N

N

Integrating lazy evaluation in strict ML
Michel Mauny

» To cite this version:

Michel Mauny. Integrating lazy evaluation in strict ML. [Research Report] RT-0137, INRIA. 1992,
pp-28. inria-00070031

HAL Id: inria-00070031
https://inria.hal.science/inria-00070031
Submitted on 19 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00070031
https://hal.archives-ouvertes.fr

1ques

-]

Rapports Techn

S2
8

48NS

RS

137

NO

AV 22N A

A
e

mwwm
,m.. N,

%
5

i
N

AT YL 2 AL

e

4l

tion

Programma

ique,

Programme 2

Calcul Symbol

VAN

VI
ﬁ?ﬁv 0
2y %.«)
F0S T
N_\nwﬂ“v«.i

T
Ja

/G B AN S TR AR TRAL

iel

ic

et Génie log

%C,w o
)) ?Mr&

%

w

4

!

Y
&

!

TR U AR G 8 20,

INTEGRATING LAZY EVALUATION

BabA

SO B

IN STRICT ML

i .J:

hel MAUNY

1C

M

U RN AT R AR ETIY G JUA N RIS VNPT

7Y

2le

1992

évrier

F

(VTR 6

A

R

n
(o)
)

|
N
)

&

25

RT .8137=

ERE AN

v

<3

)

@

Intégration de I’évaluation paresseuse en ML strict
g p
Michel Mauny

Abstract

Nous présentons trois extensions de ML & 1’évaluation paresseuse, ouvrant ainsi le langage a
Pécriture naturelle de certains algorithmes difficilement codables dans le langage strict, tels' que
ceux manipulant des structures de données potentiellement infinies. Ces extensions reposent sur
I’hypotheése selon laquelle une valeur suspendue n’est référencée directement qu’au plus une seule
fois. L’impact en termes d’efficacité de ces extensions sur la partie stricte du langage est prise
en considération, et se trouve minimisée par la troisieme extension, dans laquelle ’évaluation pa-
resseuse ne cotite qu’aux programmes qui 'utilisent effectivement, et seulement en des occurrences
précises. Ces extensions ont tour 3 tour été incorporées au langage Caml durant sa conception.
La derniére de ces extensions est intégrée i la version distribuée du langage (V2-6.1). Enfin, nous
donnons une technique permettant de compiler de fagon siire des définitions récursives arbitraires,
en utilisant ’évaluation paresseuse dans les cas o la compilation en appel par valeur peut &tre
incorrecte.

Integrating lazy evaluation in strict ML
Michel Mauny

Abstract

We present three ways of extending ML with lazy evaluation, thus providing natural ways of
writing algorithms which are painful to encode in classical versions of ML, such as algorithms
dealing with potentially infinite data structures. These extensions are based on the assumption
that any suspended value is directly referenced at most once. The runtime penalty on the strict
part of the language is taken into account, and is minimized in the third extension, in which the
price of lazy evaluation has to be paid only by programs that actually use lazyness, and only at
specific occurrences. These extensions have been incorporated into the Caml language during its
design. The last extension has been integrated into the current version of the language (V2-6.1).
Finally, we give a technique allowing to compile recursive definitions in a secure way, using lazy
evaluation when call-by-value compilation can be incorrect.

)

INTEGRATING LAZY EVALUATION IN STRICT ML

Michel Mauny
R
B.P. 105 F-78153 Le Chesnay Cedex

E-mail: mauny@inria.fr

1 Introduction

The “pragmatic” approach to functional programming uses strict evaluation (call-by-value) leaving
control of the evaluation order to the programmer. When evaluating an application, the expressions
in function and argument positions are both evaluated before the value of the argument is passed
to the function (even if this value is never used by the function). This approach enables the usage
of side-effects and other non-purely functional extensions (conventional input/output, exception
handling, etc).

The “purely functional” approach uses lazy evaluation, in which the argument is passed un-
evaluated to the function, its evaluation occurring only if the value of the argument is needed by
the function. Lazy evaluation permits to execute correctly programs that would produce errors
or would never terminate when submitted to strict evaluation: for instance, programs making use
of infinite data structures. Non-purely functional extensions are usually incompatible with lazy
evaluation because the order of evaluation may be counter-intuitive and unpredictable.

So far, very few languages have been able to handle both evaluation strategies, because of the
following problems:

e at the level of language design, the primitives or syntactic constructs allowing to switch from
an evaluation mode should remain usable;

o the execution model must be able to handle efficiently both evaluation strategies.

The latter condition is met by all classical execution models, even those based on graph reduc-
tion, which is usually implemented, at a lower level, following a more traditional scheme (abstract
machine), e.g. the G-machine [5].

The former aspect has been discussed in [10], where lazy evaluation is the dominant evaluation
strategy. As an example of language with strict semantics allowing lazy evaluation, the best known
is the Scheme language [12], that provides two primitives (force and delay) to encode explicitely
delayed evaluation with sharing.

In this paper, we report on different experiences which have been implemented in the Caml
programming language [3, 13]. Since Caml is a strict language, we will only present ways of
extending strict languages to handle lazy evaluation. The extension of lazy languages to strict
evaluation is less interesting, since it implies the loss of some nice properties of lazy evaluation, and
it is usually realized automatically by strictness analysis during the compilation process.

The remainder of the paper is organized as follows. We first recall the Categorical Abstract
Machine [2] (CAM, for short) execution model and the compilation of a simple functional language
into CAM code (section 2). The CAM execution model is presented here just to be more specific.
The techniques presented in the following sections do not depend in an essential way of the CAM
execution model: any other execution model could be used instead, provided it satisfies the criteria
given in section 2.4.

In sections 3 and 4 we present two ways of mixing evaluation strategies: “lazy and strict modes”
and “explicit delays”. These two extensions rely on the hypothesis that values held in environments
and in data structures can only be accessed through one, unique path. Both extensions have one
important drawback: efficiency is penalized even when lazy evaluation is not used.

This disadvantage does not appear in the third extension presented in section 5: “lazy data
constructors”. This extension makes an hypothesis on data structure components; all existing ML
implementations meet this condition. In this extension, the strict part of the language does not

e~

"

-r)

)

i

incur any runtime penalty, thanks to user-defined types and strong static typing. On the other
hand, the extension may seem less easy to use. We will show by examples that this extension
provides laziness sufficient to program many interesting examples.

In section 6, as an application of mixing both evaluation regimes, we present the compilation
of arbitrary recursive definitions in a strict language.

The author has implemented a version of the Caml language extended as presented in section
3. The current version of Caml (V2-6.1) uses the third extension (section 5) which has been
implemented by P. Weis.

