strings to be printed do not fit in the line’s width, a vertical
presentation is applied. In the second case, a vertical presentation is applied, but as the last
two strings fit in the line’s width, they are printed in the same line.

10.4 Pattern’s syntax

The grammar rules maps an input string into an abstract syntax tree (ast), while the printing,
conversely, maps an output string into an ast. To describe this mapping, both grammar and
printing rules need some syntax to denote an ast. That concrete syntax is what we call Pattern.
The patterns are conceptually divided into two classes : constructive patterns (those that can
be used in parsing rules) and destructive patterns (those that can be used in pretty printing rules).
In the following we give the concrete syntax of patterns and some examples of their usage.
The grammar | Pattern defines the syntax of both constructive and destructive patterns.

fThe metasymbols we will use have the following meaning :

z* : 0 or more occurrences of x.

+

x : 1 or more occurrences of .

81 — Sn @ any of the symbols in the range from s1 to s,.
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Pattern = << metav_command >>
| <:command: < metav_command >>
| <:vernac: < metav_vernac >>
| <:tactic: < metav_tactic >>
| patt

= dent
| token

| { token %
| ( ident patt* )
| [<>] patt

| [ ident 1 patt

token = int | ident | string | path
path == (# ddent )t . univ

metav_command, metav_vernac, metav_tactic, stand, respectively, for the syntax of commands,
vernacular phrases and tactics. The prefix metav is just to emphasize that identifiers beginning
with $ denote metavariables.

int is a sequence of digits, string is any sequence of characters delimited by " " . The set ident
can be defined by the regular expression ¥ :

($ | _ | a—z | A-Z)($| _|a—2z |[A—-Z | 0—-9)*

So, a pattern can be either an identifier, a token, an application or an abstraction (either
binding or non-binding). Identifiers begining with the symbol $ denote metavariables, their value
will be calculated when using the pattern either in the parsing, or in the printing. There are some
identifiers that have a special meaning and should be used in a certain way. The system makes no
control at the moment of the parsing to test that those identifiers are correctly used. In general,
errors are detected at the moment of using the patterns. The following list of special patterns aims
to give an idea of their common usage :

Identifiers can be also any sequence of characters delimited by simple quotes * .
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list_pattern_pat

($VAR metav )

($PRIM metav )

($PRIM metav (SOME { inj })
($0PER{ ident }  list_pattern_patt )
($QUOTE patt )

($SLAML list_pattern_someid patt )

list_pattern_patt ::=
metav
| ($NIL)
| ($LIST patt* )
| ($CONS patt list_pattern_patt )
| ($APPEND list_pattern_patt* )

list_pattern_someid ::=
metav
| ($NIL)
| ($LIST someid* )
| ($CONS someid list_pattern_someid )
| ($APPEND list_pattern_someid* ) someid == metav | (SOME id ) | NONE

inj == INT | STRING | PATH | IDENT | DYN
The operator $APPEND is only for constructive patterns while $PRIM is for destructive ones.

Let’s show the use of some of these patterns, more examples can be found in the sections
describing the grammar and printing.

e $VAR is an injection applied to identifiers parsed by the prim:ident grammar. Generally it
is used to inject identifiers into commands :

Coq < Grammar tactic identarg :=
Coq < [ prim:ident($id) ] -> [$0 = ($VAR $id)].

e The elements of metav are identifiers begining by $, they denote metavariable and will be
bound to an ast value at the moment of the parsing or the printing.

e The operator $CONS builds a list pattern from a pattern and a list pattern. The operator
$LIST builds a list pattern from a possible empty sequence of patterns. The pattern ($LIST)
denotes the empty list as well as ($NIL). $APPEND takes a possible empty sequence of list
patterns and returns a list pattern.

There may be several patterns to denote an ast. For example, to denote a list pattern of
exactly n elements, we can write :
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($CONS $p1 ($CONS $p2 (... ($CONS $pn ($NIL))..))

($CONS $p1 ($CONS $p2 (...($CONS $pn ($LIST))..))
($CONS $p1 ($CONS $p2 (...($CONS $pn-1 ($LIST $pn))..))
($LIST $p1 $p2 ... $pn)

($APPEND ($LIST $p1) ($LIST $p2) ($LIST $p3...$pn))

The production corresponding to a non empty list of indentifiers uses this kind of patterns :

Coq < Grammar tactic ne_identarg_list :=
Cog < [ identarg($id) ne_identarg_list($idl) 1 -> [$0 = ($CONS $id $idl)]
Coq < | [ identarg($id) 1 -> [$0 = ($LIST $id)].

e The operator $0PER allows to inject a list pattern into ast patterns. In the expression ($0PER{
id } ( list_pattern_patt )) the identifier id is the name of the injection and tags the list
pattern.

The tactic Intros takes a list of identifiers as argument, and its parsing rule uses $0PER :

Coq < Grammar tactic simple_tactic :=
Coq < [ "Intros" ne_identarg_list($idl) ] -> [$0 =($0PER{IntrosWith}$idl)].

o [<>]patt and [metav]patt are patterns for abstractions. The former denotes a non-binding
abstraction, and the latter a binding one. The productions corresponding to the non-
dependent product and to the lambda abstraction use these kind of patterns :

Coq < Grammar command command8 :=
Coq < [ command7($cl) "->" command8($c2) 1 -> [$0 = (PROD $ci [<>]1$c2)].

Coq < Grammar command commandO :=
Coq < [ "[" ident($id1) ":" command($c) "]1" command($c2) ]
Coqg < -> [$0 = (LAMBDA $c [$id1]1$c2)].

o ($SLAML 1 body) is used to denote an abstraction where the elements of the list pattern 1
are the variables simultaneously abstracted in body.

The production to recognize a lambda abstraction of the form [z1,...,z, : T|body use the
operator $SLAM :

Coq < Grammar command commandO :=

Cog < [ "[" ident($id1) "," binder($idl) ":" command($c) "]" command($c2) ]
Coq < -> case $idl of

Coq < ($OPER{IDBINDER} $L) —>

Coq < [$0 = (LAMBDALIST $c ($SLAML ($CONS (SOME $id1) $L) $c2))]
Coq < esac.
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10.5 Debugging the printing rules

By now, there is almost no semantic check of printing rules in the system. To find out where the
problem is, there are two possibilities : to analyze the rules looking for the most common errors or
to work in the toplevel tracing the ml code of the printer.

10.5.1 Most common errors

Here are some considerations that may help to get rid of simple errors :
e make sure that the rule you want to use is not defined in previously closed section.

e make sure that all nonterminals of your grammar have their corresponding printing rules.

e make sure that there is no free occurrence of a metavariable in a rule. For example if you
enter this rule in Coq :

Cog < Syntax constr Pxor <<(Xor $ti1 $t2)>> 6
Coq < <$T1:"term":E> " X " <$t2:"term":L>.

$T1 is free but the system accepts this rule without giving any warning. At the moment of
using it, the system raises a message :

Coq < Print A.

o make sure that the set of printing rules for a certain non terminal covers all the space of ast
values for that non terminal.

e the order of the rules is important. If there are two rules whose patterns superpose (they
have common instances) then it is always the last rule that will be retrieved.

e if there are two rules with the same name and universe the last one overrides the first one.
The system always warns you about redefinition of rules.

10.5.2 Tracing the ml code of the printer

Some of the conditions presented above are not easy to verify when dealing with many rules. In
that case tracing the ml code helps to understand what is happening. The printers are in the file
printer.ml in the src directory. There you will find the functions :

— genvernacpr: the printer of the vernacular language
— gencompr : the printer of commands

— gentacpr : the printer of tactics
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These printers are defined in terms of a general printer genprint by instantiating it with the
adequate parameters.

genprint waits for : the precedence of the ast to print, the universe to which this ast belongs
(tactic, constr, vernac), a printer for the tokens, a default printer and the ast to print. genprint
looks up, in the table of rules, the rules that are necessary to print the ast and its subterms.

An ast of a universe may have subterms that belong to another universe. For instance, let
v be the ast of the vernacular expression MyExact 0. The function genvernacpr is called to print
v. This function instantiates the general printer genprint with the universe vernac. Note that v
has a subterm ¢ corresponding to the ast of 0 (¢ belongs to the universe constr). genprint will
try recursively to print all subterms of v as belonging to the same universe of v. If this is not
possible, because the subterm belongs to another universe, then the default printer that was given
as argument to genprint is applied. The default printer is responsible for changing the universe in
a proper way calling the suitable printer for c.

