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Abstract

Every task in a real-time system has a deadline by which time it should complete. Each
task also has a value that it obtains only if it completes by its deadline. The problem is to
design an on-line scheduling algorithm (i.e., the scheduler has no knowledge of a task until
it is released) that maximizes the obtained value.

When such a system is underloaded (i.e. there exists a schedule for which all tasks meet
their deadlines), Dertouzos showed that the earliest deadline first algorithm will achieve 100%
of the possible value. Locke showed that earliest deadline first performs very badly when the
system is overloaded and proposed heuristics to deal with overload.

This paper presents an optimal on-line scheduling algorithm for overloaded systems. It
is optimal in the sense that it gives the best competitive factor possible relative to an offline
scheduler.

Mots Clés: temps réel, ordonnancement, surchargé.

D-Over: un algorithme d’ordonnancement actif et optimal pour
systémes temps réels surchargés

Dans un systéme temps réel, toute tiche a une date limite & laquelle elle doit étre terminée.
De plus, chaque tache a une valeur qu’elle n'obtient que si elle se termine a la date limite.
Le probléme est de concevoir un algorithme d’ordonnancement actif (on-line) qui maximise
la valeur obtenue (i.e., tout en ayant aucune connaissance de la tiche a priori).

Lorsqu’un tel systéme est sous-chargé (i.e., il existe un ordonnancement par lequel toutes
les taches terminent & leur date limite), Dertouzos a montré que I’agorithme “carliest deadline
first” atteint 100% de la valeur possible. Cependant, Locke a montré que cet algorithme
avait de trés mauvaises performances lorsque le systéme devennait surchargé. Il a proposé
des heuristiques dans le cas de surcharge.

Ce papier présente un algorithme d’ordonnancement optimal pour systémes temps réels
surchargés. Il est optimal dans le sens ou il offre le meilleur facteur de compétition possible
relatif & un ordonnanceur passif (off-line).



1 Introduction

In real-time computing systems, correctness may depend on the completion time of tasks as
much as on their input/output behavior. Tasks in real-time systems have deadlines. If the
deadline for a task is met, then the task is said to succeed. Otherwise it is said to have failed.

A system is underloaded if there exists a schedule that will meet the deadline of every task and
overloaded otherwise. Scheduling underloaded systems is a well-studied topic, and several on-line
algorithms have been proposed for the optimal scheduling of these systems on a uniprocessor [4,
11]. Examples of such algorithms include earliest-deadline-first (D) and smallest-slack-time
(SL). However, none of these classical algorithms make performance guarantees during times
when the system is overloaded. In fact, Locke has experimentally demonstrated that these
algorithms perform quite poorly when the system is overloaded [10].

Practical systems are prone to intermittent overloading caused by a cascading of exceptional
situations. A good on-line scheduling algorithm, therefore, should give a performance guarantee
in overloaded as well as underloaded circumstances.

Researchers and designers of real-time systems have devised on-line heuristics to handle
overloaded situations [1, 10, 12]. Locke proposed several clever heuristics as part of the CMU
Archons project [10]. Unfortunately, those offer no performance guarantee. This paper proposes
an algorithm with strong performance guarantees for a large portion of the parameters that
Locke’s algorithm considers.

1.1 Background

Real-time systems may be categorized by how they react when a task fails. In a hard real-time
system, a task failure is considered intolerable. The underlying assumption is that a task failure
would result in a disaster, e.g. a fly-by-wire aircraft may crash if the altimeter is read a few
milliseconds too late.

A less stringent class of systems is denoted as soft real-time systems. In such systems, each
task has a positive value. The goal of the system is to obtain as much value as possible. If a
task succeeds, then the system acquires its value. If a task fails, then the system gains less value
from the task [11]. In a special case of soft real-time systems, called a firm real-time system,
there is no value for a task that has missed its deadline, but there is no catastrophe either. The
first algorithm we present here applies to firm real-time systems. The paper then generalizes the
algorithm to soft real-time systems.

An on-line scheduling algorithm is one that is given no information about a task before its
release time. Different tasks models can differ in the kind of information (and its accuracy)
given upon release. We assume the following: when a task is released, its value and deadline are
known precisely, its computation time may be known either precisely, or, more generally, within
some range. Also, preemption is allowed and task switching takes no time.

The value density of a task is its value divided by its computation time. The importance
ratio of a collection of tasks is the ratio of the largest value density to the smallest value density.
When the importance ratio is 1, the collection is said to have UNIFORM VALUE DENSITY, i.e., a
task’s value equals its computation time. We will denote the importance ratio of a collection by
k.
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A natural way to measure a performance guarantee of an on-line scheduler is to compare
it with a clairvoyant scheduling algorithm. A clairvoyant scheduler has complete A PRIORI
knowledge of all the parameters of all the tasks. A clairvoyant scheduler can choose a “scheduling
sequence” that will obtain the maximum possible value achievable by any scheduler. (The
problem of finding the maximum achievable value for such a scheduler, however, can be shown
to be reducible from the knapsack problem[5]; hence is NP-hard.)

As in [2, 6, 13] we say that an on-line algorithm has a competitive factor r, 0 < r < 1, if
and only if it is guaranteed to achieve a cumulative value at least r times the cumulative value
achievable by a clairvoyant algorithm on any set of tasks.

Three years ago, Marc Donner introduced a group of us to realtime scheduling in a seminar
at NYU. Inspired by that seminar, Koren, Mishra, Raghunathan and Shasha [2, 7] suggested
the first on-line scheduling algorithm with a performance guarantee for an overloaded system.
They assumed a simplified variation of the task model that assumes firm deadline, preemption
at no cost and uniform value density. This algorithm is called D-star (D*) since it behaves like
earliest-deadline-first (D) in an underloaded situation.

D* executes to completion all the tasks with deadlines in underloaded intervals. D* also
guarantees that all the tasks with a deadline in an overloaded interval will achieve a cumulative
value of at least one-fifth of the length of the overloaded interval. However, D* has a competitive
factor of zero.

Baruah et. al. [2, 3] demonstrated, using an adversary argument that, in the uniform value
density setting, there can be NO on-line scheduling algorithm with a competitive factor greater
than one-quarter.

Koren and Shasha describe in a technical report [8] an algorithm called DD-star (DD*), that
has the competitive factor of one-fourth in the uniform value density case and offers 100% of
the possible value in the underloaded case. This showed that the one-quarter bound is tight in
the uniform value density case. Wang and Mao [15] independently report a similar guarantee.

On the complexity side, Baruah et. al. [2, 3] showed for environments with an importance
ratio k£, a bound of (1—_*_1\/—7)2 on the best possible competitive factor of an on-line scheduler. This

result and some pragmatic considerations reveal the following limitations of the algorithms with
competitive factors invented to date:

1. The algorithms all assume a uniform value density, yet some short tasks may be more
important than some longer tasks.

2. The algorithms all assume that there is no value in finishing a task after its deadline. But
a slightly late task may be useful in many applications.

3. The algorithms all assume that the computation time is known upon release. However, a
task program that is not straight-line may take different times during different executions.

2 The Main Results

In this paper we present an on-line scheduling algorithm called D°”*" that has an optimal com-

petitive factor of (1+\1/F)2 for environments with importance ratio k. Hence, we show that the

bound in [2, 3] is tight for all k.




Furthermore, D°¥®" achieves 100% of the value of in an underloaded environment. In fact
the performance guarantee of D°¥*" is even stronger: D°¥¢" schedules to completion all tasks in

underloaded periods and achieves at least —2X— of the value a clairvoyant algorithm can get

(14Vk)?
during overloaded periods!.
We also investigate two important extensions to the task model studied earlier:

o Gradual Descent:

We relax the firm deadline assumption. Tasks that complete after their deadline can still
have a positive value though less than their initial value. As in Locke [10], the task’s value
is given by a value function which depends on its completion time.

We show that under a variety of value functions an appropriate version of D°*" has a
competitive factor of m for environments with importance ratio k.

o Situations in which the exact computation time of a task is not known

Suppose the on-line scheduling algorithm does not know the exact computation time of a
task upon its release. However, for every task T, an upper bound on its possible compu-
tation time denoted by ¢4z, is given. The actual computation time of T denoted by ¢
satisfies:

(1 - 6) * Cmax S c S Crax

Where, 0 < € < 1 is a given error margin which is common to all the tasks.

H over HH 1
We show that in that case D has a competitive factor of FSY S r I s We also

show that, in this setting a competitive on-line scheduler can not guarantee 100% of the
value for underloaded systems.

Finally, D°¥*" can be implemented using balanced search trees, and runs at an amortized
cost of O(log n) time per task, where n bounds the number of tasks in the system at any instant.

The rest of the paper is organized as follows: Section 3 introduces some notation and defi-
nitions used in the paper. Section 4 describes the main algorithm, D°Y*". Section 5 shows that
D°¥*" has the optimal competitive factor as mentioned above. Section 6 defines the notion of
conflicting and conflict-free tasks and proves the complete performance guarantee of D" with
respect to underloaded and overloaded periods. Section 7 contains the gradual-descent result.
Section 8 is devoted to the model in which the exact computation time of a task is not known.
The paper ends with a brief conclusion section and a discussion of open problems.

3 Notation

Before we describe the full algorithm, we need some notation. We are given a collection of tasks
Ty,T; - - - T, denoted by I'. For each task T3, its value is denoted by v;, its release time is denoted
by r;, its computation time by c¢; and its deadline by d;. The value density of T; is denoted by
imp(T;) and k denotes the importance ratio of the collection.

!The definitions of underloaded and overloaded periods will be made precise in section 6.



Definition 3.1
¢ UNDERLOADED AND OVERLOADED SYSTEMS: A system is underloaded if there exists a
schedule that will meet the deadline of every task and overloaded otherwise.

o ExXECUTABLE PERIOD: The ezecutable period, A;, of the task T; is defined to be the
following interval:

Ai = [T{,di]
By definition, T; may be scheduled only during its executable period.

Suppose a collection of tasks is being scheduled by some scheduler §.

o CoMPLETED TAsk: A task (successfully) completes if before its deadline, the scheduler
S gives it an amount of execution time that is equal to its computation time.

o ABANDONED TAsk: A taskis abandonedif it did not complete and will never be scheduled
again by §.

PN

o PREEMPTED TAsk: A task is preempted when the processor stops executing it, but then
the task might be scheduled again and complete at some later point.
o A READY Task:

A task is said to be ready at time t if its release time is before ¢, its deadline is after t
and it neither completed nor was abandoned before ¢ (the current executing task, if any,
is always a ready task).

The earliest deadline first algorithm ( hereafter, D) can now be described as follows:

At any given moment,
schedule the ready task with the earliest deadline.

D THE EARLIEST DEADLINE FIRST SCHEDULING ALGORITHM.

Also, we shall make the following assumption:

Assumption 3.2

e TASK MoODEL: Tasks may enter the system at any time; their computation times and
deadlines are known exactly at their time of arrival (we weaken this assumption of exact
knowledge later in section 8). Nothing is known about a task before it appears. [J

e TAsks SWITCHING TAKES No TIME: A task can be preempted and another one sched-
uled for execution instantly.