2 Compilation of lazy evaluation in a stack-based abstract ma-
chine

< Type definition> := type < Type params> < Type name> = < Type expression>

and < Type params> < Type name> = < Type expression>

< Type params> = No parameter
| < Type variable> A single parameter
|

(< Type variable> , < Type variable>,...)

<Type name> = <lIdentifier>
< Type expression> -
2= [<Constructor> of <Type> | <Constructor> of < Type> | ...]
Sum type expressions

| {} ' Empty product type expression

| { <Label>: <Type>;...} Product type expressions
<Constructor> = [A-Z][A-Za-z]*
<Label> := [A-Z][A-Za-z]*
<Identifier> := [a-z]*
< Type> < Type variable>

| < Type> + < Type>
| < Type arguments> < Type name>

< Type arguments> = No argument
| < Type> A single argument
|

(< Type>,< Type>,...)

<Type variable> == a | g} ...

Figure 1: The syntax of types and type definitions

We recall in this section the CAM execution model, and its extensions to handle lazy evaluation.
This has been presented in earlier papers [4, 2, 9, 8] where further information concerning the
theoretical origins and optimizations of the CAM can be found.

In the following subsections, we present the syntax of the language: A-calculus with constants,
structured data types, pattern-matching and recursion. The CAM instructions are then given, and
the compilation techniques for call-by-value and lazy semantics are presented.

2.1 The object language

We consider a subset of ML with type definitions. A type definition is of the form given in figure
1. Sum data constructors (and labels) are capitalized in order to distinguish them from usual
identifiers. A typical type definition is:

type a list = [Nil | Cons of (a, a list) pair]

and (a,f) pair = {Fst:a; Snd:f}
We introduced in that example the parameterized types of lists and pairs. The data types definable
in the language are product types: records with 0, 1 or more fields, and sum types with two or
more summands. We do not loose generality in forbidding the definition of a sum type with only
one summand, since such a type can be defined as a record type with only one field. Moreover, to
keep things simple, we want to distinguish easily between product and sum types.
A data structure is:

e either a (possibly empty) labeled product,

e or the application of a unary sum constructor to a value (constant data constructors may be
simulated by application to the empty product).

The syntax of the expressions of the object language is given in figure 2. Expressions are built
up from a set of basic constants which are assumed to be integers. Functions use pattern-matching
to access the components of their argument.

2.2 CAM code and its execution

2.2.1 Instructions

The instructions will be part of a state of the CAM. A state possesses 3 components: the register,
the program counter and the stack pointer. Each of them holds a pointer in a real implementation;
however, for simplicity, we will describe them as containing respectively a value, a list of instructions
(code), and a list of stack elements (values or code).

2.2.2 Code, values and states

Code, environments, values and stacks are described by the following productions:

<Code> == [] Empty code sequence
| <Instruction>;< Code>

< Environment> == () Empty environment
| (<Environment>,< Value>) Non-empty environment
(paren. associate to the left)

i

-)

)

)

-

< Ezpr> < Basic constants>

| <Identifier>

| <Functional constants>

| {} Empty product

| { <Label> = <Ezpr> ; ...} Non empty products
| <Constructor> <FEzpr> Summands

| <Ezpr> < Ezpr> Applications

|

function < Pattern> +<FEzpr> Pattern-matching abstractions

| < Pattern> +< Ezpr>

| rec <Pattern> + < Expr> Recursive expressions
< Pattern> = < Basic constants>
| <Identifier>
| - Wildcard
| {} Empty product pattern
| { <Label>= <Pattern> ; ...} Non-empty product patterns
| < Constructor> < Pattern> Summand patterns
<Basic constants> = < Integer>
Figure 2: The syntax of expressions
< Value> = < Basic constant>
| < Environment>
| (< Value>,...,< Value>) Tuples
| < Constructor>(< Value>) Summands
| < Code>:< Environment> Functional closures
| < Code>*< Environment> Suspensions
< Stack> [] Empty stack

< Value>;< Stack>
< Code>;< Stack>

2.2.3 Operational semantics
We now give the operational semantics of the CAM. We define a function:
= 1 (<Value> x <Code> x <Stack>) — (< Value> x <Code> x <Stack>)

The = function is described by transition diagrams involving instructions. Transitions are di-

vided into small sets, and an informal presentation of the instructions is given before each set of
transitions.

Basic operations and stack manipulation

< Instruction>

Plus |.

Push

.. Basic instructions

Pushes contents of register onto the stack

| Quote(addr) Loads address addr (used for constants and data constr.)
|
|

Swap

Exchanges contents of register and top of stack

The empty code acts as a Return instruction, and only the trasition of the Plus instruction is
given: other basic instructions behave in a similar way.

Value Code Stack = Value Code Stack
v [] K;§ = v K S
m Plus; K S = n+m K b
E Quote(c); K § = c K S
z Push; K S = z K z; 8
v Swap; I E;S = EF K v; §

Sum data structures

< Instruction>
| Tag(T) Tags the value held in the register as being
applied to the T data constructor
| Untag Untags the value held in the register
| UntagUnf Same as UnTag and then evaluates the result in case of suspension
| If(c,addr1,addr2)
Tests if the content of the register is tagged with T
(when c is T) or checks basic constant equality
when c is a basic constant, then gives control
to addr1 if so or to addr2 otherwise
Value Code Stack = Value Code Stack
v Tag(T) K S > T K S
T(v) Untag; K S => v K S
V = T(K, x E) UntagUnf; K S => E K, V,K;§
T(v) UntagUnf; K S = v K S
T(v) 1£(T,K,,K.;K E;S = E K, K;S
Ti(v) where T, # T 1£(T, Ky, Ko); K E;S = E K, K:S
¢ If(c,K41,K2); K E; S = E K, K;S
¢ where¢; #¢ If(c, Ky, K2); K E; S = E K, K;S

-)

)

Tuples

< Instruction>
| Pack(n) Builds a n-uple with the content of the register and the n-1
topmost stack elements
| Nth(n) Loads the contents of the nth component of the value held
in the register
| NthUnf(n) Loads the contents of the nth component of the value held
in the register, then evaluates it if it is a suspension
Value Code Stack = Value Code Stack
vn, Pack(n); K Uno1j..30139 = (v1,...,0,) K S
(v1,.+50n,...) Nth(n); K S = v, K S
V=(v,...,.Ki+«E,..) NthUnf(n); K § = E K, V;K;S
(v1,..+,%n,...) NthUnf(n); K § = v, K S

Function closures

Suspensions

< Instruction>
| Cur(addr) Builds a function closure composed of the code
address addr and the environment held in the register
| App Applies a closure (top of stack) to an arg. (register)
| Mkenv Builds a new environment from the current one (register).
and the value held on top of stack (popped)
Value Code Stack = Value Code Stack
E Cur(K ;K S > Ki:F K S
v App; Ky (K:Ej;S = (E,v) K;K{ S
v Mkenv;K;, E;§ = (E,v) K, S

Suspensions are created by the Freeze instruction. They are evaluated by access instructions (into
data structures or environments). Suspensions are written K * E, where K is a code address and
E denotes an environment.