Technical Remark. In the file PPVernac.v and PPTactic.v, there are some rules that do not
arise from the inversion of a parsing rule. They are strongly related to the way the printing is
implemented.

Coq < Syntax vernac constr (COMMAND $c) 8
Coq < <$C:"Command" :E> with $C:=(PPUNI$COMMAND $c).

Coq < Syntax vernac tactic (TACTIC $t) 100
Coq < <$T:"Tactic":E> with $T:=(PPUNI$TACTIC $t).

As an ast of vernac may have subterms that are commands or tactics these rules allow the printer
of vernac to change the universe. The PPUNI$COMMAND and PPUNIS$TACTIC are special identifiers
used for this purpose. They are used in the code of the default printer that genvernacpr gives to
genprint.

The following rule is the analogue rule one for the universe of tactics.

Coq < Syntax tactic command (COMMAND $c) 8
Coq < <$C:"Command" :E> with $C:=(PPUNI$COMMAND $c).
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Chapter 11

Writing tactics in Coq

Introduction

This chapter concerns advanced users who want to write an implementation in the Coq system. We
do not intend to present the internal machinery of the whole system but we want to give here the
basic notions of tactic writing. We will illustrate these notions with a very simple tactic — called
Mytactic — which instantiates a universal hypothesis.

Our aim is to show that tactic writing is a “high level job” which does not presuppose a
knowledge of the whole system, and certainly not a hard task left to some “wizards”. Consequently,
we will not detail the structure of the different types, which will be tedious, but we will just give
their location and their meaning. We will notice that abstraction generally allows us to ignore these
definitions.

Situation. We will suppose the reader to be familiar with the use of Coq and Caml Light. In the
following, let COQTOP be the directory in which Coq is installed. Files names will be given relatively
to this directory.

The main directories in COQTOP are the following :

src Coq sources, shared among subdirectories meta, constr, proofs, env,
tactics and link.

src/lib Some Caml Light utilities.

src/syntax The initial syntax of Coq.

tactics Sources and vernacular entries of some tactics, like Tauto, ProPre or
Program.
theories The Coq files. The basic files of the system are in theories/INIT.

MYTACTIC The directory in which we are going to write our tactic.
A very simple example. Let us start with a very simple tactic. Suppose we want to create a

new tactic that is an abbreviation for the command Contradiction Orelse Auto. We can do it
only with syntactic commands :

Coq < Grammar tactic simple_tactic :=
Coq < [ "Autoplus" ] -> [$0 = <:tactic:<Contradiction Orelse Auto >>].
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Coq < Syntax tactic Autoplus_rule <:tactic:<Autoplus>> 0 "Autoplus".

See sections related to Grammar and Syntax to understand the syntax of these commands. Just
notice that we used the non-terminal simple tactic (and not the vernac one for example) so
Autoplus is a tactic and not a vernac command. As a consequence, Autoplus can be used inside
tacticals like Try, Orelse,... Let us use our new tactic on an example :

Coq < Lemma foo : (A:Prop)False->A.
Coq < Autoplus.

Coq < Save.

Notice also that without the Syntax command, the tactic Autoplus would be printed as Contra-
diction Orelse Auto instead of Autoplus (during the printing of proof scripts or error messages).

Of course, from the moment we want to write more complex tactics (dealing with the structure of
terms, looking in the environment, performing reductions,. .. ) we need to write them in Caml Light
and to add them into the system. In the following we explain all the steps of such a development.

Section 11.1 describes the representation of terms and basic operations on these terms (sub-
stitution, application, reduction, ...). Section 11.2 introduces the notion of tactic and gives tools
to handle terms inside a tactic. In section 11.3 we show how to register a tactic (addition in the
table of tactics, grammar’s entry and pretty printing). Then we give a complete example in the
section 11.4 (Caml Light code, registration and use). The last section describes some tools for
debugging tactics.

11.1 Terms

11.1.1 Representation

The type constr of the terms of Calculus of Constructions is defined in src/meta/generic.mli
and src/constr/term.mli.

First, a generic type term for terms is defined in src/meta/generic.mli, abstracted over the
type oper of operators. There are four main constructors for terms :

e VAR ud, a reference to a global variable of name 1d;

e Rel n, a variable in the de Bruijn notation;

e DLAM ¢, a de Bruijn binder on the term ¢

e DOPN (op args), the application of the operator op to the arguments args.
For reasons of efficiency, some of these constructors are duplicated :

e DOPO for operators of arity 0, DOP1 for those of arity 1, DOP2 for those of arity 2. DOPL is
used to give arguments as a list instead of a vector (since all uses of DOPL fall into one of
the previous categories, DOPL is not used in the core system. It is left for those who wish to
experiment with the system).

e DLAMV for de Bruijn binder on many terms.
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It leads to the following type :

type ’oper term =

DOPO of ’oper (* atomic terms *)
| DOP1 of ’oper * ’oper term (* operator of arity 1 *)
| DOP2 of ’oper * ’oper term * ’oper term (* operator of arity 2 *)
| DOPN of ’oper * ’oper term vect (*x operator + arguments’ vector *)
| DOPL of ’oper * ’oper term list (* operator + arguments’ list *)
| DLAM of name * ’oper term (* de Bruijn binder on one termx)
| DLAMV of name * ’oper term vect (* de Bruijn binder on many terms*)
| VAR of identifier (* named variable *)
| Rel of int (x variable as de Bruijn index *)

In the binders the name is either Name id, where id is an identifier, or Anonymous, and is just kept for

pretty printing. The type of identifiers is an abstract type identifier (see src/meta/names.ml).
The functions

value id_of_string : string —> identifier;;
value string_of_id : identifier -> string;;

realize the conversion between the types identifier and string.
Then, the type oper of the operators of the Calculus of Constructions is defined in src/constr/-
term.mli. The main constructors are :

type ’a oper =

Sort of ’a (* sorts (DOPO) *)
| Prod (* product (DOP2) *)
| Lambda (*x abstraction (DOP2) x*)
| AppL (*x application (DOPN) x*)
| Const of section_path  (* constants (DOPN) =*)
| Cast (* cast (DOP2) *)
|

’a is the type of sorts. The sorts are here {Prop, Set, Type, Typeset}. Prop and Type are sorts
for logical propositions, and Set and Typeset for propositions with an informative content (speci-
fications). The sorts Type and Typeset contain an universes hierarchy implicitly managed by the
system. The corresponding type is :

type contents = Pos | Null;;
type sorts =
Prop of contents
| Type of contents * impuniv__universe;;

with the four possibilities :

Prop Null Prop

Prop Pos Set
Type Null,_| Type
Type Pos,_ | Typeset
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At last, the type constr for the terms of the Calculus of Constructions is just :
type constr == sorts oper term;;

The syntax of the operators is the following :

Prop DOPO (Sort (Prop Null))
Set DOPO (Sort (Prop Pos))
Az : A.B DOP2 (Lambda, A, DLAM(Name x, B))
(z: A)B DOP2 (Prod, A, DLAM(Name z, B))
(fz1 ... zy) DOPN (AppL, [I f; x1;...5 o 11)

Notice that AppL is always done via DOPN, even if the application is only binary (so (M N) is
represented by DOPN(AppL, [IM;N[])).