Suppose that a collection of tasks I' with importance ratio k is given.

)

¢ NORMALIZED IMPORTANCE: Without loss of generality, assume that the smallest impor-
tance of a task in I' is 1. Hence if I has importance ratio of k, the largest importance of a
task in T is k.

.



4 The Algorithm

In the algorithm described below, there are three kinds of events (each causing an associated
interrupt) considered:

e Task Completion: successful termination of a task. This event has the highest priority.
o Task Release: arrival of a new task. This event has low priority.

o Latest-start-time Interrupt: the indication that a task must immediately be scheduled in
order to complete by its deadline, that is the task’s remaining computation time is equal
to the time remaining until its deadline. This event has also low priority (the same as Task
Release).

If several interrupts happen simultaneously they are handled according to their priorities.
A Task Completion interrupt is handled before the Task Release and Latest-start-time interrupts
which are handled in random order. It may happen that a Task Completion event suppresses a
lower priority interrupt, e.g., the Task Completion handler schedules the next task, if this task
had just reached its LST then the Latest-start-time Interrupt is removed.

At any given moment, the set of ready tasks 2 is partitioned into two disjoint sets. recently-
preempted tasks and other tasks. Whenever a task is preempted it becomes a recently preempted
task. However, whenever some task is scheduled as a result of Latest-start-time Interrupt all the
ready tasks (whether preempted or never scheduled) become other tasks.

D°Y*" maintains a special quantity called availtime. Suppose a new task is released into the
system and its deadline is the earliest among all ready tasks. The value of availtime is the
maximum computation time that can be taken by such a task without causing the current task
or any of the recently-preempted tasks to miss their deadlines.

D°¥®" requires three data structures, called Qrecent, Qother and Qist. Each entry in these
data structures corresponds to a.task in the system. Qrecent contains exactly the recently-
preempted tasks and Qother contains the other tasks. These two structures are ordered by the
tasks’ deadlines. In addition, the third structure, Qlst, contains all tasks (again, not including
the current task) but this time they are ordered by their latest-start-times (LST).

These data structures support Insert, Delete, Min and Dequeue operations.

o The Min operation for Qrecent or Qother returns the entry corresponding to the task with
the earliest deadline among all tasks in Qrecent or Qother. For Qlst the Min operation
returns the entry corresponding to the task with the earliest LST among all tasks in the
queue. The Min operation does not modify the queue.

e The Dequeue operation on Qrecent (or Qother) deletes from the queue the element re-
turned by Min, in addition Dequeue deletes this element from Qlst. Likewise a Dequeue
operation on Qlst will delete the corresponding element from either Qrecent, if it is a
recently-preempted task or from Qother, if it is an other task.

2Excluding the currently executing task.
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An entry of Qother and QIst consists of a single task, whereas an entry of Qrecent is a 3-tuple
(T, Previous-time, Previous-avail) where T is a task that was previously preempted at time
Previous-time. Previous-avail is the value of the variable availtime at time Previous-time..

All of these data structures are implemented as balanced trees (e.g. 2-3 trees).

In’the following code,-Now() is a function that returns the current time. Schedule(T) is a function
that gives the processor to task T'. Lazity(T) is a function that returns the amount of time the task
has left until its deadline less its remaining computation time. That is, lazity(T) = deadline(T') —
(now()+ remaining_computation_time(T)). ¢ denotes the empty set.

This code includes lines manipulating intervals. The notion of an interval is needed for purpose of
analysis only, so these lines are commented.

1 recentval :=0 (x This will be the running value of recently-preempted tasks *)
2 availtime := oo

(* Availtime will be the mazimum computation time that can be taken
3 by a new task without causing the current task or the recently preempted

tasks to miss their deadlines. )

4 Qlst =¢ (* All ready tasks, ordered according to their latest start time. )
5 Qrecent = ¢ (* The recently preempted tasks ordered by deadline order x)

6  Qother := @ (% All the other tasks ordered by their deadlines. *)

7 idle := true (* In the beginning the processor is idle *)
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12

13

14

15
16

17
18
19
20
21
22
23

24
25
26
27
28

loop

Task Completion :

if (both Qrecent and Qother are not empty) then

(* Both queues are not empty and contain together all the ready tasks. The
ready task with the earliest deadline will be scheduled unless it is a task of
Qother and it can not be scheduled with all the recently-preempted tasks. The
first element in each queue is probed by the Min operation. *)

(TQrecent, tprev, availp ey ) := Min(Qrecent);

(* Computes the current value of availtime. This is the correct value be-
cause TQrecent ts the task last inserted of those tasks currently in Qrecent.
The available computation time has decreased by the time elapsed since this
element was inserted to the queue. *)

availtime := availprey — (Now() — tprev);

(* Probe the first element of Qother and check which of the two tasks should
be scheduled. *)

TQother := Min(Qother);
if onther < erecent and
availtime> remaining_computation_time(Tyothe,) then
(* Schedule the task from Qother. x)
Dequeue(Qother);
availtime:= availtime — remaining_computation_time(Tgother) ;
availtime:= min(availtime, laxity(Tqgother))
Schedule Tgother;

else

(* Schedule the task from Qrecent. *)

Dequeue(Qrecent);
recentval := recentval — value(Tg,ecent);
Schedule Tgrecent;

end {if}  (x which task to schedule. *)

else if (Qother is not empty) then

29 -

30
31
32

33

(* Qrecent is empty. The current interval is closed here, tc1o5c = now(). The
first task in Qother is scheduled %)

Teurrent := Dequeue(Qother);

availtime:= laxity(Teurrent);
(* A new interval is created with tpegin = now(). *)

Schedule Teyrrent;

‘w
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34 else if (Qrecent is not empty)

35 (* Qother is empty. The first task in Qrecent is scheduled *)

36 (Teurrent, tprev, avatlprey ) := Dequeue(Qrecent);

37 recentval := recentval - value(Teyrrent);

38 availtime := avail,;ey — (now() — tprev);

39 Schedule Teyprent;

40 else

41 (* Both queues are empty. The interval is closed here, tcipse = now(). *)
42 idle := true;

43 availtime:= oo;

44 end {if}

45 end (x task completion *)

46 Task Release :

(* Tarrival is released. x)

47 if (idle ) then

48 Teurrent := Tarn’val;

49 Schedule Teyrrent;

50 availtime:= laxity(Teyrrent);

51 idle := false;

52 (* A new interval is created with tyein = now(). *)
53 else (* Teurrent 15 ezeculing *)

54 if darrival < deurrent and

availtime> computation_time(Tgpriva) then

55 (¥ No overload is detected, so the running task is preempted. *)

56 Insert Tiyrpen: into Qlst;

57 Insert (Teurrent, now(), availtime) into Qrecent;

58 (* The inserted task will be, by construction, the task with the earliest deadline
in Qrecentx)

59 availtime:= availtime — remaining_computation_time(Typrival) ;

60 availtime:= min(availtime, laxity(Tyrrivai))

61 recentval := recentval + value(Teyprent);

62 Teurrent := Tarrival;

63 Schedule Teyrrent;

64 else (* Tarrival has later deadline or availtime is not big enough. *)

65 Insert Tyrrivar into Qlst and Qother;

66 end {if}

67 end {if} (* idle *)
68 end (x release *)



69

70

71

72
73
74
75
76
77
78
79
80
81
82

83

Latest-start-time Interrupt :

(* The processor is not idle and the current time is the latest start lime of
the first task in Qlst. *)

Thest = Dequeue(Qlst);

if (Vnewt > (1 + \/l?) (Veurrent + recentval)) then
Insert T.yrrent into Qlist and Qother;
Remove all recently-preempted tasks from Qrecent and insert them into Qlst and Qother;
(* Qrecent = ¢ *)
recentval := 0;
availtime:= 0
Schedule Ty ez¢;

else (* Upegs is not big enough; it is abandoned. *)
Abandon T}, .z¢;

end {if}

end (* LST %)

end{loop }

Dever . A COMPETITIVE OPTIMAL ON-LINE SCHEDULING ALGORITHM.

5 Analysis of Dove"

In order to facilitate the analysis of D°¥¢" it is convenient to introduce the notation of intervals.

Definition 5.1 INTERVALS

o INTERVAL: The intervals are created (opened) and closed according to the scheduling

decisions of D°”*" and this process is depicted in the code of D°”*" in section 4 above

When an interval is created (comments 32 and 52 of D°¥*") it is considered open, mean-
ing that it may be extended, it is closed when a task completes while Qrecent is empty
(comments 29 and 41). A new interval would be opened when the next task is scheduled.
Initially there is no open interval. Hence, the first interval is opened when the processor
first becomes non-idle.

The interval consists of the time between the point it was opened and the point it was
closed. We will denote by I = [tsegin,tciose] an interval I that was opened at tbegin and
closed at t.josc-

Note: Two intervals may overlap only at their endpoints. Also, the pointwise union of all
intervals is exactly the time in which D°”*" was not idle.

10
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Suppose that a collection of tasks I' with importance ratio k is given. and D°”*" schedules
this collection. When a task is scheduled it can have zero or positive slack time. A task may
be preempted and then re-scheduled several times. We will be mainly concerned with the last
time a task was scheduled. For the purposes of analyzing D°¥¢", we will partition the collection
of tasks according to the question of whether the task had completed exactly at its deadline or
before its deadline or failed.

e Let F' (for fail) denote the set of tasks that were abandoned.

o Let S? (for successful with positive time before the deadline) denote the set of tasks that
completed successfully and that ended some positive time before their deadlines.

o Let SO (for successful with 0 time before the deadline) denote the set of tasks that com-
pleted successfully but ended exactly at their deadlines.

Call a task order-scheduled if it was scheduled by the Task Completion or Task Release
handlers. Call a task Ist-scheduled if it was scheduled as a result of a Latest-start-time Interrupt.
(As mentioned above, a Latest-start-time Interrupt is raised on a waiting task when it reaches its
latest start time (or LST), i.e. the last time when it can start executing and still complete by
its deadline).

The first task in each interval is order-scheduled. The subsequent tasks (if any) in this
interval may be order-scheduled or Ist-scheduled. Proposition 5.1 shows that once a task is Ist-
scheduled all subsequent tasks of this interval must be lst-scheduled. During an interval several
order-scheduled tasks may complete but only one Ist-scheduled task can complete (this task will
also be the last task that executes in the interval).

Proposition 5.1 According to the scheduling of D°**" once a task is Ist-scheduled, then all
subsequent tasks, in the current interval, are Ist-scheduled.
PROOF.

Suppose the current task, Tcyrrent, is Ist-scheduled and a task, Tyarrivai, is released. Tarrival
will not be scheduled by the Task Release handler, because when the current task is lst-scheduled
availtime equals zero (see statement 77 of D°”") hence no task can be scheduled by the Task
Release handler (see statement 54 of D°veT)

(]

Let recentval(t) denote ® recentval at time ¢ (see statement 1) and achievedvalue(t) denote
the value achieved during the current interval before ¢. For an interval I, achievedvalue(T) is the
total value obtained during I.