<Instruction>

o —

| Freeze(addr) Builds a suspension closure composed of addr

and the current environment

Value Code Stack = Value Code Stack

E Freeze(L,); K § =2> K«+«F K S

Environment fetching

< Instruction>
| Env(n) Loads the nth sub-environment of the current environment
| val Loads the value in first position in the current environment
| ValUnf Loads the value in first position in the current environment

and evaluates it in case of a suspension
Value Code Stack = Value Code Stack
E'=(E,v) Env(1); K S => E' K S

(E,v) Env(n+2);K § => E Env(n+1)K S
(E,v) val; K S = v K S

E" = (E',(K1* E)) ValUnf; K S = E K, E" Ky; S
(E,v) ValUnf; K S = v K S

Updating

Updating instructions perform a side-effect on the value held on the top of the stack. We express
such side-effects by an annotation on the arrow denoting a change of state. These annotations are
written:

e either “nth(v)(n) := v,”, meaning that the nth component of the record v is overwritten by
15

e or “v:= v,”, indicating that the values v and v; are physically identified (componentwise);
this notation is used for updating data constructors arguments and environments.

< Instruction>

| UpdSum Updates the argument of the value (from a sum type)
top of stack (popped) with the value in the reg.

| UpdProd(n) Updates the nth component of the data structure

on top of stack (popped) with the value in the register

| UpdEnv Updates the value part of the environment held

on top of stack (popped) with the value in the register
| Wind Builds a cyclic environment for recursive values:

cf figure 3

-}

)

-)

side-effect

Value Code Stack > Value Code Stack
v UpdProd(n); K v1;S Y1 > v K S
v UpdSum; I{ v = T(K;x E); S u=Tw) = v K
v UpdEnv; K Ey = (Ey, K1 xE); S Ea=(Br) > v K S
. Ey:=(Ewv .
v Wind; K Ei = (E,Q);S =EY . B K S

(where Q is a special constant)

2.3 Compiling the strict language

We assume in this section call-by-value semantics for our language, and we give its compilation to
CAM code under this assumption. We take the evaluation order “from left to right” for applications
and data structure components. The compilation of pattern-matching is fairly naive. The reader
is referred to [10], [7] and [11] for more clever compilation algorithms. We also assume that the
programs being compiled:

¢ do not contain any free variable,
e do not contain non linear patterns: a variable cannot occur twice in the same pattern,

e contain only total functions (in particular, all matches are total: pattern-matching cannot
fail),

¢ have been previously passed through a type-checker that has rearranged record expressions
with a canonical order for labels.

We define a compilation function taking as argument a syntactic construct and a formal environment
from which accesses to values of local variables are computed. Formal environments are defined by:

<Formal environment> := () Empty environment
| (< Formal environment>, < Pattern>)

The syntactic category < Pattern> is defined in figure 2. The compilation of the strict language is
given by the following function:

Comp: <Ezpr> — < Formal environment> — < Code>

2.3.1 Identifiers (Ident)

In the general case, the code for an identifier is an access in the environment (Env(n)), followed by
an access to its value in a pattern:

Comp [z] ((...(p,pn),---)sP0) = Access[z]po if = occurs in po
= Env(n); Access [z] p,, if z occurs in p,, but not in p;
for0<i<n

2.3.2 Identifiers (continued) (Access)

The Access [] auxiliary function returns the code necessary to access a value in a data structure.

Access:< Ezpr> — < Pattern> — < Code>

Access [z] y =Valifz =y
Access [z] (T(p)) = Val;Untag; Access [z] p
Access [z] {Ly = p1;...; Ln = pn} = Val;Nth(¢); Access[z] p; where z occurs in p;

2.3.3 Basic constants (BaseConst)

Comp [b] p = Quote(b)

2.3.4 Functional constants (FunConst)

The code for functional constants uses basic instructions (e.g. Plus), and accesses depending on
how they take their arguments (curried or not):

Comp [f] p = Cur(K)
where K is the code for f. For example, the code for the (non-curried) addition is:
Cur(Val; Push;Nth(1); Swap; Nth(2); Plus)
where Plus is the basic instruction computing the sum of the register and the topmost element of
the stack.
2.3.5 Product data structures (Prod)

All components of a record are evaluated in succession, with intermediate saves and restores of the
current environment onto the stack. Then a Pack instruction builds the record.

Comp [{}] p = Quote({})
Comp[{L; = €;...;Ln =en}]p = Push;
Comp e,] p; Swap; Push;

Comp [en_1] p; Swap;
Comp [e,] p; Pack(n)

2.3.6 Sum data constructor applications (Sum)

A sum data constructor evaluates its argument, and then gives it the appropriate tag.

Comp [T(e)] p = Comp [¢] p; Tag(T)

10

-y

-l

«)

2.3.7 Function applications (Appl) .

The code for an application saves the current environment, evaluates the function part, restores
the environment, evaluates the argument and then performs the application by calling the closure
in a new environment.

Comp [e, e2] p = Push; Comp [e1] p; Swap; Comp [e;] p; App

2.3.8 Functional abstractions (Abstr)

The code for a function builds a closure with the code for the function body and the current
environment. The code for the function body is generated in a new formal environment built
from the old one and the pattern of the argument. The compilation of functions use an auxiliary
compilation scheme Match{] dedicated to patterns.

Comp [function P+ e;] p = Cur(Push; Match [P,] (Val)(Comp [e1] (p, P1),[]))

function P+ e

Comp | Pre p = Cur(Push;
| .P.‘n._. . Match [P;] (Val)(Comp[e1] (p, P1),
function P+ ey
Comp e p))
I Py~ e,
2.3.9 Pattern-matching ‘ (Match)

The Match] compiling function has the following signature:
Match: < Pattern> — <Code> — (<Code> x <Code>) — < Code>

In Match [P] K (K4, K), Kis a piece of code (representing the accesses to data structure compo-
nents) to be executed when tests have to be done. K; (resp. K3) is the code to which control will
be passed in case of success (resp. failure) of the matching tests. Match[] is defined by:

Match[_] K (K, K;) = K,
Match [z] K(K3, K,) = K,
Match II{}]] I\)(I(l, I\’g) =K,
Match I[{Ll =P,;...;L,= Pn}]] I\’(I(l, ’2) =
Match [P,] (K; Nth(1))
(Match [P2] (K;Nth(2))
(.