Examples.

e [z : Set]z is represented as
DOP2 (Lambda, DOPO (Sort (Prop Pos)), DLAM (Name #x, Rel 1))
e [P :Set — Prop|(x : Set)(Px) is represented as

DOP2 (Lambda, DOP2 (Prod, DOPO (Sort (Prop Pos)),
DLAM (Anonymous, DOPO (Sort (Prop Null)))),
DLAM (Name #P, DOP2 (Prod, DOPO (Sort (Prop Pos)),
DLAM (Name #x, DOPN (AppL, [IRel 2; Rel 111)))))

Constants. The case of constants is more complicated. The constants are stored into a table
and referred to with a section-path. The section-path is a global name system to refer to any object
without ambiguity. It can be seen as a filename, in which the sections are the directories. The type
of section-paths is section path (defined in src/meta/names.ml). It’s a record of a “directory”
(the list of the crossed sections), a “basename” (the identifier for the object) and a “kind” (CCI for
the terms of the Calculus of Constructions, FW for the the terms of F,, and 0BJ for other objects).
Here is such a path (pretty printed with string of path) :

#foo#tbar#hat #constantname .cci
R, LA €. L

dir;ath basename  kind
and it could correspond to a definition of the form :

Section foo.
Section bar.
Section hat.
Definition constantname := ...
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Once you close a section, say hat here, the discharge mechanism creates a new constant with an
updated section-path (and keeps the old one in the closed section, so it is now unreachable). In
our example, the new section-path for the constant constantname becomes :

#foottbar#constantname.cci

The other part of a constant term is the environment of its definition. For instance, in the following
definition :

Coq < Section foo.
Coq < Variable A:Prop.
Cog < Definition f := [x:Prop->Prop](x A).

the constant f depends on the variable A and this information is kept (when closing the section
foo, we have to remember that £ depends on A, and to do the corresponding abstraction). So a
constant is a term of the form :

DOPN ( Comst(sp) , 1)

where sp is the section-path and 1 is the piece of the current environment needed for the definition
of the constant. In our previous example, the corresponding term is :

DOPN ( Const #foo#f.cci , [| VAR #A |] )
and after having closed the section foo, it would become :
DOPN ( Const #f.cci , [l 1)

f being now equal to [A:Prop] [x:Prop->Prop] (x A).
You can access the value or the type of a constant through the functions :

value const_value : readable_constraints -> constr -> constr;;
value const_type : readable_constraints -> constr -> constr;;

where the first argument is the context of existential variables (associated to proof trees) and the
second one a term of the form DOP2(Const _,_) (otherwise you get an exception Match failure).
The empty context for existential variables is mt_evc (src/proofs/proof.ml). Remember that
constants are separated between transparent and opaque constants. Trying to get the value of an
opaque constant would raise the exception Failure "opaque".

Casts. One particular operator is the Cast operator. To “cast” a term means to give explicitly
its type, as an information. So, the corresponding term is :

DOP2( Cast , ¢ , T )
where c is a term and T its type. Notice that :

e The pretty-printer always ignores casts, but that is changeable by setting the boolean reference
printer__print_casts to true.

e Any cast in a term is verified by the type-checker, so they can be used to add information
about the term which the system could infer, but which the programmer wants to declare.
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Other operators. There are also other operators, for inductive types (MutInd and MutCons-
truct), for meta-variables (Meta), fix-points operators (Fix), ... We won’t give details on those
operators, which may differ with versions of the system, but their meaning (and sometimes their
use) are not really difficult to understand.

11.1.2 Basic operations on terms

Basic operations are in src/meta/generic.ml: lifting, substitution, occurrences, free variables,
application, .... The main ones are :

value substl : ’a term -> ’a term -> ’a term.
(substl M c) substitutes M for Rel(1) in c.

value occur_var : identifier -> ’a term —-> bool.
Returns true if the corresponding variable appears in the term.

value eq_term : ’a term -> ’a term -> bool.
a-equality for terms (this function ignores print names, casts and the iteration of applications,
that is (M N 0) == ((M N) 0) where the parentheses specify the DOPN’s).

value dependent : ’a term -> ’a term -> bool.
Returns true if the first term is a subterm of the second (for eq_term).

value subst_var : identifier -> ’a term -> ’a term.
(subst_var id c) substitutes the corresponding de Bruijn index to every occurrence of
VAR(id) in c.

value SAPP : ’a term -> ’a term -> ’a term.
(SAPP M N) applies M to N, assuming that M is of the form DLAM(n,Q).

Operations on CC’s terms lie in src/constr/term.ml. Some of them are:

value strip_outer_cast : constr -> constr.
Removes the outer casts (don’t forget to do it before doing matching on terms).

value applist : constr * constr list -> constr.
Returns the application of the first component to the second.

value produit : identifier -> constr -> constr -> constr.
(produit id T c¢) returns the product (id : T')c.

value lambda : identifier -> constr -> constr —> constr.
(lambda id T c) returns the abstraction Aid : T.c.

value eq_constr : constr * constr -> bool.
a-conversion (ignores print names and casts).

value subst_term : constr -> constr -> constr.
subst_term un-substitutes, that is if (subst_term c t)—M, then M[t/1]—c. subst_term
uses eq_term to find copies of t in c.
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Reduction functions lie in src/proofs/reduction.ml and are of type :
type reduction function == constr -> constr

They generally compute weak head normal form, that is they stop on abstractions, products,
constants and sorts. Reduction is performed under casts, and head casts are removed (reduction
called cast). Iterations of applications are reduced like this :

(M N) L1 ... Ln) — (M N L1 ... Ln)

(reduction called app). All the standard reduction functions performs the reductions cast and app.
The reduction function whd_castapp performs only these two reductions.
The main reduction and conversion functions are the following :

value whd_beta : reduction_function.
(B-reduction.

value whd_betaiota : reduction_function.
Bi-reduction.

value strong : reduction_function -> reduction_function.
Takes a reduction function and returns the associated recursive reduction function.

value under_casts : reduction function -> reduction function.
Takes a reduction function and returns the same one, but performing under outer casts.
under_casts preserves the outermost casts; otherwise all the other reduction functions will
erase outermost casts.

value conv : readable constraints -> constr -> constr -> bool.
Equality of terms with universe adjustment.

value conv.x : readable constraints —-> constr -> constr —-> bool.
Equality of terms without universe adjustment.

11.2 Writing your own tactics

11.2.1 What is a tactic ?
In Coq a tactic is a function of type :
type tactic == goal sigma -> (goal list sigma * validation)

That is, a tactic takes a goal g (an object of type goal sigma) and returns the list (possibly empty)
of the generated subgoals g1, ..., g, together with a validation v. This validation has type :

type validation == (proof list -> proof)
and has the following interpretation : given a list of proofs my, ..., m,, where m; is a proof of g;, v
applied to 71,..., 7, returns a proof of g. Here proofs can be incomplete proofs; but if 71,..., 7,

are complete proofs then the validation applied to those proofs returns a complete proof of g.
Assume that gls is the current goal (of type goal sigma). This goal is essentially :

135



e ¢ conclusion, a term a type constr, obtained with (pf_concl gls);

o q local context of hypothesis, of type constr signature. It is exactly the context printed by
the Show command. Is is obtained with (pf_hyps gls).

About signatures. The type signature is a generic type for environments with global names :
type ’a signature == identifier list * ’a list

The first list contains the names, and the second one their corresponding objects — we assume
here that the two lists have the same length — which are referred to with global names, using the
VAR constructor. All the necessary functions to deal with signatures are in src/meta/names.ml
(add_sign, lookup_sign,... ).

For instance, if you enter at the Coq top-level Lemma foo : (A:Prop)A->A. then Intros.
the current goal is now :

Coq < Intros.
and its signature is :

[ #H ; #A ],
[ DOP2 (Cast, VAR #A, DOPO (Sort (Prop Null))) ,
DOP2 (Cast, DOPO (Sort (Prop Null)),
DOPO (Sort (Type (Null, ...)))) ]

which can be seen, after removing the casts, as :

A | Prop
H | VAR A

The function initial sign (in src/constr/vartab.ml) returns the signature of current global
variables.
There is a second kind of signature using de Bruiyn indexes instead of global names :

type ’a db_signature == (name * ’a) list

where an object of type name is either (Name id) or Anonymous.
These two signatures are mixed together in the type env of environments :

type (’a,’b) env = ENVIRON of ’a signature * ’b db_signature

which is just a couple of a signature and a de Bruijn signature. All the functions on environments
are in src/meta/names.ml (add _glob, add_rel, lookup_glob, lookup rel,...). To use functions
over environments on signatures, just transform your signature in an environment with the GLOB
function (which has type ’b signature -> (’b,’a) env). For instance, you will usually look for
a variable of name id with :

(global (GLOB(initial_sign())) id)
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11.2.2 Basic tactics and tacticals

There are numerous tactics in the system, in particular those of the top-level. Most of them lie in
src/env/tactics.ml, and we give here some of them ::

value intro : tactic.
The introduction tactic. (There is also intros.)

value intro_using : identifier -> tactic.
Introduction with explicit name. (See also intros with and intros until.)

value red : tactic.
The Red tactic. (See also red hyp.)

value cut_tac : constr -> tactic.
The Cut tactic.

value exact : constr -> tactic.
The Exact tactic.