We partition the value obtained during I in two different ways:

o ordervalue vs. Istvalue:

®In the following only recentval is a variable explicitly manipulated by D°’*".  All the others:
zerolaxval, poslaxval, ordervalue and Istvalue are introduced here to facilitate the analysis. This is way
they do not reference algorithm statements.

11



ordervalue([]) is the total value obtained by order-scheduled tasks that completed during 1.
The value obtained by Ist-scheduled tasks is denoted by Istvalue(I) (there is at most one
such task in any interval I).

o zerolaxval vs. poslaxval:

zerolaxval(]) denotes the total value obtained by tasks that completed at their deadlines
during I (tasks in S%). The value obtained by tasks that completed before their deadlines
is denoted by poslaxval([l).

Hence, for every interval

achievedvalue(I) = ordervalue(I) + Istvalue(I) = zerolaxval(I) + poslaxval(T)

When the index (I) is omitted we refer to the entire execution. For example ordervalue
denotes the total value obtained by order-scheduled tasks summing over all intervals.

Example 5.2 Before the detailed analysis, let us first study an example of D°¥®"’s scheduling.
Consider the following overloaded collection of six tasks. For notational convenience we will
denote the tasks by their deadlines, hence for example T3q is a task with deadline at time 20. In
this example we assume uniform value density.

” Task I Release-Time l Computation- Time T Deadline I A; "

T |0 6 20 [0, 20]
T34 1 26 34 1,34
Ty |1 20 24 1,24
Tig |2 5 18 2,18
Ty |3 2 17 3,17
Ts 4 1 5 4, 5]

Table 1: THE TASKS FOR EXAMPLE 5.2.

Deve" schedules the above collection as follows: In the beginning availtime is co and Qrecent
is empty.
First, D" schedules Ty to run at time 0. Availtime is set to 14 since this is T5o’s laxity.
At time 1, T34 is released into the system. Since T34’s deadline is not earlier than the current
task’s (T20), T34 is inserted into Qother (and QIst with LST equal 8). Also at time 1, Ty4 is
released. Again, since its deadline is after 20 this task is inserted into Qother and Qlst with LST
equals 4.
At time 2, Thg is released. This time the current task is preempted. Ty is inserted into Qrecent
and Qlst with LST equals 16. Availtime is decremented by the computation time of T}g. Its new
value is 9. The value of recentval is set to the value of Ty (6).
Tis executes for one time unit until time 3, when Tj7 is released. Tj7 is scheduled since its
computation time (2) is smaller then availtime (9). Availtime is decremented by the computation

12
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time of Ty7. Its new value is 7. The value the value of Tig (5) is added to recentval which
becomes 11.

At time 4 two events occur: Ty4 reaches its LST and T is released. These events can be handled
in any order and we choose to handle the Latest-start-time Interrupt first. T4 reaches its LST
but its value is smaller than twice (1 + vk = 2) the value of the current task plus recentval
(2+ 11). Hence, T4 is abandoned. Tj is released and its deadline is earlier than the current
task’s (T17). Ts is scheduled since its computation time is smaller then availtime(1 < 7). Ts has
laxity of zero which is smaller than the current availtime minus the computation time of T (6).
Hence, availtime is now set to 0 and recentval becomes 11 + 2 = 13.

At time 5, T5 completes and since Ty7 is the task with the earliest deadline it is scheduled.
Availtime is now 6 because this the value of availtime when Tj7 was executing (7) minus the time
elapsed since it was inserted to Qrecent (1). The value of T}7 is subtracted from recentval which
becomes 13 — 2 = 11.

The remaining computation time of T}7 is one unit, hence at time 6 it completes. The next task
in Qrecent is T1g which has a remaining computation time of 4 units. Availtime is set to 6 which
is value of availtime when T3 was executing (9) minus the time elapsed since it was inserted to
Qrecent ((6 — 3) = 3) (the value of Tys is subtracted from recentval which becomes 11 — 5 = 6).
However, T1s will execute only until 8 when T34 reaches its LST. The value of T34 is big enough
to preempt the current task. All tasks from Qrecent are moved to Qother and availtime as well
as recentval are reset to zero.

The LST of Tyg is 16 and of Ty (the only other task in Qlst) is 15. These tasks will generate
Latest-start-time Interrupt in these respective times, both will be abandoned.

At time 34, T34 completes its execution and D°"¢" finished scheduling this history. Table 2
summarizes the scheduling decisions of D°v¢",

ti- | re- pre- com- | sch- availtime Qrecent recentval Qother comment
me | lea- | empted | ple- | edu-
sed | (LST) ted led
0 ) 1} 0 I
0 Too Ty | lazity(Tao) =14 | |] 0 new interval
1 T34 14 [] 0 T34] LST of T34 is 8
1 T24 14 ] 0 T24, T34 LST of T24 is 4
2 T18 Tzo (16) TlS min(14 - 5, 13) T20] 6 T24, T34
3 Tv7 | Tis (14) Tiz | min(9—2,12) Ths, Tao 5+6 T34, T34
4 - min(9 -2, 12) Tis, Tao 546 T34] Thy's LST,
it is abandoned
4 T5 T17 (16) T5 mm(7 - 1, 0) T17, Tlg, T20] 2 + 5 + 6 T34 T5 has no laxity
5 Ts Ti7 7-(5- 4) =6 T8, Too) 5+6 T34
6 Tvv |Tg |9-(6-3)=6 To} 6 T34
8 T18 (15) T34 0 _-] 0 T18,T20] T34‘S LST
15 0 I] 0 Tlg] T20’S LST
S 16 0 [] 0 D Tls’s LST
34 T34 0 1} 0 interval closed

o

Table 2: D°¥¢" SCHEDULING.
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So, for this history, $° = [T5,T34), 5P = [T17] and F = [Tyg,T20,T24]. Only three tasks
completed their execution and the total value obtained by D°"*" is 29. A clairvoyant scheduler
can achieve a value of 34 by scheduling Ty7, T2 and T34. Also notice that the system is already
overloaded at time 1, but the first time an overload is “detected” by D°¥*" is at time 4.

a

Our goal is to show that D°®" has a competitive factor of -—1 for every collection of
: VA for every

tasks with importance ratio of k. We will start by proving some lemmas about the behavior
of D°¥¢". Then we will try to estimate the best possible behavior of a clairvoyant algorithm by
comparison to D°¥¢”. Qur basic strategy is to bound from below what D°”*" achieves during
each interval. This will lead to a global lower bound over the entire execution. Then, we bound
from above what a clairvoyant scheduler can achieve during the entire execution.

P

5.1 Some Lemmas about D°"*"’s Scheduling

In this section we present some technical lemmas about the behavior of D°¥¢". These lemmas
will be used in the next section when comparing D°”*"’s performance with that of a clairvoyant
scheduler. These lemmas concern the relationship between the the interval length and the
value achieved by D°"*" in that interval (lemma 5.3). As well as the relationship between the
computation time and value of tasks abandoned in an interval with respect to the value achieved
in the interval (lemma 5.4 and 5.5).

Lemma 5.2

1. For any task T; in S°,

A; = [r,d)] C BUSY

2. For any task T; in F. Suppose T; was abandoned at time t,pqr, then

[1‘,‘, taban] g BUSY
PROOF.

A processor is idle, under D°¥*" scheduling, only if there is no ready task.

e A task T; of SO does not complete before its deadline hence it is a ready task during all its
executable period. This implies that there is no idle time during the executable period of
T;.

e Similarly, a task of F is a ready task from its release time to the point at which it is
abandoned. Therefore there is no idle time between its release point and its abandonment
point.

14
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Lemma 5.3 For any interval I = (tpegin, teiose),
the length of I, toose — thegin will satisfy

. 1
telose — thegin < ordervalue() + (1 + %) - Istvalue(I) = achievedvalue(I) + 7 Istvalue([)
Recall that ordervalue(I) and Istvalue(I) are the values obtained from the order-scheduled and the
Ist-scheduled tasks respectively during I.
PROOF.

An interval I = [tyegin, tciose), has the following two sub-portions the second of which may be
empty.

1. [tbegin,tfirst_lst]
From the beginning of I to the point in time, tfi;5 15, in which the first Ist-scheduled

task is scheduled. During this period all tasks are order-scheduled and some may complete
their execution.

If no task is Ist-scheduled in I then define tf;5 15t t0 be tiose. In this case the second
sub-portion is empty. '

2. [tfirst_lsta tclose]

During this period, all tasks are scheduled and preempted by Latest-start-time Interrupt.
Only the last task to be scheduled completes.

If there are no Ist-scheduled tasks in I then all tasks that executed from tpegin t0 Zciose
completed successfully. The value achieved is ordervalue(l) and is at least as big as the duration
of execution 4. Hence, the lemma is proved in this case

Otherwise, suppose that T1,T3,---,T,, (m > 1) are the tasks that were lst-scheduled in I.
Hence, Ty was scheduled at %y, 15, later it was preempted (and abandoned) by T, and so forth.
Eventually T;;, preempts Tp,—1 and completes at i, its value v, is Istvalue(T).

Denote by I; the length of the execution of T; during the process above.

T, preempted T,,_, hence v,, > (1 + \/E)vm_l. Which yields 5

Um _ Istvalue(I)

(1+vk)  (1+VE)

Going backward along the chain of preemptions we get:

lm—l < Vp-1 <

< U=t Istvalue(1)
(1+vk) ~ (1+ Vk)m-i

*Recall that a value density is always equal or greater than 1, see assumption 3.2 above.
®Note that always l; < v;. However, for a task that was abandoned a strict inequality I; < v;. holds.

l,-<v,'

forall1<i<m-1 (1)
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T preempted the last order-scheduled task hence (see statement 72 of D°veT)

v1>(1+ \/I;){recentval(tf,-,st_l,t) + value(current task at time tfir5:_151)} (2)
Also,

Lfirstist — lbegin < ordervalue(I) + recentval(tyirst_tot) + value(current task at time trirseist) (3)

This holds because the processor is not idle between tyegi, and ¢ first1st (as part of BUSY)
and the right hand side above represents the sum of the values of all the tasks that were scheduled
between #pegin and tsirss_1se- This sum must be greater than or equal to their period of execution
by the normalized importance assumption (assumption 3.2). Inequalities 1, 2 and 3 imply

7 Istvalue(T)
ttirst_ist — thegin < ordervalue(l) + ————— < ordervalue(l]) + ——~
We have produced the following bound on the distance between tjegin and tjose:
Lelose — tbegin = (tjirst_tst - tbegin) + (tclose - tfir.stht)
= (tfirst_lst - tbegin) + (ll +l 4+ lm)
1 1 1
< ordervalue(I) + Istvalue(I)- [ 1 + + + -+ ———)
0y ststoth: (14 G20+ (g v

o0
1
< ordervalue(I) + Istvalue(I E —_—
() ()£=0(1+\/E):

= ordervalue([) + Istvalue(I) - (1 +
1.
vk

The last equality follows from the fact that achievedvalue(I) = ordervalue(I) + Istvalue(I) by
definition. [J

1
\/—,;)

= achievedvalue(7I) + Istvalue([])

Lemma 5.4 Suppose T; was abandoned during the interval I. Then
v; < (14 Vk) - achievedvalue(J)

Recall that achievedvalue(I) is the total value obtained during I.
PROOF.