b

K,),

K2) |
Match [T(p)] K (K, K7) = Push; K; T£(T, Match [p] (K ; Untag)(K1, K>), K)
Match [b] K (K, K3) = Push; K; 1£(b, Ky, K3)

11

2.3.10 Recursion in the strict language (Rec)

The code for a recursive expression puts the special value Q in the current environment (Mkenv)
and evaluates the expression in this new environment. Once the expression is evaluated, the value
{1 is physically replaced by the value of the expression (Wind). Finally, this value is returned (Val).
The code associated to the recursive construct rec p - e is:

Comp [rec p - €] p = Push; Quote(Q); Mkenv; Comp [e] (p, p); Wind; Val

The effect of the Wind instruction can be seen more precisely on figure 3. Recursive expressions

Topmost stack element Current value Current value
!

ok

Figure 3: The effect of the Wind instruction

must be limited in order to avoid execution errors. Given a recursive expression rec p - e, during
evaluation of e, the pattern p is bound to the value Q. Once e has been evaluated to a value v,
then the occurrence of Q gets replaced (in the environment) by v.

Therefore, during the evaluation of e, if an access to § is attempted, an execution error should
occur. This can be the case if, for example, some variable occurring in p occurs in e outside of a
functional abstraction.

The classical way of avoiding this problem, is to restrict the body of a recursive definition to
be an immediate abstraction. More precisely, such definitions are restricted to have the following
shape:

recp-e

where p matches syntactically e, and the subexpressions of e corresponding to a variable of p are
functional abstractions (recall that matching with p cannot fail, since we supposed all matches to
be complete). For example:
rec {Fst=even; Snd=odd} + {Fst = function 0 -+ True
| n » odd(- n 1);
Snd = function 0 - False
| n + even(- n 1)}
which would written with syntactic sugar as:
let rec even = function 0 -+ True | n = odd(n-1)
and odd = function 0 + False | n - even(n-1)

12

-}

L

Of course, less severe restrictions are possible, at the price of an analysis of the recursive
definition. However, some programs need to be rejected, since any access of the recursively defined
value is dangerous before the updating.

In fact, these restrictions consist in allowing recursive variables only at “secure” occurrences: i.e.
occurrences that statically guarantee that the value of recursive variables will not be needed before
creating the cyclic structure. In a purely strict language, only abstractions protect such occurrences,
and according to the analysis done by the compiler, more or less programs are accepted.

The resulting restrictions may be alleviated (and even completely avoided) by using lazy eval-
uation, which can protect occurrences of recursive variables. This will be considered in sections 5
and 6.

2.4 Compiling the lazy language

. Suspension
Environment pel
or
data structure < .
<{ Update
Its value
after evaluation

Figure 4: Updating a suspension

The experiences related in this paper do not rely on the particular execution model represented by
the CAM, but only on the following assumption:

There exists at most one pointer to a suspension.

The reason is that we update suspensions by changing the “father” pointer (from the suspension
to its value). Having several pointers to a suspension would result in a loss of sharing, since only
one of these pointers would be updated. In figure 4, we can see that updating the father pointer of
a suspension preserves sharing of evaluations if the suspension s is pointed to only by this father.
In our execution model, this hypothesis holds for values in environments (linked lists) and data
structure components. We obtain the following rules:

Delaying is only permitted on expressions that are:

e either in argument position of an application,

e or (tertually) as an immediate sub-component of a data structure.

The CAM representation of environments and the representation of functional and lazy closures
(with shared environments) allow the presence of suspensions inside the environments, because all
accesses to a suspension will follow the same pointer.

For the same reason, given a value component of a data structure, all accesses to this value will
go through the data structure itself.

13

. The compilation scheme of the lazy language shares some rules with the one of the strict .
language. We have to introduce special compilation rules only for:

e variable and data structure accesses,
¢ function application,
e construction of data structures,

e recursion.

2.4.1 Identifiers (AccessUnf)
Unf instructions are added anywhere suspensions can appear.

Access [2] y =ValUnfifz =y
Access [z] (T(p)) = ValUnf; UntagUnf; Access [z] p
Access[2] {Li = p1;...; L, = p,} = ValUnf;NthUnf(s); Access [z] p; if = occurs in p;

2.4.2 Functional constants (FunConstUnf)

All accesses into the environments and structured arguments are followed by an evaluation. The
code for the addition is now:

Cur(ValUnf; Push; NthUnf(1); Swap; NthUnf(2); P1lus)

2.4.3 Product data structures (LazyProd)

A product data structure is composed of suspensions created by the Freeze instruction. The
code argument of Freeze always end with an instruction updating the suspension when evaluated.
Updating instructions are UpdProd(n) for the nth component of a record, UpdEnv for a value in the
environment and UpdSum for sum data constructor arguments.

Comp [{}] p = Quote({})
Comp[{L) = e1;...;Ln =e,}]p = Push;
Freeze(Comp [e;] p; UpdProd(1)); Swap; Push

Freeze(Comp [e,_1] p; UpdProd(n — 1)); Swap;
Freeze(Comp [e,] p; UpdProd(n)); Pack(n)

2.4.4 Sum data constructor applications (LazySum)

Sum injections are lazy:

Comp [T(e)] p = Freeze(Comp [e] p; UpdSum); Tag(T)

14

-l

-3

“)

2.4.5 Expression applications (LazyAppl)

Arguments are suspended. If the function needs the value of its argument, the argument will be
evaluated when it is accessed for the first time.

Comp [e; e2] p = Push; Comp [e;] p; Swap; Freeze(Comp [e2] p; UpdEnv); App

2.4.6 Pattern-matching (MatchUnf)

Pattern-matching is modified in order to evaluate suspensions as they are accessed:

Match [[{Ll = Pl; ey Ln = Pn}]' I\’(K], Kz) =
Match [P,] (I; NthUnf(1))
(Match [P,] (K ; NthUnf(2))

C ..
K,),
I(g)

Match [T(p)] K (K, K3) = Push; K; I£(T, Match [p] (K; UntagUnf)(K, K3), K3)

2.4.7 Recursion in the lazy language (LazyRec)

The code associated to the recursive construct rec p + e is:
Comp [rec p + €] p = Push; Quote(f); Mkenv; Freeze(Comp [e] (p, p)); Wind; ValUnf

The evaluation of e is delayed until the last instruction ValUnf, which will evaluate (lazily) the
recursive value. We are sure that all accesses to values of recursive variables will be realized after
the updating. We thus have a secure compilation of recursively defined values: laziness generalizes
the effect of functional abstraction.

2.4.8 Loop detection

It is possible to detect at runtime some loops in recursive programs using laziness. When the
evaluation of a recursively defined value requires its own value before the updating occurs, we are
in presence of an unavoidable loop. The detection of such programs is done by changing the effect
of Unf instructions.

