N

N

Programmer’s manual for SOS prototype - Version 4

Groupe Sor

» To cite this version:

Groupe Sor. Programmer’s manual for SOS prototype - Version 4. RT-0103, INRIA. 1988, pp.90.
inria-00070063

HAL Id: inria-00070063
https://inria.hal.science/inria-00070063
Submitted on 19 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00070063
https://hal.archives-ouvertes.fr

R

Rapports lechniques

T

N° 103

4

Programme 3

I

A
E

PROGRAMMER'S MANUAL FOR SOS
PROTOTYPE - VERSION 4

P «Ef’;
e

Colo g d

RITAD

QS

PRI

Le groupe SOR

T

ETATT e

0 Cedee | |

L

Décembre 1988

Manuel de Programmation du Prototype
SOS Version 4

Programmer’s manual for SOS Prototype

Version 4
Technical Note SOR-35

The SOR group

INRIA, B.P. 105, 78153 Le Chesnay Cédex, France
tel: +33 (1) 39-63-53-25

e-mail: sos@corto.inria.fr

December 1988

N! ! D PAPIER RECUPERE ET RECYCLE

Abstract

This is a programmer’s manual for SOS Prototype Version 4.
. It contains the necessary information to program SOS objects, in
their different roles (proxies, proxy-providers, and servers); how to
prepare, export, or import proxies; how to prepare code objects;
and how to compile. This paper contains the information on how
to interface to the dynamic linker and to system services. This
information is exposed in a compact form, by example; the reader is
expected to have previous knowledge of C++ and of the principles
of the SOS design.

Ceci est le manuel de programmation du Prototype SOS Version
4. Il contient les informations nécessaires pour programmer les ob-
jets SOS, dans leurs différents rdles (mandataires, fournisseurs de
mandataires, et serveurs); comment préparer, exporter ou importer
des mandataires; comment préparer les objets codes; et comment
compiler. Ce document donne des informations sur l'interface de
I’éditeur de liens dynamique et des services systémes, par I'intermé-
diaire d’exemples. Le lecteur est supposé connaitre le langage C++
et les principes du systéme SOS.

About this document

This paper was written principally by Marc Shapiro, leader of the SOS task and
of the research group “Systémes a Objets Répartis” of INRIA, from material
prepared by Sabine Habert. It also contains contributions from other people,
and reflects the work of the whole SOS task:

e Dima Abrossimov is responsible for the kernel.

e Philippe Gautron is responsible for the C++ compiler and dynamic linker;
he contributed material on compiling and debugging.

e Yvon Gourhant wrote the Speak application and did much of the initial
debugging. He contributed Chapter 2, material on debugging and dynamic
linker port on Metaviseur.

e Sabine Habert is responsible for the Acquaintance Service and wrote the
initial material for this paper.

e Jean-Pierre Le Narzul, of Bull-MTS, is responsible for the Name Service;
he contributed Chapter 9 and related material.

e Mesaac Makpangou is responsible for the Communication Service; he con-
tributed Chapter 11.

¢ Laurence Mosseri, is responsible for the Object Storage Service; she con-
tributed Chapter 10 and related material.

~ Other people working on SOS include Céline Valot and Vassilis Prevelakis.
Many thanks to all of them. Thanks also to our SOMIW partners who ac-
cepted and supported our work.

Typographical conventions

The following typographical conventions are used in this document. Important
words and defining uses of a word are printed in italics.

Variable or procedure names, C++ code, keywords, or contents of adminis-
trative files are presented in typewriter font. Commands to type to the Unix
shell are also in typewriter font, preceded by the prompt "% ", as in:

% sosman sosObject

References to the SOS Reference Manual are presented in SMALL CAPITALS.
For instance the sentence “See sosCC[1]” means: look up the documentation
of primitive sosCC in chapter 1 of the SOS Reference manual. See SOSMAN(1].

Contents

1 Imntroduction

1.1 Goal and scope of thisdocument
1.2 Proxies, Providers,and Servers
13 Background,
1.4 Organization of the Programmer’s Manual
15 Theexample
2 Running SOS and SOS applications
2.1 Unixenvironment.
2.2 The predetContextsfile
2.3 Storage Serviceenvironment
2.4 Communication Service environment
25 Starting SOS
2.6 Starting applications
2.7 Creatinganewcontext
28 Terminating,

3 SOS objects

3.1 ThesosObjectclass
3.1.1 Declaring and creating an SOS object
3.1.2 Invokingan SOS object

3.2 Namingobjects
3.2.1 Adressesand ADindexes
322 OID’sandreferences
3.2.3 Symbolic names and the SOS Name Service

3.3 Migratableobjects

4 Client applications

4.1 Importinganobject
41.1 Syntax. e
4.1.2 Re-initialization of an imported object
4.1.3 Importing from a provider or from storage

CONTENTS

4.2
4.3
4.4
4.5

414 Prerequisites,
Using an imported object
Compilingaclient
Debuggingaclient e e e
Example e e e e e e e e e e e e e

5 Cross-context communication

5.1
5.2
5.3
5.4
5.5
5.6

Trap References
The kernel primitive crossInvoke
Segments
Servers: Programming the stub Procedure.
Example

6- Code objects

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Codeobjects
An acquaintance and its code objeet
Declaring and using a code object
The relation of an object toitscode
Creatingacodeobject
Usingacodeobject
Storingacodeobject L.