There are also functions to compose tactics — the so-called tacticals — in order to build more
complex tactics from elementary ones. These tacticals are defined in src/proofs/refiner.ml :

value IDTAC : tactic.
The identity tactic (just does nothing).

value ORELSE : tactic -> tactic -> tactic.
Tries the first tactic and, in case of failure, applies the second one.

value THEN : tactic -> tactic -> tactic.
Applies the first tactic, then the second one to each generated subgoal.

value THENS : tactic -> tactic list -> tactic.
Applies a tactic, and then applies each tactic of the tactic list to the corresponding generated
subgoal.

value THENL : tactic -> tactic -> tactic.
Applies the first tactic, and then applies the second one to the last generated subgoal.

value REPEAT : tactic —-> tactic.
Applies the tactic until it fails (The tactic is applied to the goal, and then to every produced
goal, and so on.)

value FIRST : tactic list -> tactic.
Tries the tactics one by one until one succeeds.

value TRY : tactic -> tactic.
Tries the tactic and, in case of failure, applies the IDTAC tactic to the original goal.

value DO : int -> tactic -> tactic.
Applies the tactic a given number of times.

value FAILTAC : tactic.
The failing tactic. It raises a UserError exception.
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11.2.3 Handling terms inside a tactic

Inside a tactic, that is with a variable gls of type goal sigma, the system provides functions to
handle terms in the context of the corresponding proof. Here are some of them :

value pf_concl : goal sigma —-> constr.
Returns the conclusion of the goal.

value pf hyps : goal sigma —-> constr signature.
Returns the local context of the goal.

value pf_global : goal sigma —> identifier -> comstr.
Returns the corresponding term to an identifier, looking first in the context of the goal, then
in the global context.

value pf_type_of : goal sigma -> constr -> constr.
Checks if the term is well-typed in the current context and, if so, returns its type.

value pf nf : goal sigma -> constr -> constr.
Returns the normal form of the term.

As a general rule, a function taking a goal (of type goal sigma) as argument has a name of the
form pf_function-name. All these functions are in src/proofs/tacmach.ml.

We can also do more complex manipulations on terms. Suppose we want to know is a term t
is a conjunction. One can write :

let is_conj t =
let sp = path_of_string "#Prelude#and.cci" in
match whd_betaiota t with
DOPN(AppL , [| DOPN(Ind sp’,[I11) ; _ ; _ |11) -> sp=sp’
| _ -> false

3

but this is a bit complicated.

That’s the reason why the system provides a better way to handle terms. The idea is to define
patterns to do pattern matching and destructuring on terms.

To define these patterns we first indicate which modules have to be loaded. For example, in our
case, the Basis.v module :

let mmk = make_module_marker ["#Basis.obj"];;

then we define the patterns as terms with “holes” (indicated by 7). For example, the pattern for
conjunction is defined as :

let and_pattern = put_pat mmk "(and 7 ?)";;

If we want now to test if a term t is a conjunction and, in this case, to get the two sides of this
conjunction, we will typically write :

138



if matches gls t and_pattern then
let [A;B] = dest_match gls t and_pattern
in ...

where gls is the current goal. These functions are defined in files src/tactics/pattern.ml and
src/tactics/tacticsl.ml.

There also exist similar functions to do second-order matching, in sopattern.ml, somatch.ml
and tacticsl.ml (in the directory src/tactics). Second-order matching means you can give a
pattern like :

"(x,y:?)(and (?)@[x] (?)e[yl)"

which means that we want A, Az.P and A\y.Q if we match the expression (x,y:A)(and P @),
where P is an expression containing = but not y, and @ is containing y but not . The corresponding
functions are somatches and dest_somatch. An exception may be raised by dest_somatch if the
expression does not match the pattern, is malformed or if the pattern contains unknown global
variables .

11.3 Tactic registration

Once the tactic is written, we have to turn it operational. Two operations are necessary :

o We need to register the tactic in the tactics table, so as to make it known by the system:;

e We need to define the grammar’s and syntaz’s rule(s) for the tactic.

11.3.1 Adding the tactic in the tactics table

This first operation just follows the code which defines the tactic, and use the function register -
tactic (defined in src/proofs/refiner.ml). The type of this function is :

value register_tactic : string
-> (tactic_arg list -> tactic)
-> (readable_constraints -> goal -> tactic_expression -> st_ppcmds)
-> (tactic_arg list -> tactic);;

The first argument is the name with which the tactic is registered. The second is the function
which associate to the arguments the corresponding tactic. The type tactic_arg is the type of
tactic arguments, defined in src/proofs/proof trees.mli :

type tactic_arg =
COMMAND of ast
| CONSTR of constr
| IDENTIFIER of identifier
| INTEGER of int
| BINDING of BindOcc * ast
| PATTERN of int list * ast

139



| UNFOLD of int list * identifier
| QUOTED_STRING of string
| TACEXP of ast

The third argument defines a pretty printing for the tactic. This pretty printer is used to print the
script of the proof, for example just after the Save command.
register_tactic returns the function which associate the tactic to the arguments (that’s not
the second argument, because we now use the name with which the tactic is registered and not the
function defining it). In general, we ignore this result.
For instance, the intros_with tactic, which corresponds to the top-level command Intros H1
Hn, is registered in this way :

let vernac_intros_with =
let gentac =
register_tactic "IntrosWith"
(fun al -> intros_with (map (fun (IDENTIFIER id) -> id) al))
(fun _ _ (_,al) ->
[< ’S"Intros" ; ’SPC ;
prlist_with_sep (fun () -> [< ’SPC >])
(fun (IDENTIFIER id) -> print_id id)
al >])
in fun ids -> gentac (map (fun id -> IDENTIFIER id) ids)

.
1

However, there are also registration functions adapted to particular syntaxes. They are defined in
src/env/tacmach.ml, and their types are explicit enough :

value register_atomic_tactic : string -> tactic -> tactic.
Register an atomic tactic (a tactic without argument).

value register_comarg tactic : string -> (command -> tactic)
-> (command -> tactic).
Register a tactic which takes a command.

value register numarg tactic : string -> (int -> tactic)
-> (int -> tactic).
Register a tactic which takes a integer.

value register_ident_tactic : string -> (identifier -> tactic)
-> (identifier -> tactic).
Register a tactic which takes an identifier.

value register_string tactic : string -> (string -> tactic)
-> (string -> tactic).
Register a tactic which takes a string.

One can look into src/env/tacentries.ml to see how the different Coq top-level tactics are reg-
istered.
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Remark. With register_tactic it’s impossible to register two tactics with the same name, so
it’s impossible to register a tactic twice, when re-loading ML files. For that purpose one must use
overwriting register_tactic, and the corresponding functions overwriting ... for particular
cases. Of course, these functions are for debugging purposes only.

11.3.2 Adding grammar’s and syntax’s entries
The next operation is the creation of a Coq file in which :

e we declare the Caml Light modules needed by the tactic;
e we define the grammar’s rule(s) for the tactic;

e we define the syntax’s rule(s) for pretty printing.

The syntax is the following :

Declare ML Module "fileA" "fileB" ... "fileZ".

Grammar tactic simple_tactic :=
[ "tactic_name" ... ] -> ...

Syntax tactic rule_name (tactic_function ...) O
"tactic_name"

fileA.ml,..., fileZ.ml stand here for the Caml Light modules that must be loaded (given in the
right order).

The syntax for Grammar and Syntax is given in other sections. For an atomic tactic, we will
write :

Grammar tactic simple_tactic :=
[ "tactic_name" ] -> [ $0 = (tactic_function) ].
Syntax tactic Tactic_name (tactic_function) 0
"tactic_name".
and for a tactic which takes an integer as argument, we will write :
Grammar tactic simple_tactic :=

[ "tactic_name" numarg($n) ] -> [ $0 = (tactic_function $n) ].

Syntax tactic Tactic_name (tactic_function ($PRIM $n)) O
"tactic_name" <$n:"Int":*>.

11.4 A complete example

We are now in position to give a complete example. Let us write a tactic, called Mytactic, which
takes the name of an hypothesis, say H, and a term, say t, and instantiates H with t if H is a
universal hypothesis.

It means that we have a goal of the form
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H: (x:T)P

g

and we want to replace it by the following one :

I:I. P[t/x]

11.4.1 The Caml Light part
The tactic function

Our tactic takes two arguments : the name of one hypothesis, of type identifier and a term, of
type command. So, it will be of the form :

let mytactic id c gls =

where gls has type goal sigma.

The first thing to do is to get the hypothesis corresponding to id in the proof signature, with
lookup_sign. If id is not an hypothesis, lookup_sign raises Not_found and we send an error
message to the user :

let tid = try snd (lookup_sign id (pf_hyps gls))
with Not_found -> error "No such hypothesis"
in ...