Before pushing the suspension on top of the stack, Unf instructions can update it with an empty
environment and a code address always failing. The original code and environment are no longer
needed since they are respectively in the register and the program counter. If the evaluation of the
suspension terminates, then the reference to the suspension will be updated, freeing the “always
failing” suspension.

This simple modification has shown to be quite useful, particularly in recursive definitions
involving pattern-matching, since matching has a strict semantics due to runtime tests.

15

3 Lazy and strict modes

The first extension presented below permits to arbitrarily mix lazy avaluation and strict evaluation.
The syntax of the language is extended with two keywords, lazy and strict, which indicate
changes of “compilation mode”. Expressions under each of these keywords will be compiled with
lazy semantics (in the case of lazy) or strict semantics (in the case of strict).

3.1 Syntax extension

We extend the syntax of the language given in figure 2 by the two following rules:

<Ezpr> = ..
| lazy < Ezpr> Submitted to lazy compilation
| strict <Fzpr> Submitted to strict compilation

These extensions can be seen as explicit switches to the lazy (resp. strict) compilation scheme.

3.2 Compilation

The compilation of this extension uses the set of rules given for the lazy language, but suppresses
the Freeze instructions for subexpressions of a strict construct. In other words, the strict part
of the language uses Unf instructions and no Freeze, while the lazy part uses both.

Two cases have to be considered in order to describe the compilation of this extended language.
We will say that a subexpression is:

e in strict mode when the closest annotation (going from the root of the subexpression upwards
to the root of the whole expression) is strict;

e in lazy mode when the closest annotation is lazy.

We also assume given a default mode, for parts of programs that are not in the scope of an
annotation.

3.2.1 Strict mode

The strict mode makes use of the following set of rules:

¢ (Ident) [2.3.1];

(AccessUnf) [2.4.1]: access to the value of a variable provokes its evaluation;

(BaseConst) [2.3.3];

(FunConstUnf) [2.4.2]: functional constants also have to evaluate their strict arguments;

(Prod) [2.3.5]: products are strict;

(Sum) [2.3.6]: sums are strict;

(Appl) [2.3.7]: the argument of an application is immediately computed;

16

-)

-)

o (Abstr) [2.3.8];
¢ (MatchUnf) [2.4.6]: matching provokes evaluation when tests are performed;

o (LazyRec) [2.4.7}: we use the lazy recursion scheme since it is more powerful than (Rec)
[2.3.10]. However, (Rec) [2.3.10] is also acceptable.

3.2.2 Lazy mode

The lazy mode is managed with the “lazy” rules, as in a lazy language: values of variables are
evaluated as they are accessed (i.e. when needed), and the evaluation of arguments and data
structures components is delayed.

e (Ident) [2.3.1]

o (AccessUnf) [2.4.1]

¢ (BaseConst) [2.3.3]

¢ (FunConstUnf) [2.4.2]
¢ (LazyProd) [2.4.3]

¢ (LazySum) [2.4.4]

o (LazyAppl) [2.4.5]

o (Abstr) [2.3.8]

e (MatchUnf) [2.4.6]

o (LazyRec) [2.4.7]

3.3 Examples

As an example, we give the code for building the infinite stream of Fibonacci numbers. We use a
sugared version of the language. Its translation into the core language should be obvious.
First, we introduce the type of infinite streams:
type a stream = {Head:a; Tail: a stream}
Although this is unimportant here, the default annotation is supposed to be strict. Let us recall
that these annotations have no effect on type definitions.
The definition of the £ibs infinite stream uses a recursive auxiliary function f. Its body is
protected from looping by a 1azy annotation.
let fibs =
let rec £ = function a + function b + 1lazy {Head=a; Tail=f a (a+b)}
in f 0 1
The laziness necessary for this example to work concerns the stream data structure and more
specifically the tail of streams.
Another interesting example involves laziness of function application. The following example is
borrowed from [6). The goal is to compute in one pass the minimum of the leaves of binary trees
of integers. The type of pairs could be defined as:

17

type (a,f) pair = {Fst:a; Snd:fp}
We add more syntactic sugar, writing the pair type constructor with an infix *, pairs with
parentheses and fst, snd the two projections.
type a tree = [Leaf of a | Node of (a tree * a tree)]
We suppose the existence of a function min: int - int - int returning the minimum of its
arguments.
let minimum = function t -
let rec traverse m =
function Node(t1,t2) -+
let min_treel = lazy(traverse m) t1i
and min_tree2 = lazy(traverse m) t2
in lazy (min (fst min_treel) (fst min_tree2),
Node(snd min_treel, snd min_tree2))
| Leaf n -+ lazy (n, Leaf m) in
let rec min_tree = lazy(traverse (fst min_tree) t
in min_tree;;
Here is an example of execution:
minimum (Node (Node (Leaf 5, Leaf 3), Node (Leaf 3, Leaf 4)))
=> (3, Node (Node (Leaf 3, Leaf 3), Node (Leaf 3, Leaf 3)))
Here, both forms of laziness are crucial. The recursive definition of min_tree evaluates correctly
only if traverse is lazy in its first argument, and if pairs in which results are returned are lazy
in their components. For traverse to be lazy in its first argument, we have to enclose all calls to
traverse by a lazy annotation (remember that this makes argument passing to be lazy, and thus
the first argument of traverse to remain unevaluated). We also have to annotate pairs by lazy
for their components to remain unevaluated until needed.

3.4 Discussion

This extension has the disadvantage of not being intuitive: the programmer’s intuition is expressed
more in terms of delay as much as possible the evaluation of this expression than in terms of
compiling modes. This can be seen in the fibs example where, in order to delay the evaluation of
f a (a+b), we have to enclose the whole record expression in a lazy annotation. If we write:

{Head=a; Tail=lazy(f a (a+b))}
instead of:

lazy {Head=a; Tail=f a (a+b)}
then only the evaluation of a and a+b would be delayed: the recursive call to £ would still be
needed, since the Tail field is strict. However, writing:

lazy {Head=a; Tail=strict(f a (a+b))}
would still produce a terminating program: the recursive call to £ would be delayed, and the values
of a and a+b would be computed before £ is called, but only when the Tail field is needed.

The extension proposed in the following section is closer to the programmer’s intuition.

18

-

i

4 Explicit delays

This extension is basically the same as the one realized in the Scheme language where lazy evaluation
can be encoded by using special functions delay and force. The idea is to rely on the fact that there
is no evaluation of function bodies unless they are applied: this is a kind of laziness present even in
a strict language (cf. sections 2.3.10 and 6 where this laziness is used in presence of recursion). A
delayed expression becomes the body of an abstraction with a useless argument (usually the empty
record), and the effect of the first force is to apply this abstraction to the empty record, to update
the “suspension” with its value, and to return this value. Subsequent force will only return this
value. '

This extension is easily encoded in ML with even more security, thanks to the type system.
However, the weakness of ML in typechecking polymorphic references prohibits polymorphic sus-
pended values, and makes delay non-definable. It has to be a primitive operation. Moreover, the
abstractions encoding delayed values are unnatural.