Let I = (tsegin, teiose) be an interval. Define the Prospective Value map of I, PVj, as follows:

PVi(t) = ordervalue(t) + recentval(t) + value(current tasks at time t)
where tbegi'n. <t < loose

Claim For every interval, I = [tpegin, tclose)s
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1. PV} is monotone non-decreasing.

2. PV reaches, at the end of the interval, the total value obtained in I, i.e,

PVi(teiose) = achievedvalue(I)

Note: PV is not a function because it might have several values for one time instance since
D°¥®" can make several scheduling decisions at one time instance (see assumption 3.2 ). However,

as a map with the ordered sequence of scheduling decisions as its domain, PV} is a function.
proof of claim.

There are two cases.
The first applies when there is no lIst-scheduled task in I, the other applies when such tasks exist.

Case 1: Suppose that there are no lst-scheduled tasks in I. Then every task that was scheduled does
complete. Let S(t) be the set of tasks that were scheduled (not necessary completed) up to t. One can
verify by induction that

PV[(i): Z Vg

T.'GS(!)

The reason is that no scheduled task is abandoned hence at each moment a task is either the current
task or in Qrecent or had completed. At the closing of I all tasks have completed. Hence,

PVi(terose) = Z v; = achievedvalue([)
T:€S5(tctose)

PV} is monotone (when there are no lst-scheduled tasks) because S(t) is a monotone increasing set
of tasks.

Case 2: Suppose there were Ist-scheduled tasks. Assume that the first Ist-scheduled task, T}, was scheduled
at time tgirs¢_15¢ - Let ¢ be a time instance just before the scheduling of 73, then by definition:

PV[(t) = ordervalue(t) + recentval(t) + value(current tasks at time t)
T is scheduled only if
v > (14 Vk) - (recentval(t) + value(current tasks at time t))

When T3 is scheduled recentval is set to zero hence we can conclude that

PVi(tsirst_tst) ordervalue(tyirst_1st) + recentval(tyirye_ise) + value(Ty)
ordervalue(t) + 0 + value(T})
ordervalue(t) + (recentval(t) + value(current tasks at time t))

PV,(t)

]

\%

Thus, PV} is monotone from tyegin t0 t4irst_ist (as in the case when there are no Ist-scheduled tasks).
It is left to show that PV} continues to be monotone. After ¢ tirst_ist, PV equals to

ordervalue(I) + value(current tasks at time t)

17



because recentval remains equal to zero. This is a monotone increasing value since ordervalue(I) is fixed
and a task T will preempt the current task only if it has a larger value than the current task’s value. In
particular if T; is the last task to be scheduled in I then

PV;

ordervalue(I) + v;
ordervalue(T) + Istvalue(I) = achievedvalue(I)

So, the claim is proved.
end of proof of claim
There is only one way a task, T;, can be abandoned at time ¢:

e T; reaches its LST at t. A Latest-start-time Interrupt is generated. However, T; has insuf-
ficient value to preempt the task executing at time 2.

Hence if T; was abandoned then

v; < (14 Vk)- {recentval(t) + value(current task at time t)}
< (1 + V&) - PVi(t) , by definition of PV
< (1 4+ Vk) - achievedvalue(T) , by the claim

O
Lemma 5.5 Suppose T; was abandoned at time t in I = [tyegin,tciose]- Then,
i 2 di — telose
PROOF.
A task T;, can be abandoned at time ¢ only when:

o It reaches its LST at t. A Latest-start-time Interrupt is generated. However, the current
task is not preempted.

T; reached its LST hence its computation time is at least d;—¢. Also, t < 1,5 by assumption.
Hence the computation time of T; is at least d; — tciose-

O

5.2 How Well Can a Clairvoyant Scheduler Do?

Given a collection of tasks T', our goal is to bound the maximum value that a clairvoyant
algorithm can obtain from scheduling I'. We do it by observing the way D°“*" schedules TI'.
From D°"*"’s scheduling we get the partitioning of the tasks to S°, §? and F we also take notice
of the time periods in which the processor was not idle in this scheduling. The union of these
periods is called BUSY .

18



Definition 5.3 BUSY

Suppose D°¥*" schedules I'. Let BUSY denotes the time during which the processor is not
idle during the execution of I'. For simplicity, the length of BUSY will also be denoted by
BUSY.

Note that BUSY equals the union of all intervals created when D°”¢" schedules T.
O

In order to bound the value that can be achieved from scheduling T', we will offer the clair-
voyant algorithm two gifts that can only improve the value it can obtain. We will show an upper
bound on the value the clairvoyant algorithm can get with these gifts hence bounding the value
it can achieve from the original collection.

e As a first gift, we will give the clairvoyant algorithm the sum of the values of all tasks in
S? at no cost to it (i.e. it will devote no time to these tasks). Then we will see what the
clairvoyant algorithm can achieve on F'U S°.

o As a second gift, suppose that in addition to the value achieved from scheduling the
tasks F' U S° the clairvoyant scheduler can get an additional value called granted value.
The amount of granted value depends on the scheduling chosen by the the clairvoyant
scheduler: A value density of k will be granted for every period of BUSY that is not used
for executing a task.

The clairvoyant scheduler must consider that scheduling a task might reduce the granted
value (since time in BUSY is used). Of course, when this reduction is bigger than the
value of a task then the task should not be scheduled. Suppose the clairvoyant algorithm
had chosen a scheduling for F' U §°. We can assume that no task was scheduled entirely
during BUSY because the granted value lost would be greater or equal to the value gained
from scheduling the task.

We will show that tasks of SO can execute only during BUSY hence this leaves only tasks
of F that were scheduled partially® outside BUSY. Executing T results in a gain of
value(T), but entails a loss of the granted value for the time that T executed in BUSY.

The clairvoyant scheduler has now two options. It can schedule no task during the entire
BUSY period and get only (the whole) granted value or it can use some of BUSY in order
to schedule some of F tasks. We will show that the maximal possible gain from choosing
the second option is bounded by (1 + v/k) - achievedvalue. Putting this altogether will give
the desired result (theorem 5.12).

Example 5.4

‘To see the possibilities opened to the clairvoyant algorithm by introducing the granted value

consider the following example:
The length of BUSY is 5 and the importance ratio, k, is 4. F contains only one task, T,
with computation length 3 and value density 2.

6When the computation time of a task is known precisely when it is released, a task T € F can not be scheduled
completely outside BUSY (see lemma 5.2). However, if the computation time of a task is not exactly known
(section 8), then a failed task 7" may be scheduled completely outside BUSY.
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Without scheduling T the value obtained by the clairvoyant algorithm only from the granted
value is 5 x 4 = 20. If T could have been scheduled without using any of BUSY time then its
value will be added to give 20+ 2 x 3 = 26. However if the clairvoyant algorithm must use 2 units
of BUSY’s time in order to schedule T' then the total value will be only (5 —2) x 4 + 6 = 18,
hence it is better not to schedule T in this case. As a matter of fact, whenever T has to use
more than % units of BUSY ’s time it should not be scheduled.

O

Suppose a clairvoyant scheduler has to schedule a collection of tasks A. We can assume
that it schedules a task only if that task eventually completes. Hence the work of a clairvoyant
scheduler is first to choose the set of tasks A’ C A that will be scheduled and then to work out
the details of the processor allocation among the tasks of A’. We will call all possible selections
of A’ and processor allocation a scheduling of A.

In the scenario above the clairvoyant scheduler can achieve the maximal value of the sum in
equation 4 below ranging over all possible schedulings of F.

value obtained from those _ length of time in BUSY not utilized to 4)
tasks of F that were scheduled schedule the tasks of F

Denote by C(-) the value that a clairvoyant algorithm can achieve from a collection of tasks.
We would like to show that C(F U S°) can not be greater then this maximal value. This will
then give us an upper bound on what a clairvoyant algorithm can achieve.

Lemma 5.6

value obtained by .
length t BUSY t
C(FUS®) < max  { scheduling tasks of + k- 790y 2 tihe i1 BUSY no
possible F
scheduling
of F

PROOF.

value obtained from scheduling
+ tasks of S° during the time not
used by tasks of F

value obtained from

0
C(F U 8°) < max scheduling tasks of F

S° tasks can be scheduled only during BUSY (lemma 5.2 ) hence,
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value obtained from value obtained from scheduling tasks of S°
scheduling tasks of F during the time not used by tasks of F

value obtained by
scheduling F

_ length of time in BUSY not utilized
by tasks of F

IA

+k

The lemma. is proved.

O

With the above gifts, the clairvoyant scheduler can maximize the sum in 4 above and hence
obtain a value of at least C(F U §°) .

Suppose a task Ty € F is scheduled to completion. If T; executes entirely during BUSY
then the left hand factor of the sum is increased only by v; which is smaller than or equal to
k - ¢; while the right hand factor is decreased by k - ¢; giving zero or negative net change. Thus
we assume that Ty executes (at least partially) outside BUSY .

Lemma 5.7 Suppose Ty was abandoned (by D°V°") at time topan and that I = [tyegin, telose] 15
the the interval in which Ty is abandoned. Then, if Ty is to be executed (by the clairvoyant
algorithm) anywhere outside BUSY it must be after tiose.

PROOF.

Ajs = [rf,taban] U [taban, ds]. The first portion of Ay is contained in BUSY (lemma 5.2).
[taban, telose) © I € BUSY, hence if T; is to be scheduled anywhere outside BUSY it must be
after teipse ©

(]

Now we are ready to give an upper bound on how much additional value can the clairvoyant
algorithm achieve by scheduling tasks of F' compared with collecting only the granted value
without scheduling any tasks. We make strong use of the fact that when a task T is abandoned
during I, T’s value can not be too large with respect to achievedvalue(I). We believe the
techniques in this lemma to be widely useful.

Lemma 5.8 With the above gifts, the total net gain obtained by the clairvoyant algorithm from
scheduling the tasks abandoned during I is not greater than

(1 + V) - achievedvalue([)

PROOF.

"Note that parts of [tciose, ds] might be included in BUSY as a new interval may be opened before dys
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Assume that a clairvoyant scheduler selected a scheduling for the tasks of F' considering the
value that can be gained from leaving BUSY periods idle. We can assume that a clairvoyant
algorithm executes a task only if this task eventually completes. If the clairvoyant algorithm
does not schedule any of the tasks abandoned during I the lemma is proved. Hence, assume that
of all the tasks abandoned in I = [tyegin, tciose], the clairvoyant scheduler schedules Ty, Ts, - - - Ty,
(in order of completion). These tasks execute for ly,ls, - I, time after iy (hence, maybe
outside BUSY'). We know that all the /;’s are greater than zero (otherwise there is no net gain).

Lemma 5.4 ensures that the biggest possible value of a task to be abandoned during I'is (1+
(1+Vk)-achievedvalue(I)
k .