7 Programming the proxy

7.1
7.2
7.3
7.4
7.5
7.6
7.7

The life-cycleofaproxy
The allocation of a proxy in the provider’scontext
The importation into the client’scontext
Prerequisites
The proxy’sactivity
Debugging a proxyo i i
Optimization

8 Proxy providers

8.1

8.2

8.3

Selecting a proxy candidate Y
8.1.1 Creating the proxy candidate
8.1.2 Retrieving a candidate from storage
Preparing the proxy candidate for migration.
8.2.1 Creating group and setting trap reference
8.2.2 Settingcodereference
8.2.3 Choosing the mode of exportation

Example

20
20
21
21
22

24
24
25
25
26
26
27

29
29
29
30
31
31
31
32

33
34
35
37
38
38
40
41

9 The Name Service
9.1 Introduction
9.2 The name space X
9.3 Name Service proxy importation
9.4 Registering an object
9.5 Creating a new directory
9.6 Removing a name
9.7 Finding the reference of an object
9.8 Reading the contents of a directory
9.9 Changing the current directory

10 Object storage

10.1 Vertical migration
10.2 Permanent objects
10.3 Composite objects

11

A Glossary of terms

Remote communication protocols
11.1 SOS-RPC

11.2.1 Family creation
11.2.2 How to join a family
11.2.3 How members communicate
11.2.4 How to get other replies

Changes

B.1 Changes from V1 to V2
B.2 Changes from V2 to V3
B.3 Changes from V3 to V4

Compiling and debugging
C.1 Declarations of sosObject
C.2 Termination and-destructors
C.3 Compiling
C.3.1 Compiling a client
C.4 Debugging

C.5 Traces

The write example

D.1 The “Write” proxy
D.1.1 Proxy definitions
D.1.2 Message definitions
D.1.3 The code for the proxy

CONTENTS

CONTENTS » 5

D.2

D3

The “Write” client 81

D.2.1 Theimportrequest. 81
D22 Theclient 82
The “Write” provider 84
D.3.1 Startingtheprovider. 85
D32 Theprovider 86
D.3.3 Server declarations 88 -

D34 Theserver. 89

Chapter 1

Introduction

1.1 Goal and scope of this document

This Programmer’s Manual is intended as the reference to programming in SOS
for C++ programmers, in SOS Prototype Version 4. It gives simplified examples
to introduce the concept of SOS objects, proxies, servers, proxy providers, etc.
It shows how to write programs using these concepts, how to compile them,
and how to use them at run-time. It also explains the interfaces to such system
services as the Acquaintance Service, the Object Storage Service, the Name
Service, and the Communication Service. It shows how the dynamic linker is
used to migrate code objects; the creation of code objects is also explained.

This document explains how to program an application in the SOS system,
Prototype Version 4. SOS is an object-oriented system, so this document is
essentially on how to declare, define, use, and debug SOS objects. An object
can play many roles: a passive object, a client, a provider, a proxy or a server;
at any point in time it can play one or many of these roles. This document
explains each one separately, from the simplest, to the most complex. Other
concepts and support data structures are explained as needed.

This document and the SOS Reference Manual — which is available in hard-
copy form [Sha87a] and on-line, see SOSMAN[1]! — complement each other. The
latter, a detailed reference of the meaning of SOS concepts and their usage, an-
swers the question “What does this do?”. This document is intended to answer
the question: “How do I do this?”.

1The notation ’IOPIC[CHAP'IER] means: topic TOPIC is explained in chapter CHAPTER of the
SOS Reference Manual. TOPIC may be the name of a program, an interface procedure, a
system class, or an important concept.

Currently, CHAPTER may be 1 for Unix support programs, 2 for kernel or generic SOS
object classes, functions, and C++ extensions, 3 for the Acquaintance Service, 4 for the
Object Storage Service, 5 for the Name Service, 6 for the Communication Service, and 7 for
Sos application programs and utilities.

1.2. -PROXIES, PROVIDERS, AND SERVERS _ 7

Full detail on interfaces, allowable types of arguments, possible return con-
ditions, and limitations may be found in the Reference Manual. This document
contains some information from different sections of the Reference Manual, as
well as additional background information.?

1.2 Proxies, Providers, and Servers

The SOS system is organized around the Proxy Principle [Sha86b). An applica-
tion program which wants to make use of some resource, a client of the resource,
. needs a local object which it can invoke, which is a representative of the resource.
This representative is called a prozy, and is normally imported from the resource
at the time of need by requesting it from a prozy provider. The proxy is a real
object, with local procedures. It may elect to reply to invocations directly. It
may also request more information from a server for the resource, executing in
some other context.

From the system’s point of view, there is no difference between a proxy and
a server. The system only knows of groups of objects which can communicate
by cross-invocation, via their trap references.