In the extension that we propose here, we need only to extend the language with a delay
keyword. The effect of force is obtained automatically by the compiler (however, too many force
are produced and clever static analyses are necessary to remedy this problem).

In order to agree with the execution model, valid occurrences of explicit delays are:

e delay of the argument part of an application;

e delay of a data structure component (sum or product).

For example, we cannot delay the evaluation of the expression in function position. We cannot
delay an already delayed expression.

4.1 Syntax extension

We replace the syntactic rules for applications, data constructor application and product building
given in figure 2 by the following three rules:

<FEzpr> = ...
| { <Label> = <DEzpr> ; ...}
| < Ezpr> <DEzpr>
| <Constructor> < Dezpr>

The syntactic category < DEzpr> (possibly delayed expressions) is defined by:

<DEzpr> = delay <Fzpr>
| < Ezpr>

Intuitively, the effect of the delay < Ezpr> construct is to delay as much as possible the evaluation
of <Ezpr>. The evaluation of delayed expressions will occur as usual, i.e. when accessing them.
4.2 Compilation

The compilation of this extended language is the same as for the strict part of the previous extension
(the set of rules given in section 3.2.1). In other words we force evaluation when accessing the
environment or data structure components. The code for a delay expression is:

Comp [delaye] p = Freeze(Comp [e] p; update)

19 ' ?

where update is an update instruction chosen in accordance with the context: UpdEnv when e is in
argument position in an application, UpdSum in case of a data constructor argument, or UpdProd(n)
if ¢ is the nth component of a record expression.

4.3 Examples

We translate here the previous two examples from section 3.3. The infinite stream of Fibonacci
numbers is easily translated to:
let fibs =
let rec £ = function a + function b + {Head=delay a; Tail=delay(f a (a+b))}
inf 01
The occurrences of delay protect the stream components from being evaluated unless they are
needed. The example could be simplified into:
let fibs =
let rec £ = function a # function b + {Head=a; Tail=delay(f a (a+b))}
in £ 0 1
Now, the stream is lazy only in its tail, which is exactly what is needed.
The example of computing the minimum value in a tree translates to:
let minimum = function t -+
let rec traverse m =
function Node(t1,t2) -+
let min_treel = traverse (delay m) t1
and min_tree2 = traverse (delay m) t2
in (delay(min (fst min_treel) (snd min_tree2)),
delay(Node(snd min_treel, snd min_tree2)))
| Leaf n » delay (n, Leaf m) in
let rec min_tree = traverse (delay (fst min_tree)) t
in min_tree;;
Delay annotations have been inserted where laziness is required.

4.4 Discussion

This extension seems much more practical than the first one. However, a serious runtime penalty
remains: any access to a value in the environment or to a component of a data structure has to
check whether it is or not a suspension. This penalty is unacceptable when doing, say, arithmetic
operations where no laziness is involved. We would need an analysis detecting useless occurrences
of these tests. Instead of studying further this extension to try to reduce this penalty, we go to the
next extension which takes advantage of the type system.

5 Lazy data constructors

The last extension is the latest one integrated to the Caml language. We believe that this extension
is minimal in the sense that it preserves the efficiency of the strict sublanguage. The ML type system
enables to know exactly when accesses to possibly delayed expressions occur, and the type-checker
can transmit these informations to the compiler.

20

-a

<.,

)

We only take advantage here of the fact that the “single pointer assumption” is correct for
data structures components. No assumption is made on environments. This extension is thus well-
adapted to many languages: this assumption is valid in all current implementations of ML; while
the representation of environments differs greatly from one implementation to another.

This extension consists in laziness annotations in type definitions. We annotate some sum data
constructors or records labels as delaying the evaluation of their argument. Its main advantage is
that we know at compile-time where the price of lazy evaluation has to be paid (accesses to anno-
tated fields/constructors argument). Because of our compilation of pattern-matching, evaluation
of suspended components will occur only if they are effectively used. We thus have more laziness
than some other execution models, where, during a pattern-matching, data structure components
are pushed onto the stack, invalidating the “single pointer assumption”. In such cases, evaluation
should occur before pushing the components onto the stack.

The other advantage of this extension is that annotations appear only in the type definition,
keeping the source code readable.

5.1 Syntax extensions

We only extend the syntax of type definitions given in figure 1. We replace the < Type expression>
syntactic category by the following one:

< Type expression>
= [<AConstructor> of <Type> | <AConstructor> of < Type> | ...]
{3
| { <ALabel>: < Type>;...}

<ALabel> := 1lazy <Label>
| <Label>

<AConstructor> = lazy < Constructor>
| < Constructor>

The category <AConstructor> (resp. <ALabel>) should be read as < AnnotatedConstructor>
(resp. <AnnotatedLabel>).

5.2 Compilation

In order to compile this extended language, we will assume that the typechecker has annotated the -

abstract syntax trees in the following way:

e all record labels and sum data constructors occurring in the program are annotated with one
of the symbols strict or lazy.

We will write these annotations as superscripts. We only present here the compilation rules that
are concerned by these annotations. The rules that are not shown are taken from the rules for the
strict language (section 2.3).

21

5.2.1 Identifiers (AnnotAccess)

Access{z] y . =Valifz =y
Access [2] (T®*F2¢t(p)) = Val; Untag; Access [z] p
Access [x] (TY2%¥(p)) = Val; UntagUnf; Access [z] p

Access [2] {L} = p1;...; LE¥3t = p v L% = p,} = Val;Nth(s); Access[z] p;
where @ occurs in p;

Access [2] {L]' = p1;.. .;L}azyz Pnj. .3 L = pp} = Val; NthUnf(z); Access [z] p;
where z occurs in p;

5.2.2 Product data structures (AnnotProd)

Comp [{}] p = Quote({})
Comp [{L{! = e1;...;L%" =e,}]p = Push;
CompAnnot [e;] a; 1 p; Swap; Push

CompAnnot {e,_1] an_1 (n — 1) p; Swap;
CompAnnot [e,] ¢, n p;Pack(n)

Here, CompAnnot[] is the function choosing to delay the evaluation of its expression argument
or not according to the annotation a;. It takes as extra arguments the annotation, an integer and
the formal environment.