Vk)-achievedvalue(T). If such a task has value density k its execution time is
Denote by L the maximal value of this execution time and the length of I3

= max{ (1+ Vk)- ac;ievedvalue(I)

Let j be the index less than or equal to m such that

D LSL<Y hitlin

i< i<

L 111} (5)

If no such j exists define j to be m.

First, assume that we have an equality, Yicili= L. The 3°;c; i < L case is a little more
complicated and will be treated later.

We will show that the net gain from scheduling tasks within a period of L after the end of
the interval can not be greater than (1 + v/k) - achievedvalue(I).

e Suppose that in 5, the maximum is the first term. Then the total net gain from T3, T3, - - - T}
is not greater than

k- li=k-L=(1+ Vk) - achievedvalue(I) (6)

i<i

o If on the other hand the second term is maximal in 5 then the value obtained by scheduling
T; is at most (1 + v/k) - achievedvalue(I) (lemma 5.4).

Now we will show that the net gain from scheduling tasks “after” L is never positive.
Every task T; that executed at a time of at least L after the end of the interval, where
j <t < m, has an execution time of at least d; — t,osc (see lemma 5.5).

d; — taose >  “the point at which T; completes (according to the clairvoyant)” — t,se
Z (tclose + Z lg) ~ Telose
g<i
> L+ Z ly=5L+1

9<s
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For ¢« > j, T; was scheduled by the clairvoyant scheduler but used only /; time after t.se.
Hence, T; executed at least L time before t.,4 that is to say in BUSY by lemma 5.7. The
“loss” from scheduling T; during BUSY is at least k- L. The value obtained by scheduling T; is
at most (1 + v'k) - achievedvalue(I) (lemma 5.4). Hence the net gain is less than or equal to

(14 Vk) - achievedvalue(/) — k - L
(14 Vk) - achievedvalue(I) — (1 + Vk) - achievedvalue(7)
0

IA

We conclude that the clairvoyant algorithm is better off not scheduling any task 7%, j < i< m.
Hence, the lemma is proved for the case that 3°,.;l; = L.

What if L does not equal any of the partial sums" That is, if 3ic;li < L < Figi bic
We will augment the total value given to the clairvoyant by some non-negative amount. Then
we will show that even with this addition the net gain achieved by the clairvoyant algorithm is
bounded by (1 + vk) - achievedvalue(I), hence proving the lemma.

First we will take the value density of T} to be k. This move can only increase the overall
value achieved by the clairvoyant algorithm. We will also “transfer” some execution time (and
hence also value) from Tji; to T;. We will transfer exactly L — 2_i<j li execution time. There
will be a non-negative net increase of (k ~imp(7}+1)) (L — 3;<; ki) in the overall achieved value
of the clairvoyant algorithm and we are back in the case of L = >_i<jli- The total net gain from
Ti,- -+, Tj41 is bounded by (14 v/k) - achievedvalue(I) while the net gain from all other tasks is

zero or negative.

a

Our strategy thus far has entailed partitioning the problem into what the clairvoyant can
obtain with respect to a given interval compared to what D°”®" obtains in that interval. We
now compute an upper bound for what the clairvoyant algorithm can obtain over all intervals.
This may overestimate what the clairvoyant algorithm obtains, because the time periods that
the clairvoyant algorithm uses on the tasks of two neighboring intervals may overlap.

Corollary 5.9 With the above gifts, the total net gain (over the entire ezecution) obtained by
the clairvoyant algorithm from scheduling the tasks of F is not greater than

(1 + Vk) - achievedvalue

PROOF.

Lemma 5.8 measured the maximum net gain per interval. By construction, each task is
accounted for in exactly one interval. Therefore, summing over all intervals we conclude that
the total net gain during the entire execution is less than or equals to (1 4 v/k) - achievedvalue.

O

The previous corollary bounds the value the clairvoyant algorithm could obtain beyond the
granted value. Now, we will estimate the granted value (by bounding the length of BUSY) to
get an upper bound on C(S°U F).
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Lemma 5.10 .

C(S°UF) < k- (achievedvalue + .\%E - zerolaxval) + (1 + Vk) - achievedvalue

(k + 1 + Vk) - achievedvalue + vk - zerolaxval

PROOF.

Lemma 5.6 shows that C(F U §°) is bounded by the maximum, ranging over all possible
schedulings of the tasks of F, of the following sum:

(value obtained by scheduling F) + k - (length of time in BUSY not utilized by F tasks).
Corollary 5.9 above, shows that this sum is less than or equal to
(14 V%) - achievedvalue + k - BUSY

Lemma 5.3, summed over all intervals yields:

BUSY < achievedvalue + 1 - Istvalue

vk

Istvalue(I) < zerolaxval([) always holds because every task that is Ist-scheduled must have
completed at its deadline. This implies that

BUSY < achievedvalue + 1. zerolaxval

vk

Hence,

1
vk
= (k+1+ Vk) - achievedvalue + V% - zerolaxval

C(S°UF) < k-(achievedvalue + zerolaxval) + (1 4+ Vk) - achievedvalue

Which proves the lemma.

a

We gave the clairvoyant algorithm the value of all tasks in S?. We also got a bound on
C(S°U F) . The following lemma shows that the sum of these two values bounds the value the
clairvoyant can get from the entire collection.

Lemma 5.11

C(FUSPUSP) < C(FUS®)+C(SP) < C(FUSY)+ 3 w
T:eSr

PROOF.
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C(-) is a sublinear function For every two collections of tasks A and B the value that a
clairvoyant algorithm can get from scheduling A U B is not greater than the sum of values from
scheduling each collection separately. The reason is that executing tasks of A might interfere
with tasks of B and vise versa.

C(AUB) < C(A)+C(B)
Hence,
C(FuS°u §P) < C(FUS°) + C(SP)
C(SP) can not be greater than the sum of the values of all the tasks in SP. That yields the
desired result.

a

Given a collection of tasks I', lemmas 5.10 and 5.11 give an upper bound on the value the
clairvoyant algorithm can obtain from I in terms of the value obtained by D°"®” (achievedvalue,
zerolaxval and poslaxval). The next theorem puts these results together.

Theorem 5.12 D°¥®" has a competitive factor of W That is, D°V¢" obtains at least .—4-—1770_2

times the value of a clairvoyant algorithm given any task collection T'.
PROOF.

In the notation of the lemmas above, we got from lemma 5.10 that

C(8°U F) < (k + 1 + Vk) - achievedvalue + vk - zerolaxval
We will bound vk - zerolaxval in the above equation.

Vk - achievedvalue = vk - zerolaxval + vk - poslaxval
> Vk - zerolaxval + poslaxval
k - zerolaxval < vk - achievedvalue — poslaxval

Hence, replacing (V% - zerolaxval) by (v/k - achievedvalue — poslaxval) yields:

C(S°UF) < (k+1+ Vk)-achievedvalue + vk - achievedvalue — poslaxval
(1 4+ V%)% - achievedvalue — poslaxval

Using lemma 5.11 we get:

C(FuS®uS?)y < C(FUS®+cC(SP)

C(F U §% + poslaxval
((1 + Vk)? - achievedvalue — poslaxval) + poslaxval
(1 + Vk)? - achievedvalue

IN
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5.3 The Running Complexity of DoV

In the previous section we analyzed the performance of D°"®" in the sense of what value it will
achieve from scheduling tasks to completion. In this section we study the cost of executing the
scheduling algorithm itself.

Theorem 5.13 If n bounds the number of unscheduled tasks in the system at any instant then
each task incurs an O(logn) amortized cost.

PROOF.

DOv¢T requires three data structures, called Qrecent, Qother and Qlst, all of them priority queues,
implemented as balanced search trees, e.g. 2-3 trees. They support Insert, Delete, Min and
Dequeue operations, each taking O(logn) time for a queue with n tasks. The structures share
their leaf nodes which represent tasks.

D°¥¢" consists of a main loop with three “interrupt handlers” within it. The total number of
operations is dominated by the number of times each of these handler clauses is executed and
the number of data structure operations in each clause.

Suppose a history of m tasks is given.

First, let us estimate the number of times each handler clause can be executed. A task
during its lifetime causes exactly one Task Release event and at most one Task Completion event
as well as at most one Latest-start-time Interrupt event. Hence, while scheduling m tasks the
total number of events is bounded by 3m.

Now, we will bound the number of queue operations in each handler clause.

¢ In the handler for the Task Release event (statement 46), there is a constant number of
queue operations. Hence, this contributes a total of O(m) queue operations during the
entire history.

¢ In the handler for the Task Completion event (statement 0) there is a constant number of
queue operations. Hence, this contributes a total of O(m) queue operations during the
entire history.

e In the handler for Latest-start-time Interrupt event (see statement 69), the number of queue
operations is proportional to the number of tasks in Qrecent plus a constant (because the
recently-preempted tasks are all inserted into Qother, statement 74). How many tasks can
be in Qrecent throughout the history? A task can enter Qrecent only as a result of Task
Release event there are at most m such events. Hence, the total number of tasks in Qrecent
is at most m, which means that the total number of queue operations is O(m) during the
entire history.

We conclude that the total number of operations for the entire history is O(mlogn) and the
theorem is proved.

a

6 Conflicting Tasks

What if the collection of tasks to be scheduled is underloaded, that is to say that all tasks can
be scheduled to completion? We would like the on-line scheduler to be optimal in this case.
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Dove™ is optimal for underloaded systems. In fact, it has an even stronger performance
guarantee: We devise a procedure (Remove_Con flicts) to partition the tasks into two classes.
The conflict-free tasks are those that can be scheduled to completion without preventing any
other task from completing (in a sense to be made precise in the algorithm below). A task is
conflicting otherwise.

We will show that D°¥¢" schedule to completion all conflict-free tasks (in particular all tasks
in an underloaded system) and also obtains at least (1—+1\/_T)2 the value a clairvoyant algorithin
can get from the conflicting tasks.

The definitions of underloaded and overload systems in section 3 are natural and widely
accepted. However, even when a system is overloaded it is possible that some periods are
"underloaded” i.e., it is possible that some tasks will be scheduled to completion by all clairvoyant
algorithms since they do not prevent any other task from completion. One can define the periods
occupied by the aggregated tasks as overloaded intervals. We prefer this definition to that of [2, 7]
because it does not depend on the behavior of D8.

1  Function Remove Conflicts (T ) ;

2 if num_of_tasks(I') == 1 then

3 return(T);
4 end {if};
5  collection_num_of_tasks :=2
6 repeat
7 Select a collection of tasks S = T;,, Ti,, -, Ticontecrion—mumos_sanns Of SiZE
collection_num_of_tasks such that
r = Ming,es{r:} and d = Maz1,c5{d;} and
ci, +ci;+---+ Cicoliection_num—of_tasks = (d - 7‘)
8 if (such a collection is found) then
9 mark all the tasks in S as conflicting tasks;
10 Create a task T with release time r and deadline d
and with no slack time;
11 (* T is an aggregated task +)
12 return( remove_conflicts( I' — S + {T}));
(* Starts again with the new collection of tasks with a smaller col-
13 lection of tasks. When the recursive calls reach the bottom of the
recursive the resull is propagated upwards (tail recursion). *)
14 else
15 collection_num_of_tasks := collection_num_of_tasks + 1;
16 end {if} ;

17 until collection_num_of_tasks > num_of_tasks(T")

THE REMOVE CONFLICTS ALGORITHM.?