Next, we want to check if id is an universal hypothesis. For this purpose we can write a general
function is_universal of type goal sigma -> constr -> bool which returns true if and only if
its second argument is a universal quantification (inside a goal given as first argument). We can
write it as :

let is_universal gls T =
match whd_betadeltaiota (Project gls) T with
DOP2(Prod,_,DLAM(_,B)) -> dependent (Rel 1) B
| _ -> false

3

Notice that we perform a reduction on T before looking at its form. We can now check if tid is a
universal quantification and send, if necessary, the good error message :
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if not(is_universal tid) then
error ((string of_id id) = " is not a universal hypothesis")
else ...

We know now that id is an hypothesis of the form (x:A)P. We must check that c is a term a type A
to do the substitution of x by ¢ in P. It means that we check if A and the type of ¢ are convertible :

let (DOP2(Prod,A,(DLAM _ as B))) = whd_betadeltaiota (Project gls) tid in
let t = (pf_constr_of_com gls c) in
if not(pf_conv_x gls A (pf_type_of gls t)) then
error "Illegal application"
else ...

At last, we write the tactic part. It’s just a cut of P[c/x] followed by, for the first subgoal, an
introduction of the new hypothesis (we must before clear the old one), and for the second one, an
application of the exact tactic :

( (cut_tac (SAPP B t))
THENS [(clear_hyp [id]) THEN (introduction id) ;
exact (applist(VAR id,[t])) 1 ) gls

The tactic registration

We can now register the tactic, with register_tactic. Remember that the two arguments are an
identifier and a command :

let mytactic_tac = register_tactic "mytactic"
(fun [IDENTIFIER id; COMMAND c] -> mytactic id c)
(fun sigma goal (_,[IDENTIFIER id; COMMAND c]) ->
[< ’S"Mytactic" ; ’SPC ; print_id id ; ’SPC ;
’S"with" ; pr_com sigma goal c >])

The Caml Light file mytactic.ml

Ckxokx mytactic. . mL sokskokskokkokokokokskokkokkokkokokokokokok ok dokokok ok ok ok Kok ok ok ok ok Kok Kok ok )
#open "std";;

#open "PP";;

#open "stdpp";;

#open '"names";;

#open '"generic";;

#open "term";;

#open "reduction";;

#open "proof_trees";;
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#open "tacmach";;
#open "tactics'";;
#infix "THENS";;
#infix "THEN";;

let is_universal gls T =
match whd_betadeltaiota (Project gls) T with
DOP2(Prod,_,DLAM(_,B)) -> dependent (Rel 1) B
| _ —> false

1)

let mytactic id c gls =
let tid = try snd (lookup_sign id (pf_hyps gls))
with Not_found -> error "No such hypothesis"
in if not(is_universal gls tid) then
error ((string_of_id id) ~ " is not a universal hypothesis")
else
let (DOP2(Prod,A,(DLAM _ as B))) = whd_betadeltaiota (Project gls) tid in
let t = (pf_constr_of_com gls c) in
if not(pf_conv_x gls A (pf_type_of gls t)) then
error "Illegal application"
else ( (cut_tac (SAPP B t))
THENS [(clear_hyp [id]) THEN (introduction id) ;
exact (applist(VAR id,[t])) ] ) gls

)

let mytactic_tac = register_tactic "mytactic"
(fun [IDENTIFIER id; COMMAND c] -> mytactic id c¢)
(fun sigma goal (_,[IDENTIFIER id; COMMAND c]) ->
[< ’S"Mytactic" ; ’SPC ; print_id id ; ’SPC ;
’S"with" ; pr_com sigma goal c >])

(********************************************************************)

11.4.2 The Coq file Mytactic.v

In Mytactic.v, we declare the file mytactic.ml and we give the grammar and syntax rules for our

tactic :

(rokx Mytactic. v skkkskskokskokskokskokskokskokokokskokkokkokokokkkokokokokok sk kokok s kok ok ok kok sk ok ok kokok ok )
Declare ML Module "mytactic".

Grammar tactic simple_tactic :=

[ "Mytactic" identarg($id) "with" comarg($c) ]
-> [$0 = (mytactic $id $c) 1.
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Syntax tactic mytactic (mytactic $id $c) O
"Mytactic " <$id:"namehyp":*> " with " <$c:"Command":*>.
(ki sk ok sk o ok o ok ok o ok ok o sk ok o sk K ok o ok o ok o K ok o sk ok ok o 3K ok ok o ok ok o ok o K ok o K o ok o 3 ok K ok ok ok ok ok )

11.4.3 Compiling

In order to compile both mytactic.ml and Mytactic.v, let us write a Makefile in MYTACTIC to
do the job :

### Makefile ######H##HFHH#HHEHERFRFRFHFEHEHEHEHEHEHEHEHER SRR R SRR AR
COQTOP=... # put here the right directory
ARCH=... # put here the right architecture
ZLIBS= -I $(COQTOP)/src/lib/stream-pp -I $(COQTOP)/src/lib/util \
-1 $(COQTOP)/src/meta -I $(COQTOP)/src/constr \
-I $(COQTOP)/src/proofs -I $(COQTOP)/src/env \
-1 $(COQTOP)/src/tactics -I $(COQTOP)/src/link

all: mytactic.zo Mytactic.vo

Mytactic.vo: Mytactic.v mytactic.zo
$(COQTOP) /bin/$ (ARCH) /cogc Mytactic

mytactic.zo: mytactic.ml
camlc $(ZLIBS) -c mytactic.ml
B T

11.4.4 Use of the tactic

Once the compiling is done, we can use the tactic in a Coq session.

% coqtop -I MYTACTIC
Welcome to Coq V5.10 - ...

Coq <
We import the file Mytactic.v with the command :

Coq < Require Mytactic.
[Reinterning specification Mytactic ...done]
[Loading ML file mytactic ...donel

Coq <
The tactic is now known, and we can use it :

Coq < Variable P:nat -> Prop.
P is assumed
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Coq < Lemma easy : ((x:mat) (P x)) -> (P (S (S 0))).
1 subgoal

((x:nat)(P x))->(P (S (s 0)))

easy < Intro.
1 subgoal

H : (x:nat) (P x)

(P (s (s D))

easy < Mytactic H with (S (S 0)).
1 subgoal

H: (P (s (s 0))

(P (s (s D))

11.5 Some tools

11.5.1 Debugger

For the moment, we don’t have good debugging tools. Actually, we have just the trace mechanism,
with trace and untrace.
We can leave the Coq top-level with the command Drop :

Coq < Drop.
#

and we are now in the Caml Light top-level.
In order to open the main modules and to define pretty printers for most types, just include
the file tactics/include.ml:

include "include";;

We come back to the Coq top-level with the command :
goQ;;

11.5.2 Other tools

Other tools to simplify tactics writing (automatic computation of files dependencies, creation of a
Makefile, ...) are described in chapter 14.
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Chapter 12

The Program Tactic

The facilities described in this chapter pertain to a special aspect of the Coq system: how to asso-
ciate to a functional program, whose specifications are written in Gallina, a proof of its correctness.

This methodology is based on the Curry-Howard isomorphism between functional programs
and constructive proofs. This isomorphism allows the synthesis of a functional program from the
constructive part of its proof of correctness. That is, it is possible to analyze a Coq proof, to
erase all its non-informative parts (roughly speaking, removing the parts pertaining to sort Prop,
considered as comments, to keep only the parts pertaining to sort Set).

This realizability interpretation was defined by Christine Paulin-Mohring in her PhD disserta-
tion, and implemented as a program extraction facility in previous versions of Coq by Benjamin
Werner. However, the corresponding certified program development methodology was very awk-
ward: the user had to understand very precisely the extraction mechanism in order to guide the
proof construction towards the desired algorithm. The facilities described in this chapter attempt
to do the reverse: i.e. to try and generate the proof of correctness from the program itself, given as
argument to a specialized tactic. This work is based on the PhD dissertation of Catherine Parent
[61].

12.1 Developing certified programs: Motivations

We want to develop certified programs automatically proved by the system. That is to say, instead of
giving a specification, an interactive proof and then extracting a program, the user gives the program
he wants to prove and the corresponding specification. Using this information, an automatic proof
is developed which solves the “informative” goals without the help of the user. When the proof is
finished, the extracted program is guaranteed to be correct and corresponds to the one given by the
user. The tactic uses the fact that the extracted program is a skeleton of its corresponding proof.