CompAnnot [e] strict n p = Comp [e] p

CompAnnot [e] 1azy n p = Freeze(Comp [e] p; UpdProd(n))

5.2.3 Sum data constructor applications (AnnotSum)

Comp [T*71<%(¢)] p = Comp [e] p; Tag(T)
Comp [T*2%¥(e)] p = Freeze(Comp [e] p; UpdSum); Tag(T)

5.2.4 Pattern-matching (AnnotMatch)

Match [_] K(K,, K») = K,
Match [z] K (K, K3) = K
Match [{}] K (K1, K2) = K3
Match[{L}* = Pi;...; L% = P,}] K(K4q,K3) =
Match [P] (K; AnnotNth(a,)(1))
(Match [P;] (K; AnnotNth(az)(2))

(...
I('Z),
K>)
where AnnotNth(strict)(m) = Nth(m)

AnnotNth(lazy)(m) = NthUnf(m)
Match [T3*¥i¢%(p)] K (K,, K3) = Push; K; I£(T, Match [p] (K; Untag)(Ky, K>), K>)
Match [T122Y(p)] K (K1, K?) = Push; K; 1£(T, Match [p] (K ; UntagUnf)(Ky, K3), K>)
Match [b] K (K., K,) = Push; K; 1£(b, K, K3)

22

[LY

ol

)

5.3 Examples

We translate here the previous examples from sections 3.3 and 4.3. The translation of the Fibonacci
examples involves a new definition of the type stream
type a stream = {Head: a; lazy Tail: a stream}
let fibs =
let f = function a # function b + {Head=a; Tail= f a (a+b)}
in £ 0 1
The example of computing minimum values of a tree involves two type definitions in order to
introduce laziness at the desired places.
type a delay = {lazy Delay: a}
This type would be sufficient to encode lazy evaluation. However, in order to preserve readability,
we introduce a type for lazy pairs.
type (a,f) lazy_pair = {lazy Fst: a; lazy Snd: g}
We are now ready to give the definition of the minimum function:
let minimum = function t -
let rec traverse {Delay=m} =
function Node(t1,t2) -
let {Fst=mini;Snd=treei} = traverse {Delay=m} t1
and {Fst=min2;Snd=tree2} = traverse {Delay=m} t2
in {Fst=min mini min2; Snd=Node(treel,tree2)}
| Leaf n » {Fst=n; Snd=Leaf m} in
let rec {Fst=min;Snd=tree} = traverse {Delay=min} t
in (min,tree);;

5.4 Discussion

This extension only requires new type definitions for data structures that are to be evaluated lazily.
Its advantage is that the strict language does not suffer from any runtime penalty. Lazy data
structures are easy to design and to use, and many algorithms make use of them in a natural way.
When laziness on arguments is crucial, we have to use an artificial lazy data structure (e.g. the
type a delay in the last example). This shows that the mechanism is powerful enough to encode a
lazy ML in a strict one with lazy data structures.

6 Application to the compilation of recursion

We use the “single pointer assumption” to provide a secure compilation of recursive definitions of
non-functions. In ML, recursive definitions are written as:
let rec p; = €;

and
and Pn = €y
in F
We translate such definitions into:
let {#1=p1; ...; #n=p,} = (rec {#1=p;; ...; #n=p,} - {#1=e;; ...; #n=e,})
in F

23

or, with no syntactic sugar at all:
(function {#1=py; ...; #n=p,} =+ E) (vrec {#1=py; ...; #n=p,} - {#1=ey; ...; #n=e,}))
We use a family of record types in order to describe simultaneous definitions (mutually recursive,
for example). Labels are consecutive numbers preceded by a “#” sign (e.g #1). These records allow
to translate any multiple definition in ML into a single definition.
The compilation of such definitions proceeds in three steps:

Step 1: simplification. We match symbolically the expressions (e;)i=1,, against the patterns
(Pi)i=1,n, obtaining a set of pairs (pg, 63')j=1,m-

Step 2: safety detection. We examine in turn each pair (p},e;-) and determine whether the
evaluation of €’ needs to be delayed or not.

Step 3: reconstruct an expression equivalent to the original one, and compile it, taking into
account the annotations produced in step 2.

We now describe more precisely each step. We suppose given the expression:
rec {#1=py; ...; #n=p,} - {#i=ey; ...; #n=e,}

Step 1: simplification

From the list (p;, €;)i=1,n» We produce a new list using the flatten function defined by:

flatten [] = []
flatten (x,e); L = (x,e);(flatten L)
flatten (_,e); L = (-, e);(flatten L)
flatten ({},e); L = ({}, e);(flatten L)
flatten ({1ab;=p;;...;lab,=p,}, {lab,=ey;...;1ab, = e,}); L
= flatten ((p1,€1); .. .5 (Prsen); L)
flatten ({1ab,=py;...;lab,=p,},e); L = ({lab,=p1;...;lab,=p,},¢); flatten L)

Here, {] stands for the empty list, and z; L represents the list whose head is = and tail is L. Each
case is tried in turn, first cases having priority on last cases. Patterns are assumed to be linear (i.e.
there is no multiple occurrence of the same variable). The flatten function is undefined for patterns
like T(p). The reason is that all matches are supposed to be complete, and the rec construct has
only one alternative. Since sum data types must have at least two summands, an occurrence of
such a pattern would contradict these hypotheses.

The result of flatten (e, p) is a list (p}, €})j=1,m- This list will be examined in order to detect
non-abstractions. A dependency analysis such as the one described in [10] should take place at the
end of step 1, partitioning the list of pattern-expression pairs into an ordered list of sets of properly
mutually recursive patterns-expressions.

Step 2: safety detection

The detection proposed here is the simplest one: we distinguish between textual abstractions and
other expressions. This analysis annotates the expressions (and the corresponding patterns) by
lazy or strict. The strict annotation is for textual abstractions, and 1azy for other expressions.
These annotations will then be used by the compiler.

24

)

<=

2

At the end of this step, we get an expression of the form:
rec {#1%=p}; ...; #m?m=pl } + {#1%=¢]; ...; #n’m=¢] }
where a; = strict if e; is a textual abstraction, 1azy otherwise.

Step 3: reconstruction and compilation

In this step, we use the compilation scheme given in section 5, with rule (Rec) [2.3.10] dealing with
recursion for the strict language. This compilation scheme will “Freeze” the expressions annotated
as being lazy and produce access instructions terminated by “Unf” to access their values.