8 Also, in [2, 7] a task is “overloaded” if and only if its deadline is in an overloaded interval. This is not
reasonable because even tasks that have enough slack time to complete ”safely” before the overloaded interval
starts will be considered as “overloaded”.

% Another version of this algorithm is an iterative algorithm that at each iteration selects non-deterministicly
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Example 6.1 To see how remove_conflicts works consider the following example. Suppose we are

given the following collection of tasks:

” Task | Release-Time [ Computation-Time | Deadline |

T 0 4 6
T, 2 4 6
Ts 0 2 8
Ty 6 2 8
Ts 0 1 9

In the beginning remove_conflicts is invoked with the above collection. The algorithm seeks
a conflicting collection S, starting with collections of size two. § = {T, T2} is such a collection
since the computation time of these tasks (combined) is 8 but their combined execution periods
has only a length of 6. Hence, these tasks are conflicting tasks and an aggregated task T, is
created with release time 0, computation time 6 and deadline 6.

The aggregated task replaces 73 and T and remove_conflicts is invoked with the new col-
lection. This time there is no conflicting collection of size 2 but there is one of size 3, namely
{T%,T5,T,4}. This is true since the combined computation time is 10 while the length of the
combined execution periods is only 8. These tasks are replaced by a new aggregated task T;
which is created with release time 0 and computation time 8.

The new aggregated task replaces T, T35 and T4. remove_conflicts is invoked again but this
time there are no conflicts. The process terminates. The following table summarizes the results:

[] Task l Release-Time l Computation-Time | Deadline l Final Status I

T conflicted

T, conflicted

Ts conflicted

T 0 6 6 aggregated task
Ty conflicted

T 0 8 8 aggregated task
Ts conflict-free

Definition 6.2

o CONFLICTING AND CONFLICT-FREE TAsks: We are given a set T' of original tasks. A
task T is said to be conflicting if it was “marked” as such by the initial or any recursive

a minimal set of conflicting tasks and replace them by an aggregated task. A collection is minimal in the sense
that removing any one task will make the remaining tasks schedulable. Our algorithm always selects a minimal
collection with the smallest possible number of tasks. Note that the purpose of this algorithm is to define conflicting
and conflict_free tasks. No scheduler needs ever to execute it.
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call of remove_conflicts (statement 9). Conflicting tasks are merged into aggregated tasks.
A task (original or aggregated) that is not conflicting is said to be a conflict-free 1° .

When all the tasks (original or aggregated) of a collection are conflict-free the collection is
conflict-free and otherwise conflicting.

6.1 The Performance Guarantee of D°v¢"

In the following assume that a collection T is given.

Lemma 6.1 T is overloaded if and only if it is conflicting.
PROOF.

Assume I' is conflicting we will show that I' is overloaded. Let T be the first aggregated task
to be created by remove_conflicts when invoked with I as its input. T is an aggregate of original
tasks. This means that the sum of the computation times needed for these tasks is greater than
the time between their earliest release and latest deadline. Hence these tasks can not be all
scheduled (see line 7 of remove_conflicts). We conclude that T is overloaded.

Assume I is overloaded we will show that I is conflicting. Let 7 be a minimal set of tasks in
I’ that can not be scheduled. 7 is minimal in the sense that removing any one task will make the
rest of the tasks in 7 schedulable !1. Let r be the earliest release time and d the latest deadline
among all tasks in 7. Let 7 be scheduled by D.

Claim

When D schedules 7, there is no idle time between r and d.

proof of claim.

Suppose the system is idle time at time ¢, then at that time there is no ready task. This
means that 7 can be partitioned into two non-empty sets (one with all tasks with deadline
before t and the other with deadline after t). At least one of these sets can not be scheduled 2.
contradicting the minimality of 7.
end of proof of claim

Since the claim shows that there is no idle time, and that D could not schedule all the tasks
even while executing continuously, we conclude that the sum of computation times needed for
the tasks of 7 is greater than the time that can be possibly allotted to them.

Remove_conflicts must have found a conflict in I'. To see this notice that as long as no
conflict is found, the counter collection_num_of_tasks is advanced and is bound to reach the
value of num_of_tasks(7). At that point all the tasks of 7 are still present (i.e. were not merged
into an aggregated task) and satisfy the condition of statement 7.

Hence, T’ is conflicting.

a

1T is conflicting if there a collection of tasks 7 (original or aggregated) such that all the tasks of = can be
scheduled but not all the tasks in U {T} can be scheduled.

" Such a minimal set must exists since the entire set of tasks, I', can not be scheduled but every singleton set
of tasks can be scheduleed.

!2Recall that D is an optimal scheduler for underloaded systems [9, 4).
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Lemma 6.2 When scheduling ', D—the earliest-deadline-first algorithm— will schedule to com-
pletion all conflict-free tasks.
PROOF.

Let C be the time that can be “occupied” by the aggregated tasks, that is the pointwise
union of all their executable periods.

Cc = UT; is an aggregated taak[rhdi] (z)

where the union is a pointwise union. One can verify (see statement 10 of remove_conflicts)
that

Cc = UT; is an (original) conflicting task[riadi] (“)

Remove_conflicts(I') contains all the conflict-free tasks. It is conflict-free, otherwise re-
move_conflicts would not have halted. Hence, by lemma 6.1 all the tasks in remove_conflicts(T)
can be scheduled by D. The aggregated tasks of remove_conflicts(I') can not be scheduled outside
C. Moreover, all of C must be occupied by aggregated tasks since they have no slack time.
Hence the conflict-free tasks are scheduled by D using only time that lies outside C.

We showed that D schedules all the conflict-free tasks when the collection to be scheduled is
remove_conflicts(I'), but does this hold when D schedules the original set of tasks, I'? The answer
is yes. When scheduling I', equation (¢2) above shows that all the time outside C is available
to the conflict-free tasks hence, by the previous paragraph, all conflict-free tasks complete their
execution when T' is scheduled by D.

8

Corollary 6.3 D can schedule all the conflicting-free tasks using only time outside C.

a

Lemma 6.4 Suppose T is not the current ezxecuting task and is not in Qrecent. If T has an
earlier deadline than all the tasks in Qrecent and the current executing task (if any), then T ,
the current ezecuting task, and all the tasks in Qrecent can be scheduled by D.

if and only if

availtime > remaining computation time(T)
PROOF.
The proof is by induction on the scheduling decisions of D°¥*". The induction is done sepa-

rately on each interval.

a
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Definition 6.3

REAL LST EVENT : According to D°"*" scheduling, when a Task Completion event occurs
the next task to be scheduled is the ready task, T', with the earliest-deadline. It is possible that
the slack-time of T reached zero exactly when a Task Completion event occurred, thus creating
an LST event for T. We will call this LST event a false event since T would have been scheduled
even without the interrupt. All other LST events will be called real.

In all of the following we ignore the false events. Only real LST events are considered.

Lemma 6.5

1. Let C be the time that can be occupied by the aggregated tasks,

C = UT; is an aggregated task["'ia di]

then, outside C, D°V°" schedules according to earliest-deadline-first (D).

2. Under D°V®" scheduling a conflict-free task will never generate a (real) Latest-start-time
Interrupt.

3. Let A be an aggregate task in remove_conflicts(I') with parameters (r,,d,), then D°v®" will
complete on or before v, all conflict-free tasks with deadline on or before d,.

PROOF.

Recall that the aggregated tasks in remove_conflicts(I') are those tasks that were created
“from” conflicting tasks. List all the aggregated tasks according to deadline order

TalaTaQ,Tas’ e
By the construction of these tasks we know that
Tay < gy < Tgy <dgy <Tgy-+-

(Actually, from remove_conflicts one can infer only that d,, < r,, but if it happens that
dq, = T4, We can, for the purpose of the the following proof merge T,, and T,, into one aggregated
task with parameters r,, and d,,)

D" departs from the earliest-deadline-first scheduling policy only when one of the following
events occurs:

o The current task is Ist-scheduled i.e., it was scheduled as the result of a Latest-start-time
Interrupt.

o At a Task Release event or at a Task Completion event, the task with the earliest deadline

among all ready tasks is not scheduled because availtime is too small (see statement 54
and 65 of Dover).
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De°v¢" starts to schedule according to earliest-deadline-first. Before r,, there is no conflict
hence by lemma 6.1 there is no overload. This means that neither of the above conditions occurs
(lemma 6.4). Hence, before the first aggregated task (up to 74, ), D°”" schedules in the same
way as D. Also, from corollary 6.3 we conclude that all conflict-free tasks with deadline on or
before d,, completed on or before g, .

Between the first and second aggregated task, i.e., between d,, and r,, there can not be any
ready conflicting tasks because all conflicting tasks have their deadlines before d,, or release
time after r,,. So, during this time only conflict-free tasks are scheduled. Moreover, they will be
scheduled according to earliest-deadline-first. We will show this by showing that neither of the
two cases above can hold. A conflict-free task would not create a real LST event ( corollary 6.3
13'). Also, a task with the earliest-deadline will be immediately scheduled. This holds because,
if it is delayed, then D encounters an overloaded situation while executing the conflict-free tasks
outside C. This contradicts corollary 6.3.

We conclude that up to r4,, D" acts like D and all the conflict-free tasks with deadline
before d,, complete before r,,. The induction can proceed through the entire list of aggregated
task and the lemma is proved.

O
Corollary 6.6 D°" will schedule to completion all conflict-free tasks.

Lemma 6.7 Let A be an aggregate task in remove_conflicts(T') with parameters (r4,d,), then
during (74,d,) a conflict-free task will be scheduled by D°V¢" only if there are no ready conflicting
tasks.

PROOF.

Lemma 6.5 states that a conflict-free task with deadline on or before d, would complete
before r,. So, if any conflict-free task 7" with release time r and deadline d is to be scheduled
during A, it must satisfy d > d,.

Suppose at time t € (r,,d,) there is a ready conflicting task 7;. Then d; < d, must hold,
because T; must be a part of the aggregated task A 14 15,

Hence, at time ¢ all ready conflicting tasks have deadlines before the deadline of any conflict-
free task. A conflict-free task can be scheduled, in these circumstances, only by a Latest-start-time
Interrupt. This can not occur because a conflict-free task will not generate a (real) Latest-start-
time Interrupt (lemma 6.5)

O

Theorem 6.8 D°Y®" schedules to completion all conflict-free tasks and obtains at least Tﬁ-l\/'T)?

the value a clairvoyant algorithm gets from all other (i.e., conflicting) tasks.

13As a matter of fact the conflict-free tasks might have even used some of the time of C' (when scheduled by
DOUB")‘

14 We say that, a task T is a part of an aggregated task A if it is one of the tasks that were “merged” to create
A.

15T: is a conflicting task hence it is a part of an aggregated task, B, if this task is not A then the two aggregated
tasks should be merged contradicting the fact that A is a task in remove_conflicts(T').
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PROOF.