12.2 Syntax for tactics
The user has to give two things : the specification (given as usual by a goal) and the program (see
section 12.3). Then, this program is associated to the current goal (to know which specification it

corresponds to) and the user can use different tactics to develop an automatic proof.
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12.2.1 Realizer

First, the program is associated to the current goal by using the Realizer command. With this
command, the program has to be given with the syntax indicated in section 12.3 and it is associated
to the current goal.

12.2.2 Show Program

The command Show Program shows the program associated to the current goal. Show Program n
shows the program associated to the nth subgoal.

12.2.3 Program

Then, an automatic process may be started. A program is associated to a goal by the user (for
the initial goal) and by the tactic Program itself (for the subgoals). If no program is associated
to the current goal, the Program tactic fails. This tactic generates a sequence of Intro, Apply or
Elim tactics depending on the syntax of the program. For instance, if the program starts with a
A-abstraction, the Intro tactic is generated several times depending on the goal.

The Program tactic generates a list of subgoals which can be either logical or informative.
Subprograms are associated to the informative subgoals.

12.2.4 Program_all

The Program_all tactic is equivalent to the following tactic : Repeat (Program OrElse Auto).
It repeats the Program tactic on every informative subgoal and tries the Auto tactic on the logical
subgoals. Note that the work of the Program tactic is considered to be finished when all the
informative subgoals have been solved. This implies that logical lemmas can stay at the end of the
automatic proof which have to be solved by the user.

12.2.5 Program_Expand

The Program_Expand tactic transforms the current program into the same program with the head
constant expanded. This tactic particularly allows the user to force a program to be reduced before
each application of the Program tactic.

12.3 Syntax for programs

12.3.1 Pure programs

The language to express programs is called Real*. Programs are explicitly typed! like terms ex-
tracted from proofs. Some extra expressions have been added to have a simpler syntax.

This is the raw form of what we call pure programs. But, in fact, it appeared that this simple
type of programs is not sufficient. Indeed, all the logical part useful for the proof is not contained
in these programs. That is why annotated programs are introduced.

*Tt corresponds to F, plus inductive definitions
fThis information is not strictly needed but was useful for type checking in a first experiment.
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12.3.2 Annotated programs

The notion of annotation introduces in a program a logical assertion that will be used for the
proof. The aim of the Program tactic is to start from a specification and a program and to generate
subgoals either logical or associated with programs. However, to find the good specification for
subprograms is not at all trivial in general. For instance, if we have to find an invariant for a loop,
or a well founded order in a recursive call.

So, annotations add in a program the logical part which is needed for the proof and which
cannot be automatically retrieved. This allows the system to do proofs it could not do otherwise.

For this, a particular syntax is needed which is the following : since they are specifications,
annotations follow the same internal syntax as Coq terms. We indicate they are annotations by
putting them between { and } and preceding them with :: ::. Since annotations are Coq terms,
they can involve abstractions over logical propositions that have to be declared. Annotated-A have
to be written between [{ and }]. Annotated-A can be seen like usual A-bindings but concerning
just annotations and not Coq programs.

12.3.3 Recursive Programs

Programs can be recursively defined using the syntax : <type-of-the-result> rec name-of-the-
induction-hypothesis :: :: { well-founded-order-of-the-recursion } and then the body of the pro-
gram (see section 12.4) which must always begin with an abstraction [x:A] where A is the type of
the arguments of the function (also on which the ordering relation acts).

12.3.4 Abbreviations

Two abbreviations have been defined :

<P>let (p:X;q:Y)=Q in S is syntactic sugar for <P>Match Q with [p:X][q:Y]S

and

<P>if B then Q else R abbreviates matching on boolean expressions, that is to say it abbre-
viates <P>Match B with Q R.

Moreover, a synthesis of implicit arguments has been added in order to allow the user to write
a minimum of types in a program. Then, it is possible not to write a type inside a program term.
This type has then to be automatically synthesized. For this, it is necessary to indicate where the
implicit type to be synthesized appears. The syntax is the current one of implicit arguments in
Coq : the question mark 7.

This synthesis of implicit arguments is not possible everywhere in a program. In fact, the
synthesis is only available inside a Match, a Case or a Fix construction (where Fix is a syntax for
defining fixpoints).

Then, two macros have been introduced to suppress some question marks :

<P>let (p,q:7)=Q in S can be abbreviate into <P>let (p,q)=Q in S and [x,y:?]T can be
abbreviate into [x,y]T.

12.3.5 Grammar

The grammar for programs is the following (see the section 2.2 for more explanation) :
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pg:= ident | ?
| [x:pg]pg
| [xIpg
| (x:pg)pg
| pg->pg
| (pg Pg -..p8)
| <pg>Match pg with pg-list end

| <pg>Case pg with pg-list end

| Fix ident {ident/num : pg := pg with ... with ident/num : pg := pg}

| pg:: = { cogterm }

| [fxeoqterm]lpe

| <pg>let (xi,... ,lellAl;. coxh oo xFEeAL) = pgin pg

| <pg>let (xi,... ,X'fl,. xkh o xF) = pgin pg

| <pg>if pg then pg else pg

| <pg>rec ident :: :: { coqterm } [x:pg|pg
The reference to an identifier of the Coq context (in particular a constant) inside a program of the
language Real is a reference to its extracted contents.

12.4 Examples

12.4.1 Ackermann Function

Let us give the specification of Ackermann’s function. We want to prove that for every n and m,
there exists a p such that ack(n,m) = p with :
ack(0,n) = n+1
ack(n +1,0) = ack(n,1)
ack(n+1,m+1) = ack(n,ack(n+1,m))
An ML program following this specification can be :

let rec ack = function
0 -> (function m -> Sm)
| Sn -> (function 0 -> ackn 1
| Sm -> ack n (ack Sn m))

Suppose we give the following definition in Coq of a ternary relation (Ack n m p) in a Prolog like
form representing p = ack(n, m) :

Cog < Inductive Ack : nat->nat->nat->Prop :=

Coq < AckD : (n:nat)(Ack 0 n (S n))

Coq < | AcknO : (n,p:nat)(Ack n (S 0) p)->(Ack (S n) 0 p)
Coq < | AckSS : (n,m,p,q:nat) (Ack (S n) m q)->(Ack n q p)
Coq < ->(Ack (S n) (S m) p).

Then the goal is to prove that Vn,m.3p.(Ack n m p), so the specification is :
(n,m:nat){p:nat| (Ack n m p)}. The associated Real program corresponding to the above
ML program can be defined as a fixpoint :
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Coq end}

Coq < Fixpoint ack_func [n:nat] : nat -> nat :=

Coq < <nat->nat>Case n of

Coq < (x* 0 *) [m:nat](S m)

Coq < (x (S n) *) [n’:nat]

Coq < Fix ack_func2 {ack_func2/1 : nat -> nat :=

Coq < [m:nat]<nat>Case m of

Coq < (x 0 *) (ack_func n’ (S 0))

Coq < (* S m *) [m’:nat](ack_func n’ (ack_func2 m?’))
<
<

Coq end.

The program is associated by using Realizer ack_func. The program is automatically expanded.
Each realizer which is a constant is automatically expanded. Then, by repeating the Program
tactic, three logical lemmas are generated and are easily solved by using the property Ack0, Ackn0

and AckSS.

Cog < Repeat Program.

12.4.2 Euclidean Division

This example shows the use of recursive programs. Let us give the specification of the euclidean
division algorithm. We want to prove that for a and b (b > 0), there exist ¢ and 7 such that
a=bxqg+7and b>r.

An ML program following this specification can be :

let div b a = divrec a where rec divrec = function
if (b<=a) then let (q,r) = divrec (a-b) in (Sq,r)
else (0,a)

Suppose we give the following definition in Coq which describes what has to be proved, ie, 3g3r. (a =
bxg+rA b>r):

Coq < Inductive diveucl [a,b:nat] : Set
Coq < := divex : (q,r:nat) (a=(plus (mult g b) r))->(gt b r)
Coq < ->(diveucl a b).

The decidability of the ordering relation has to be proved first, by giving the associated function
of type nat->nat->bool :

Cog < Theorem le_gt_dec : (n,m:nat){(le n m)}+{(gt n m)}.