One disadvantage of this scheme is that “Unf” instructions can remain in the code of recursive
values. However, such instructions only remain in the recursive values themselves: they can be
eliminated from the enclosing expression. We illustrate this fact on a simple example (borrowed

from [10]):
let rec x = fac z
and fac = function 0 »+ 1
| n =+ n*fac(n-1)
and z =4
and sum = function O -+ (function y + y)

4

| x » (function y =+ sum (x-1) (y+1))
in sum x 2z
which could be rewritten without syntactic sugar as:
(function {#1=x; #2=fac; #3=z; #4=sum} - sum x z)
(rec {#1=x; #2=fac; #3=z; #4=sum}
-+ {#1=fac z;
#2=function 0 1 | n + * n (fac (- n 1));
#3=4;
#4=function 0 + (function y =+ y)
| x #+ (function y + sum (- x 1) (+ y 1))})
Let us look at the results of steps 1 and 2 without doing dependency analysis. We obtain the
following annotations:
(function {#113%Z¥=y; gostrict_g,.. #31232¥=5, @a8tTict_guny o sum x 2)
(rec {#11azy=x; #2strict=1ac; #3=1azyz; #4strict=sm}
+ (#1132 =gac z;

#28tTiCtopunction 0+ 1 | n + * n (fac (- n 1));
#3132¥ =4,
#4371 fynction 0 + (function y -+ y)

| x + (function y » sum (- x 1) (+ y 1))})
Fields #1 and #3 are annotated as being lazy and fields #2 and #4 are annotated as strict.
Note that field #3 could have been annotated as being strict if our criterion was slightly more
sophisticated.
Now, we give the previous expression to the compiler which will take into account these anno-
tations. If we are in the context of a strict ML, with let construct, we may improve this result by

forcing the evaluation of lazy fields of the record before giving control to the expression sum x z.
In other words, we could transform:

(function {#113%¥=x; #28tTictog,c. ga-lazy,. gestrict_gony | gup o z)

25

into:

(function {#1=x; #2=fac; #3=z; #4=sum} + Unf x; Unf z; sum x z)
where “;” denotes sequential evaluation and “Unf” is a primitive fetching the (possibly unevaluated)
value of its variable argument, evaluating it, and updating the corresponding field of the record
argument. In that case, we are sure that no “Unf” instruction remains in the body of the “let rec”
(sum x z in our example). Such instructions could be present in the body of recursively defined
values, and flow analysis would be necessary in order to remove them.

This treatment of recursion is orthogonal to other transformations such as dependency analysis,
and can be improved by a more sophisticated detection of safe call-by-value recursion. As an
example, given the following commonly used scheme of recursive definition:

let rec (f,g)

let h = €; in (ep,€3)

it is safe to “extract” the binding of h when e, does not contain any free occurrence of £ and g
outside of the recursive definition, making the declaration of h local to the declaration of f and g,
producing:

local h = €; in

let rec (f,g) = (ez,e3)
allowing to simplify further the recursive construct.

In a language without user-accessible lazy data structures, it is still possible to compile cor-
rectly arbitrary recursive definitions, with laziness used as an implementation tool invisible to the
programmer.

7 Conclusion

The “single pointer assumption” allows the presence of suspensions in the following occurrences (in
the representation of runtime data):

e values held in environments,
e components of data structures (sum and products).

The first two extensions presented in this paper use both possibilities. The price to pay is one test
for each access. The third extension rules out the first possibility and allows laziness to occur only
in components of data structures. This laziness being introduced in the type definitions, programs
remain readable, and the runtime penalty is minimum in the sense that the strict part of the
language remains compiled as usual.

The compilation of arbitrary recursive definitions has been given as an interesting application
of this work. We used a special record type in order to store mutually recursive definitions, adding
lazy annotations to some fields in order to delay accesses to the values of recursive variables until
a cyclic structure is effectively built.

8 Related works

The LCS language [1] includes a special parameterized type a 1ift, with a single data constructor
up. Since other data constructors are strict, up has to be a keyword in order to receive a special
treatment by the compiler. In LCS, the 1ift type admits recursion but does not admit equality.

26

(o=

%)

-

Pattern-matching with the up constructor is slightly restricted: since.pattern-matching does not
evaluate suspensions, the compiler produces a warning when. a refutable pattern (such as constants
or sum patterns with more that one summand) occurs under an up constructor.

This mechanism has the same power as our third extension: we can define the 1ift type in our
extended language as a record type with a single lazy field (type delay, section 5.3), and the 1ift

type can make lazy any sum data constructor of record field. The 1ift solution has the advantage -

of not adding a new mechanism to type definitions, and the disadvantage of needing explicit delays
and tests (up and down). Moreover, the presence of lifted values in record fields (for example)
produce an extra (allocated) indirection to values.

9 Acknowledgements

Thanks are due to Ascander Sudrez who first noticed that there was only one pointer to a suspension
in the lazy version of Caml. I am also grateful to Xavier Leroy who carefully read a previous version
of this paper.

References

(1] B. Berthomieu. LCS Users Manual. Technical Report 91226, LAAS, Toulouse, France, 1991.

[2] G. Cousineau, P.-L. Curien, and M. Mauny. The Categorical Abstract Machine, pages 50-64.
Number 201 in Lecture Notes in Computer Science. Springer Verlag, 1985.

[3] G. Cousineau and G. Huet. The CAML primer. Technical Report 122, INRIA, 1990.

[4] P.-L. Curien. Categorical Combinators, Sequential Algorithms and Functional Programming.
Research Notes in Theorical Computer Science. Pitman, 1986.

(5] T. Johnsson. Efficient compilation of lazy evaluation. In Proceedings of ACM Conference on
Compiler Construction, pages 58-69, 1984.

[6] T. Johnsson. Attribute grammars as a functional programming paradigm. Report 42, Univer-
sity of Goteborg and Chalmers University of Technology, 1987.

(7] A. Laville. Evaluation Paresseuse des Filtrages avec Priorités. PhD thesis, Université de Paris
VII, 1988.

(8] M. Mauny. Compilation des Langages Fonctionnels dans les Combinateurs Catégoriques —
Application au langage ML. PhD thesis, Université de Paris VII, 1985.

[9] M. Mauny and A. Sudrez. Implementing functional languages in the categorical abstract
machine. In Proceedings of the ACM International Conference on Lisp and Functional Pro-
gramming, pages 266-278, 1986.

[10] S.L. Peyton-Jones. The Implementation of Functional Programming Languages. Series in
Computer Science. Prentice-Hall International, 1987. -

27

(11] L. Puel and A. Sudrez. Compiling pattern matching by term decomposition. In Proceedings
of the ACM Conference on Lisp and Functional Programming, 1990.

[12] J. Rees and W. Clinger. The revised3 report on the algorithmic language Scheme. In SIGPLAN
Notices, volume 21, 1987.

[13] P. Weis, M.V. Aponte, A. Laville, M. Mauny, and A. Sudrez. The CAML reference manual.
Technical Report 121, INRIA, 1990.

28

Imprimé en France
ar
.I'Institut National de Recherche en Informatique et en Automatique,