The first part of this lemma is merely a repetition of corollary 6.6. From lemma 6.7, we
conclude that D°¥®" schedules the conflicting tasks regardless the presence of the conflict-free .
tasks. Suppose the clairvoyant algorithm has to schedule only the conflicted-tasks. It can
schedule this tasks only during C. But we have just shown that D°”*" schedules the conflicted
tasks as if the conflict-free tasks do not exist. Since D°*" has a competitive factor of (T;\l/"TV it

is guaranteed to achieve at least this fraction of what a clairvoyant algorithm can achieve from
all conflicting tasks.

O

7 Gradual Descent

In the previous sections we assumed firm deadlines. That is, a task has zero value if it misses
its deadline. We would like to generalize to soft deadlines, which means that a task may have
some value even after its deadline.

We assume here a soft deadline scheme called gradual descent and show that a suitable variant
of D°%¢" is (T++/_k)—2 competitive in this case. D°"" is also Zl—+—l\/ﬁ5 competitive in some possible
generalizations of this scheme. We discuss these generalizations at the end of this section.

7.1 Exponential Gradual Descent

Consider the following “ezponential” value assignment for gradual descent. If a task T; with
computation time ¢; and value v; does not complete by its deadline d; (we call this deadline, the
zero’th deadline and denote it by d?) then a value of % can be obtained if it completes by d; + 4.
This “deadline” is denoted by d}. In general a value of 3v is obtained the task completes by its
y'th deadline, df = d; + § + % +--- + 7v. We keep the list of deadlines finite by postulating
that a task’s value density can not go below 1. This means that the index of the last deadline
after which the tasks has zero value is |log,(imp(T}))| -1 = [logg(%',i)J -1
For notational convenience any task 7; will have associated descending tasks denoted by
T°,T), T2, - -, Tillogz(imp(T.'))J-l

where the release times and the computation times of all these tasks are equal to the release
time and the computation time of T;. T} has a firm deadline at dY and a value of 35+ Only
one of the tasks associated with T; can possibly complete. That is, if we say that an algorithm
executes T, we mean that T; completes by deadline d¥, but after deadline d¥ .

7.2 A Variant of D°*" for Gradual Descent

We modify the Latest-start-time Interrupt handler of D°”*" in such a way that when T} is to be
abandoned because it reached its LST but does not have enough value to be scheduled (see
statement 80 of D°¥"), T? is indeed removed from all the data structures but in addition a task
release for T} is simulated. 7}’s remaining computation time is set to the remaining computation
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time of T2. In the same way, if 7} is to be abandoned then a third task is “released”. This
process continues as long as the value density does not go below 1.

7.3 Analysis of D°*" in the Gradual Descent Model

The analysis is similar to one in section 5. We will discuss the differences only. Suppose that
a collection of tasks I' with importance ratio k is given. and D°”*" schedules this collection.
We partition the collection of tasks according to the question of which associated tasks (if any)
completed.

o Let S? denote the set of tasks that completed successfully and that ended some positive
time before their zero’th deadline.

e Let SO denote the set of tasks that completed successfully but ended exactly at their zero’th
deadline.

o For 1 < y < |log2k] — 1, let S¥ denote the set of tasks that completed successfully after
their (y — 1)’th deadline but not after their y’th deadline (i.e., the y’th associated task
completed).

o Let FAIL denote the set of tasks that never completed.

We will start by modifying the technical lemmas of subsection 5.1 to the new setting.

7.4 Lemmas about D°”*"’s Scheduling

For notational convenience we define a minus one deadline d;! which equals to the zero’th
deadline d?.

e In this setting lemma 5.2 reads

Lemma 7.1

1. For any task T; in SY (with y > 0). Suppose T} completed at time teompiete < dY, then

[1‘,‘, d?_l] g [Ti,tcomplete] g BUSY

2. For any task T; in FAIL. Suppose T; was abandoned at time t,p,y, then

[Ti’ taban] g BUSY

PROOF.
The proof is similar to that of lemma 5.2.

a0
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e Lemma 5.3 holds without change. Note that we continue to make the normalized importance
assumption, because we never allow the value density to fall below 1.

e Lemma 5.4 holds without change.

e Lemma 5.5 reads:

Lemma 7.2 Suppose Tf" was abandoned at time t in I = [thegin, teiose].- Then,
¢ > d? — telose
PROOF.

The proof is the same as the proof of lemma 5.5.

a

7.5 How Well Can a Clairvoyant Scheduler Do?

As in subsection 5.2, given a collection of tasks I', our goal is to bound the maximum value that
a clairvoyant algorithm can obtain from scheduling I'. We observe the scheduling of T’ by D°ver
which gives rise to the definition of S?, the §¥’s and FAIL. As before, BUSY is defined to be
the union of the periods in which the processor was not idle (under D°¥*"’s scheduling).

The clairvoyant algorithm is offered the same two gifts as before. The first is the sum of
the values of all tasks in S” at no cost to it. The second gift is the granted value. That is, in
addition to the value obtained from scheduling

LATE = (S°U S*'y.--Slesk=1 y FAIT)

a value density of k£ will be granted for every period of BUSY that is not used for executing a
task of LATE. By a similar argument to lemma 5.6 we can see that!®

value obtained by length of time in BUSY not

C(LATE) < max scheduling tasks of + k- = b i by tasks of LATE
. LATFE
possible
scheduling
of LATE

In lemma 5.8 we bounded the net gain that the clairvoyant algorithm could get from schedul-
ing tasks of F !7. This was done by examining each interval separately. If T € F is scheduled

1®Recall that C(FAIL) denotes the value that a clairvoyant algorithm can achieve from scheduling (any subset
of) LATE.

17Note that in section 5 the clairvoyant scheduler could not make any net gain from tasks of S° that completed
in I because they can be executed only during BUSY. This is not the case here because if T¥ completed in I, the
clairvoyant algorithm could choose a different completion point for T¥ or even to abandon it in favor of another
associated task 77 with z # y.
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then its value is accounted for in the interval in which T' was abandoned by D°”*". Here, the
method of relating the value of a task T € LATE to the interval in which it is accounted for
is more complicated. Suppose the clairvoyant algorithm chose to execute the z’th task of T; to
completion. D°¥°" could have chosen to complete any of the associated tasks of T; (T; € S¥ for
some y) or none (T; € FAIL). In the first case we account for T7 in the interval in which Dover
completed T;; in the second case, in the interval during which 77 was abandoned.

Assume that a clairvoyant scheduler selected an optimal scheduling for the tasks of LATE
considering the value that can be gained from leaving BUSY periods idle. The execution of a
task can give a positive net gain only if the task executed (at least partially) outside BUSY .
The following lemma shows that such execution may take place only after ¢.,s.

Lemma 7.3 Suppose the associated task T7 of T; € LATE is scheduled to completion by the
clairvoyant algorithm. Suppose that T; is accounted for in I = [tpegin,tciose]. Then, if T; is to be
executed (by the clairvoyant algorithm) anywhere outside BUSY it must be after t.jose.

PROOF.

There are two cases:

e D°¥*" never completed T; (T; € FAIL). In this case let t be the time when D°”*" abandoned
T?.

T7 can be executed only during A7z which is is [r;, f] U (¢, d}]. The first portion of Ar: is
contained in BUSY (lemma 7.1). The second portion is contained in I. Hence [r;,tc/pse] C
BUSY.

o D% completed T} for some y. Let t be the completion time of T7.

A similar argument as above for AT‘.y = [ri,t] U [t, d¥] shows that [rj,tqose] C BUSY .

Hence in both cases, if T7 is to be executed outside BUSY it must be after Zs.

a

e Lemma 5.8 has to be replaced by the following,
Lemma 7.4 With the above gifts, the total net gain obtained by the clairvoyant algorithm from
scheduling the (associated) tasks accounted for in I is not greater than

(1 4+ V) - achievedvalue(I)

PROOF.

Let Ty,T3,- T be those tasks that are accounted for in I = [tpegin,tclose] and that the
clairvoyant algorithm scheduled after .5 (in order of completion). These tasks execute for
Li,lg,- -1, time after t.,5. (hence, maybe outside BUSY by the above lemma).

Denote by L the following value
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I ma,x{(l + vk) -acI}:ievedvalue(I),ll} R

Let j be the index less than or equal to m such that
Zli <L<lip+ Zli
Y] i<y

If no such j exists define 7 to be m.
First, assume that we have an equality, 3 ;<; l; = L.
The proof now has two parts.

OPart 1 :
We will show that the net gain from scheduling tasks within a period of L after the end of the
interval can not be greater than (14 v/k) - achievedvalue(I).

e Suppose that in 7, the maximum is the first term. Then the total net gain from Ty, T3, - - - T}
is not greater than

k- Zl; = k- L = (1+ V) - achievedvalue(I) (8)
1<)

e Suppose the second term is maximum in 7 and that the z’th associated task of T was sched-
uled by the clairvoyant algorithm. If 7f was abandoned in I (by D°%*") then lemma 5.4
ensures that its value is bounded by (1 + V/k) - achievedvalue(I). The other possibility is
that D°*" completed T} in I. If 2 > y then value(T?) < value(T}) but value(T}) is

a component of achievedvalue(I) so must be less or equal to it. z < y implies that T}
executed to completion before tjose, since d? < df < toose — a contradiction.

Hence, in any case, the value obtained by scheduling 7} is at most (1+\/l;)-achievedvalue(1 )-

QPart 2 :

Now we will show that the net gain from scheduling a task T; (j < ¢ < m) L time after the end
of I is never positive. Here we have to distinguish between two cases depending on whether
D" completed or abandoned T; in I.

o DoV completed T;

Suppose that D°**" completed T} at tcompiete € I and that the clairvoyant algorithm chose
to schedule T7.

There are two possible cases:

-z
Lemma 7.1 shows that

[Ti,df] C [7'{>tcomplcte] C BUSY

This means that T7 executes during BUSY, a contradiction.
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- z2 Y
The gradual descending scheme ensures that,

T ST T TR
i = f+3+7+ 45

Ci
4+ (=g

z

From lemma 7.1 we see that

d? < d?—l < tcomplete < telose € BUSY

Hence we conclude that

c:
df S tclose + (Ci - '2";‘

T7 must complete at or before d? implying that the clairvoyant algorithm schedules
T? for at least 5+ time before t;o5. hence in BUSY. The loss from the execution
during BUSY is at least % X k while the value of 77 is at most &2§_k Hence the net

gain is not positive.

o T; € FAIL

Suppose that the y’th associated task of T; was scheduled by the clairvoyant algorithm
and that T was abandonded by D°**" in I = [tpegin,tciose]- Ty has an execution time of
at least d? — tyo5e by lemma 7.2.

d? —tcose > “the point at which T completes (according to the clairvoyant)” — tose
Z (tclose + Z lg) - tclose
g<i
> Lt+) lg=L+l

9<i

T} was scheduled by the clairvoyant scheduler but used only I; time after t.o5.. Hence,

T; executed at least L time before ¢.i,5e that is to say in BUSY (lemma 7.3). The “loss”
from scheduling T; during BUSY is at least k- L. The value obtained by scheduling T; is
at most (1 4 Vk) - achievedvalue(I) (lemma 5.4). Hence the net gain is less than or equal
to

(1+ Vk) - achievedvalue(I) - k- L
(1 + V%) - achievedvalue(I) — (1 + Vk) - achievedvalue(I)
=0

IA
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What if L does not equal any of the partial sums? That is, if Licili <L <Y icipr li- Asin
the proof of lemma 5.8, we augment the total value given to the clairvoyant by some non-negative
amount. Even with this addition the net gain achieved by the clairvoyant algorithm is bounded
by (1 + V) - achievedvalue(TI), hence proving the lemma.