Coq < Realizer [n:nat]<nat->bool> Match n with

Coq < (* 0 *) [m]true

Coq < (x S %) [n’,H,m]<bool> Case m of
Coq < (* 0 *) false

Coq < (* S *) [m’]J(H m?)

Coq < end

Coq < end.
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Coq < Program_all.

Coq < Save.

Then the specification is (b:nat) (gt b 0)->(a:nat)(diveucl a b). The associated program
corresponding to the ML program will be :

Coq < Realizer

Coq < [b:nat] (Knat*nat>rec div :: :: { 1t }

Coq < [a:nat]<nat*nat>if (le_gt_dec b a)

Coq < then <nat*nat>let (q,r) = (div (minus a b))
Coq < in ((8 q),1)

Coq < else (0,a)).

Where 1t is the well-founded ordering relation defined by :
Coqg < Definition 1t := [n,m:nat](gt m n).

Note the syntax for recursive programs as explained before. The rec construction needs 4 argu-
ments : the type result of the function (nat*nat because it returns two natural numbers) between
< and >, the name of the induction hypothesis (which can be used for recursive calls), the ordering
relation 1t (as an annotation because it is a specification), and the program itself which must begin
with a A-abstraction. The specification of 1e_gt_dec is known because it is a previous lemma. The
term (le_gt_dec b a) is seen by the Program tactic as a term of type bool which satisfies the
specification {(le a b)}+{(gt a b)}. The tactics Program_all or Program can be used, and the
following logical lemmas are obtained :

Coq < Repeat Program.

The subgoals 4, 5 and 6 are resolved by Auto (if you use Program_all they don’t appear, because
Program_all tries to apply Auto). The other ones have to be solved by the user.

12.4.3 Insertion sort

This example shows the use of annotations. Let us give the specification of a sorting algorithm.
We want to prove that for a sorted list of natural numbers [ and a natural number a, we can build
another sorted list I/, containing all the elements of [ plus a.

An ML program implementing the insertion sort and following this specification can be :

let sort a 1 = sortrec 1 where rec sortrec = function
1 -> [a]
| b::1? -> if a<b then a::b::1’ else b::(sortrec 1’)

Suppose we give the following definitions in Coq :
First, the decidability of the ordering relation :

Coq < Fixpoint inf_dec [n:nat] : nat -> bool :=
Coq < [m:nat]<bool>Case n of

Coq < true

Coq < [n’:nat]<bool>Case m of

152



Coq < false

Coq < [m’:nat] (inf_dec n’ m’)
Coq < end

Coq < end.

The definition of the type 1list :
Coq < Inductive list : Set := nil : list | cons : nat -> list -> list.

We define the property for an element x to be in a list 1 as the smallest relation such that :

VaVl (In z 1) = (In z (a 1)) and VI (In z (z == 1)).

Coq < Inductive In [x:nat] : list->Prop
Coq < := Inl : (a:nat)(l:1list)(In x 1) -> (In x (cons a 1))
Coq < | Ineq : (1:1ist)(In x (coms x 1)).

A list t’ is equivalent to a list t with one added element y iff : (Vz (In z t) = (In = t')) and
(Iny t')and Vz (In z t') = ((In = t) Vy = z). The following definition implements this ternary
conjunction.

Coq < Inductive equiv [y:nat;t,t’:list]: Prop :=

Coq < equiv_cons :

Coq < ((x:nat) (In x t)->(In x t?))

Coq < -> (Iny t’)

Coq < =>((x:nat)(In x t’)->((In x t)\/<nat>y=x))
Coq < -> (equiv y t t?).

Definition of the property of list to be sorted, still defined inductively :

Coq < Inductive sorted : list->Prop

Coq < := sorted_nil : (sorted nil)

Coq < | sorted_trans : (a:nat) (sorted (cons a nil))

Coq < | sorted_cons : (a,b:nat)(1l:1list) (sorted (cons b 1)) -> (le a b)
Coq < -> (sorted (cons a (cons b 1))).

Then the specification is:
(a:nat) (1:1ist) (sorted 1)->{1’:1list|(equiv a 1 1’)&(sorted 1°)}.
The associated Real program corresponding to the ML program will be :

Coq < Realizer

Coq < [a:nat][1:1list]

Coq < <list>Match 1 with

Coq < (cons a nil)

Coq < [b,m,H]<1ist>if (inf_dec b a) :: :: { {(le b a)}+{(gt b a)} }
Coq < then (cons b H)

Coq < else (cons a (cons b m))

Coq < end.
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Note that we have defined inf_dec as the program realizing the decidability of the ordering re-
lation on natural numbers. But, it has no specification, so an annotation is needed to give this
specification. This specification is used and then the decidability of the ordering relation on natural
numbers has to be proved using the index program.

Suppose Program_all is used, a few logical lemmas are obtained (which have to be solved by
the user) :

Coq < Program_all.

12.4.4 Quicksort

This example shows the use of programs using previous programs. Let us give the specification
of Quicksort. We want to prove that for a list of natural numbers [, we can build a sorted list ',
which is a permutation of the previous one.

An ML program following this specification can be :

let rec quicksort 1 = function
a0 ->10
| a::m -> let (11,12) = splitting a m in
let ml1 = quicksort 11 and
let m2 = quicksort 12 in m1@[a]@m2

Where splitting is defined by :

let rec splitting a 1 = function
1 => (0,0
| b::m -> let (11,12) = splitting a m in
if a<b then (11,b::12)
else (b::11,12)

Suppose we give the following definitions in Coq :
Declaration of the ordering relation :

Coq < Variable inf : A -> A -> Prop.

Coq < Definition sup [x,y:A]"(inf x y).

Coq < Hypothesis inf_sup : (x,y:A){(inf x y)I+{(sup x y)}.
Definition of the concatenation of two lists :

Coq < Fixpoint app [1:1list] : list -> list

Coq < := [m:1list]<1list>Case 1 of
Coq < (* nil *) m
Coq < (x cons a 11 *) [a:A][11:1list](cons a (app 11 m)) end.

Definition of the permutation of two lists :

154



Coqg < Inductive permut : list->list->Prop :=

Coq < permut_nil : (permut nil nil)

Coq < |[permut_tran : (l,m,n:list) (permut 1 m)->(permut m n)->(permut 1 n)
Coq < |[permut_cmil : (a:A)(1l,m,n:list)

Coq < (permut 1 (app m n))->(permut (cons a 1) (mil a m n))

Coq < |permut_milc : (a:A)(1,m,n:list)

Coq < (permut (app m n) 1)->(permut (mil a m n) (comns a 1)).

The definitions inf_list and sup_list allow to know if an element is lower or greater than all
the elements of a list :

Coq < Section Rlist_.

Coq < Variable R : A->Prop.

Coq < Inductive Rlist : list -> Prop :=
Coq < Rnil : (Rlist nil)
Coq < | Rcons : (x:A)(1l:1list) (R x)->(Rlist 1)->(Rlist (coms x 1)).

Coq < End Rlist_.

Coq < Hint Rnil Rconms.

Coq < Section Inf_Sup.
Coq < Hypothesis x : A.
Coq < Hypothesis 1 : list.

Coq < Definition inf_list := (Rlist (inf x) 1).

Coq < Definition sup_list := (Rlist (sup x) 1).

Coq < End Inf_Sup.
Definition of the property of a list to be sorted :

Coq < Inductive sort : list->Prop :=

Coq < sort_nil : (sort nil)
Coq < | sort_mil : (a:A)(1l,m:list) (sup_list a 1)->(inf_list a m)
Coq < ->(sort 1)->(sort m)->(sort (mil a 1 m)).

Then the goal to prove is VI Im (sort m) A (permut [ m) and the specification is
(1:1list){m:1ist| (sort m)&(permut 1 m).
Let us first prove a preliminary lemma. Let us define 1t1 a well-founded ordering relation.

Coq < Definition 1tl := [1,m:1list] (gt (length m) (length 1)).

Let us then give a definition of Splitting_spec corresponding to
31 3ly. (suplist a ly) A (inf list a lo) Al =1,Qla) A(ltl 1y (a:: 1)) A (It 12 (a :: 1)) and a theorem

on this definition.
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Coq < Inductive Splitting_spec [a:A; 1l:1ist] : Set :=

Coq < Split_intro : (11,12:1ist)(sup_list a 11)->(inf_list a 12)
Coq < ->(permut 1 (app 11 12))

Coq < ->(1tl 11 (cons a 1))->(1tl 12 (cons a 1))
Coq < ->(Splitting_spec a 1).