O

¢ Corollary 5.9 holds with LATFE replacing F.

Before we continue we must clarify the meaning of poslaxval and zerolaxval in this setting.
poslaxval denotes the value obtained by tasks that completed before their zero’th deadline (tasks
in SP). zerolaxval denotes the total value obtained by tasks that completed at or after that
deadline (i.e., tasks in §OU ST U ... §liog2k]-1),

e Lemma 5.10 holds without change given these new definitions of poslaxval and zerolaxval.
e Lemma 5.11 holds with LATFE replacing F U §°.

Theorem 7.5 In the exponential gradual descent model,
ver 4 1

D°ve" has a competitive factor of Pk

PROOF.

Proof as in theorem 5.12.
O
7.6 Inherent Bounds

The inherent bound given by Baruah et. al. [2, 3] can not be directly applied here. Hence, it is
not clear whether D°*" is optimal in this setting. It might very well be that the introduction
of descending value schemes helps the on-line scheduler more then it helps the clairvoyant one.
Thus, the question of finding the inherent bounds in this case is open.

7.7 Performance Guarantee for Underloaded Periods

In the gradual descent model we define an underloaded collection of tasks as a collection such
that all its tasks can be scheduled by the zero’th deadline (i.e., with their full value). It is clear
that D°¥¢" will get 100% of the value for such a collection since it will execute according to
earliest deadline first scheduling.

7.8 Other Gradual Descent Schemes

In this section we presented a specific scheme of gradual descent. In fact, the current argument
can provide the same result for more general schemes of descending value.
All schemes must have the following properties:

¢ The value density of a task must not go below 1 (used in lemma 5.3).

e For every possible associated task 77 of T;,
df < d? + ¢;
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and

(d? — d?) x k > “the value of of T?”

(used in part 2 of lemma 7.4)

Within these constraints, many schemes are possible. Some tasks can have firm deadlines;
others may have descending values. The base of the exponent (2 was an arbitrary choice) can
be different for different tasks.

8 Situations in Which The Exact Computation Time of A Task
Is Not Known

Suppose the on-line scheduling algorithm is not given the exact computation time of a task upon
its release. However, for every task T;, an upper bound on its possible computation time denoted
bY €imaz, is given. Also, the actual computation time of T;, denoted by c;, satisfies:

(1-€):Cimazr < € < Ciimaz

Where, 0 < € < 1 is a given error margin which is common to all the tasks. We make the
following additional assumptions:

Assumption 8.1

e THE AcTUuAL COMPUTATION TIME Is ENVIRONMENT-INVARIANT: The actual compu-
tation time of a task does not depend on the point in time in which it was scheduled, the
number of times it was preempted and rescheduled etc.

e THE ACTUAL COMPUTATION TIME Is NoT KNow BEFORE THE COMPLETION POINT:
An on-line scheduler can not know the exact computation time of a task until it completes.

O

Some terms has to be redefined in the new set up:

Definition 8.2 ¢ UNDERLOADED COLLECTION OF TAsks: A collection of tasks is under-
loaded (in this setting) if the actual computation times enable execution of all the tasks to
completion.

e IMPORTANCE RATIO: The importance ratio, k, of a collection with an error margin of €
is defined to be the ratio of the largest possible value density to the smallest possible value
density.

. vy RS
max; 1—-€)-¢i max 1 max; Ci,maz
k= — (O%mer _ : )

min; —%5— (1-¢€) min; =2~
Ci,mazx Ci,mazx

Here, the normalized importance assumption (assumption 3.2) means that min; ?”"{: > 1.

40



8.1 An Inherent Bound On The Competitive Factor

The inherent bound proof given in [2, 3] can be applied here as well. In the notation of those

references, all the major tasks execute at their longest possible computation time with an actual

value density 1 while all the associated tasks execute at their shortest possible computation time

and value density k. This argument shows that no on-line scheduler can achieve a competitive
1 _

factor greater th:.m Trev et

8.2 Underloaded Systems

Example 8.3 Suppose we are given the following collection of two tasks:

” Task I Release-Time ] Maz. Computation-Time | Value l Deadline |

Ty 0 1 1 1
T 0 200 200 200

For an error margin € < ﬁ this collection will always constitute an overloaded system.
However, if € > ﬁ then depending on the actual computation times, the system may be either
underloaded or overloaded.

a

Theorem 8.1 An on-line scheduler that guarantees 100% of the value for an underloaded system
has a zero competitive factor.
PROOF.

Suppose an on-line scheduler S guarantees 100% of the value for underloaded systems. Sup-
pose the tasks of example 8.3 with error margin of € = -2—3—0 are scheduled by §.
Consider the following possible cases:

1. The actual executing time of 7} is the maximum possible — 1 while that of T% is the
minimum possible — 199. In this case the system is underloaded and .5 should be able to
schedule both tasks to completion. That is schedule Ty between 0 and 1 and T, from 1 to
200.

2. The actual executing time of both T; and T are the maximum possible. In this case the
system is overloaded and only one of the tasks can possibly complete. However, S can not
distinguish between case 1 and case 2 (not before time 200). Hence, S will schedule T}
between 0 and 1 and T3 will reach its deadline without completing its execution.

In the second case, § obtains a value of 1 out of the possible value of 200. Hence S has a
competitive factor of at most 53—0. Of course the number 200 above is arbitrary and can be as
large as wanted, which gives the desired result.

a
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8.3 Overloaded Systems

Theorem 8.1 shows that we can not guarantee both a positive competitive factor and a 100%
the value for an underloaded system.
The earliest-deadline-first algorithm is an optimal on-line scheduler for underloaded systems.
3 s over H HY 1
We will show that a version of D can achieve a competitive factor of FSY EIveRSTTEY v,

We utilize the following version of Dove":
e k is taken to be as in equation 9.

e D°¥®" assumes that the computation time of a task to be the maximum possible — ¢; mqz.
This affects the values of availtime, lazity, remaining.computation_time and the LST
point of a task (statements 16, 19, 20, 31, 50, 54, 59, 60 and 70).

Theorem 8.2 D°¥®" has a competitive factor of
PROOF.

1
(1+VE2+(€k) 1+VE)+1

The proof will be an adaptation of the analysis for the case of exact knowledge of computation
time in section 5. The following is a list of modification that are needed in that analysis.

1. Lemma 5.5 should read :
Cimazx > di — Lelose

Hence,
¢ 2 Cimaz * (1 - €) > di —teose — € Cimaz

2. In this set up lemma 5.8 should be replaced by:

Lemma 8.3 The total net gain from scheduling the tasks abandoned during I is not greater
than

(1 + vVE)(1 4 € - k) - achievedvalue

The proof is essentially the same but here the value of L is taken to be 8:

L = max{(1+ vk)- (% + €) - achievedvalue(I),[;}

¢ The total net gain from those tasks of F', T}, Ty, - - - T;, whose total computation time
after t.,5e €quals L, is not greater than

k-L=(1+VkE)(1+e-k)-achievedvalue(I)

®Instead of L = max{(ux/i).achi:vedvalue(l),11} in section 5
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e Every other task, T; where j < ¢ < m, has an execution time of at least
di — telose — €+ Ci,mazx >L+1li—e€- Ci,mazx

T; was scheduled by the clairvoyant scheduler but used only /; time after #,,.. Hence,
T; executed at least L — € - ¢; mq, time before .05 that is to say in BUSY.

L—-e- Ci,max

> L—e€-v , by assumption 3.2 ¢; mar < v;
> L —¢-(14Vk)- achievedvalue(I) , by lemma 5.4

> (1+Vk)-achievedvalue(1)

= k

The “loss” from scheduling 7; during BUSY is at least k- Q+‘/E)'aChi:V°dvalue(I). The

value obtained by scheduling T; is at most (1 + v/k) - achievedvalue(I) (lemma 5.4).
Hence the net gain is less than or equal to zero.

3. Lemma 5.10 should state that

C(S°UF) < (1+Vk)(1+e-k)-achievedvalue + k - BUSY

(1 + VE)(1 + € - k) - achievedvalue + k - (achievedvalue + \/LE - Istvalue)

(14 VEk + k + (e - k)(1 + vk)) - achievedvalue + V% - Istvalue
(1 + VE)? + (e - k)(1 + Vk)) - achievedvalue

IN

IN

The first inequality follows from the fact that lemma 5.3 holds without change. The last
inequality is due to the fact that Istvalue is always less or equal to achievedvalue.

Finally we can prove the theorem:

C(I) C(FUS°U8P) < C(FUS® + C(5P)
C(F U §°) + poslaxval
((1+ Vk)? + (€ - k)(1 + V/k)) - achievedvalue + poslaxval

((1 + Vk)? + (- k)(1 + VE) + 1) - achievedvalue

ININIA

The last inequality is due to the fact that poslaxval is always less or equal to achievedvalue.
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9 Conclusions

This paper has presented an optimal on-line scheduling algorithm for overloaded systems. It
is optimal in the sense that it gives the best competitive factor possible relative to an offline
(i.e., clairvoyant) scheduler. It also gives 100% of the value of a clairvoyant scheduler when the
system is underloaded. The model accounts for different value densities and generalizes to soft
deadlines.

This work leaves many problems open. Here is a small sampling.

¢ In practice, real-time systems have some periodic critical tasks and other less critical tasks
which may be aperiodic. A typical solution (as taken in the Spring Kernel for example [14])
is to devote certain intervals to the critical tasks and to allow the less critical tasks to
run during the rest of the time. D°¥®" gives its usual guarantee with respect to the less
critical tasks (the accounting is a little more difficult since useful time has “holes” in it
corresponding to subintervals allocated to critical tasks). A much more subtle question is
what is a good competitive algorithm that can take advantage of the cases when a given
critical task executes in less time than is allocated for it. We suspect the competitive factor
may be worse, since the clairvoyant algorithm might then execute a task that D°”®" has
unnecessarily abandoned.

For the case of uncertain computation time, can the gap between the complexity bound of
v +\1/E)2 and the algorithm guarantee of be closed?

1
A+VE2+(ek)(1+VE)+1°

For the gradual descent model, is D°¥*" an optimal scheduler? What is the inherent bound
in this case?

What guarantees can be given for parallel scheduling algorithms?

o In general, the question of proof tools for such systems is open. We believe that the
technique in subsection 5.2 will prove to be very useful.
¢ What performance guarantees can be given in more general value descending schemes?
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