Coq < Theorem Splitting : (a:A)(1l:1list) (Splitting_spec a 1).

Coq < Realizer [a:A][1:1list]

Coq < <list*list>Match 1 with

Coq < (* nil *) (nil,nil)

Coq < (* cons *) [b,m,11]<list*list>let (11,12) = 11 in

Coq < <list*1ist>if (inf_sup a b)

Coq < then (* inf a b *) (11, (cons b 12))
Coq < else (* sup a b *) ((cons b 11),12)
Coq < end.

Coq < Program_all.
Coq < Simpl; Auto.
Coq < Save.

The associated Real program to the specification we wanted to first prove and corresponding to the
ML program will be :

Coq < Lemma Quicksort: (1l:list){m:list]|(sort m)&(permut 1 m)}.

Coq < Realizer <list>rec quick :: :: { 1tl }

Coq < [1:1ist]<list>Case 1 of

Coq < (* nil *) =nil

Coq < (x cons *) [a,m]<list>let (11,12) = (Splitting a m) in
Coq < (mil a (quick 11) (quick 12))

Coq < end.

Then Program_all gives the following logical lemmas (they have to be resolved by the user) :

Coq < Program_all.
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Chapter 13

The Coq commands

There are three Coq commands : two for interactive mode, and one for batch compilation. The
options are (basically) the same for the three commands, and roughly described below. You can
also look at the man pages of cogtop, coq and coqgc for more details.

13.1 Interactive proof (coqtop, coq)

In the interactive mode, the user can develop his theories and proofs step by step in the Coq toplevel.
The Coq toplevel is run by the command coqtop (which was formerly coql). This toplevel is based
on a Caml light toplevel (to allow the dynamic link of tactics). You can switch to the Caml light
toplevel with the command Drop., and come back to the Coq toplevel with the command go(Q); ;.
The command coq runs a stand-alone Coq toplevel, in which you cannot load tactics.

13.2 Batch compilation (coqc)

The coqc command takes a name file as argument. Then it looks for a vernacular file named file.v,
and tries to compile it into a file.vo file (See 5.3).

13.3 Resource file

When Coq is launched, with either coqtop, coq or coqc, the resource file $HOME/.coqrc.5.10 is
loaded, where $HOME stands for your home directory. This file may contain, for instance, AddPath
commands to add directories to the load path of Coq. You can use the environment variables
$COQTOP and $COQTH to specify such directories ($COQTOP is the root directory of Coq and $COQTH
is $COQTOP/theories, although you specified it with the ~theories option). The default load path
contains the following directories :

$COQTOP/tactics
$COQTOP/theories/ARITH
$COQTOP/theories/INIT
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If there is no .coqrc.5.10 file in your home directory, Coq will look for a .coqrc file instead.
You can also specify an arbitrary name for the resource file (see option -init-file below), or the
name of another user to load the resource file of someone else (see option -user).

It is possible to skip the loading of the resource file with the —q option.

13.4 Options

The following command-line options are recognized by the commands coqc, coqtop, and coq,
except some of them which are not recognized by coq. See the manual pages for more details.

-1 directory
Add directory to the searched directories when looking for a file.

—-include directory
Identical to -I directory.

-theories directory
Cause Coq to look for standard theories in directory/ARITH and directory/INIT.

-is file
Cause Coq to use the state put in the file file as its input state. Mainly useful to build the
standard input state.

—-inpustate file
Identical to -is file.

-nois
Cause Coq to begin with an empty state. Mainly useful to build the standard input state.

-notactics
Forbid the dynamic loading of tactics.

-init-file file
Take file as rcfile, instead of $HOME/ .coqrc.5.10 file.

-q
Cause Coq not to load your $HOME/ . coqrc.5.10 file.

-user string
Take ~string/.coqrc.5.10 as rcfile, instead of $HOME/.coqrc.5.10

-load-ml-source file

Load the Caml Light file file.m1

-load-ml-object file
Load the Caml Light object file file.zo

-load-vernac-source file

Load Coq file file.v
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-load-vernac-object file

Load Coq compiled file file.vo

-require file
Loads Coq compiled file file.vo and import it (Require file).

-batch
Batch mode : exit just after arguments parsing. This option is only used in the script coqc.

-debug
Switch on the debug flag.

-hash-cons
Switch on hash consing.

-image file
This option sets the binary image to be used to be file instead of the standard one. Not of
general use.

-0 module-set
Specify wich set of standard Caml Light modules will be used by Coq. See the Caml Light
Reference Manual for details.

-open module-set
Identical to -0 module-set.
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Chapter 14
Utilities

The distribution provides utilities to simplify some tedious works beside proof development, tactics
writing or documentation.

14.1 Modules dependencies

In order to compute modules dependencies (so to use make), Coq comes with an appropriate tool,
coqdep.

cogdep computes inter-module dependencies for Coq and Caml Light programs, and prints the
dependencies on the standard output in a format readable by make. When a directory is given as
argument, it is recursively looked at.

Dependencies of Coq modules are computed by looking at Require commands (Require, Requi-
re Export, Require Import, Require Implementation), and Declare ML Module commands.

Dependencies of Caml Light modules are computed by looking at #open directives and the
double underscore notation module__value.

See the man page of coqdep for more details and options.

14.2 Makefile

When a proof development becomes large and is split into several files, it becomes crucial to use a
tool like make to compile Coq modules.

The writing of a generic and complete Makefile may seem tedious and that’s why Coq provides
a tool to automate its creation, do_Makefile. Given the path to $COQTOP (the main directory of
Coq) and the files to compile, do_Makefile prints a Makefile on the standard output. So one has
just to run the command :

do Makefile Cog-path file; ... file, > Makefile

The resulted Makefile has a target depend which computes the dependencies and adds them to
the end of the Makefile. So each time you want to update the modules dependencies, type in :

make depend
There is also a target all to compile all the files file; ... file,, and a generic target to produce

a .vo file from the corresponding .v file (so you can do make file.vo to compile the file file.v).
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14.3 Coq and IATEpX

When writing a documentation about a proof development, we provide a mechanical way to process
Coq phrases embedded in IATRX files : the cog-tex filter. This filter extracts Coq phrases embedded
in LaTeX files, evaluates them, and insert the outcome of the evaluation after each phrase.
Starting with a file file.tex containing Coq phrases, the cog-tex filter produces a file file.v.tex
with the Coq outcome. This IATEX file must be compiled using the coq or cog-s1 document style
option (provided together with cog-tex).
See the man page of cog—tex for more details and options.

Remark. This Reference Manual and the Tutorial have been completely produced with cog-tex.

14.4 Coq and GNU Emacs

Coq comes with a Major mode for GNU Emacs, coq.el. This mode provides syntax highlighting
(assuming your GNU Emacs library provides hilit19.el) and also a rudimentary indentation
facility.

See the file tools/emacs/README for more details.

14.5 Module specification

Given a Coq vernacular file, the gallina filter extracts its specification (inductive types declara-
tions, definitions, type of lemmas and theorems), removing the proofs parts of the file. The Coq
file fike.v gives bearth to the specification file file.g (where the suffix .g stands for Gallina).

See the man page of gallina for more details and options.

14.6 Man pages

There are man pages for coqtop, coq, coqc, coqdep, gallina and cog-tex. Man pages are
optionally installed (see installation instructions in file INSTALL, step 6).
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Chapter 15

List of additional documentation

15.1 Tutorial

A companion volume to this reference manual, the Coq Tutorial, is aimed at gently introducing
new users to developing proofs in Coq without assuming prior knowledge of type theory.

15.2 Installation Procedures

A INSTALL file in the distribution explains how to install Coq.

15.3 Incompatibilities with CoqV5.8

This short note describes known upward incompatibilities with the previous distribution CoqV5.8.
It is contained in the document Incompatibilities. *.

15.4 Users friendly Recursive Definition

This document details some special syntax for recursive definitions. It is contained in the separate
document Recursive-Definition. *.

15.5 CoInductive Types facilities

This document details some special syntax for coinductive definitions and associate tactics. It is
contained in the separate document CoInductives.*.

15.6 Extraction facilities

This document details some special facilities to extract ML program files. It is contained in the
separate document Extraction. *.
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15.7 Anomalies

The separate document Anomalies.* gives a list of known anomalies and bugs of the system.
Before communicating us an anomalous behavior, please check first whether it has been already

reported in this document.
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