A proxy is a client’s private interface to a resource; it usually was imported
from a proxy provider, and carries one or more trap references towards servers.
It may itself be a target of cross-invocations (e.g. from its server).

Proxies provided to different clients may behave differently, but they should -
all present a compatible interface.

1.3 Background

Previous knowledge of the SOS system and of C++ is required before reading
this document. Please refer to [Sha86b], [Sha86c], [Sha86a], [Sha87b] for general
information on SOS, and to [Sha87a), and [Gau87] for more specific information
about the prototype. A full documentation packet will be sent upon request.

The best source about C++ is [Str85]. The programming language used for
SOS is C++ with two extensions. Ezceptions are non-sequential exits from a
procedure or a block in order to signal errors (see EXCEPTION{2] and [Abr87]).
Dynamic classes allow to use external objects (e.g. imported or permanent);
they are explained in detail in [Gau87]3 and in the rest of this paper. Reference
means an instance of the SOS class ref. There is no relationship with the C++
reference concept.

2If you notice any contradiction between these sources, please tell us. The on-line version
of the Reference Manual can be considered the more credible source.

3Please note that the inner concept discussed in that paper is not used in SOS Prototype
Version 4. .

8 CHAPTER 1. INTRODUCTION

Please note that the SOS kernel is based largely on the “task” library of
C++ [Str87). All the primitives of this library are available for synchronization
between concurrent tasks in the same context.

1.4 Organization of the Programmer’s Manual

This document is organized as follows. The first few chapters explain how to
use existing resources:

e Chapter 2 says how to set up the SOS environment and run an existing
application.

o Chapter 3 explains the concept of objects in SOS, and especially migrat-
able objects. Associated concepts like object naming and references are
also explained.

e Chapter 4 explains the programming of a client application. A client is
an application which uses some external resource; to do so it must import
a proxy for that resource. This chapter explains how importation is done
and how proxies are used by their clients.

The above chapters are sufficient for an application programmer who only
wants to use existing resources. However, a programmer who wishes to program
a resource for general usage must be aware of the distribution of proxies, and
must know how to program proxies, providers, servers, and how they interface
with each other. This is explained in the subsequent chapters.

e Chapter 5 explains how cross-context communication (between a proxy
and its server) occurs. It explains the group concept, the invokeMessage
and returnMessage data structures, and the segment concept. It also
explains how a server receives and serves cross-invocations.

e When an object is migrated across a context boundary, there must be code
in the target context to execute the object’s invocations. It is carried in a
code object, which is explained in Chapter 6.

e The proxy itself is the most complex part of programming a distributed
application. Chapter 7 explains the life-cycle of a proxy, from creation
and preparation by the provider, to exportation and re-initalization in the
client’s context, communication with its servers, and destruction. It also
contains hints for debugging a proxy.

e Providers are objects which provide proxies to clients requesting them.
Providers must create or select the proxy, and prepare it in a well-defined
way. This is explained in Chapter 8.

1.5. THE EXAMPLE 9

The final chapters are targeted to application programmers with special
needs. Chapter 9 gives-information about giving symbolic names to objects
and using those names. Chapter 10 explains how to create persistent objects
and how to use them. Chapter 11 is about the various communication facilities
available in SOS Prototype Version 4.

A glossary of useful terms can be found in Appendix A.

Appendix B is about changes between different versions (V1 to V2, V2 to
V3, V3 to V4). ' .

Appendix C deals with compiling and debugging of SOS applications.

1.5 The example

In order to illustrate different aspects of SOS, we use throughout this document,
a simple example. It is called ¢ ‘Write’’ and is modeled after the Unix write
program. This application allows a client to write on some other terminal.

A terminal manager ‘ ‘wrPrvdr’’ delivers proxies for clients for writing on a
specific terminal. The terminal manager is in two parts: the wrProvider which
delivers proxies, and the wrServer which does the connection to the terminal.
There is one provider for all terminals, and one server per terminal.

This example runs on a single machine, and shows how one can program the
proxy, the server and the proxy provider in this simple case, and explain other
aspects of SOS. The entire example is presented in Appendix D.

The “speak” example is used in chapter 11 to illustrate remote communica-
tion and multicast within SOS.

Chapter 2

Running SOS and SOS
applications

Prototype Version 4 runs on top of Unix. To start SOS, first of all, you must set
up the SOS environment. This entails: setting up Unix environment variables
if needed, creating a predefContexts file and an sosDsk sub-directory in the
working directory, adding two entries in /etc/services, and then running the
program sos. Then, you can run your applications.

In the following examples, we suppose that the SOS system is installed in
the Unix directory /sos!, and that you wish to run SOS within the working
directory /sosRun.

2.1 Unix environment

First, the Unix environment variable DLPATH must be set with a Unix directory
list, to search for exported code files used by the dynamic linker. Furthermore,
your path or PATH environment variable should contain the directory for SOS
binaries. For example, from csh:

% setenv DLPATH ".:/sos/export”
% set path # (/sos/bin $path)

From the Bourne shell sh the syntax is:

$ DLPATH=.:/sos/export
$ PATH=/s0s/bin:$PATH
$ export DLPATH PATH

1In our installation, this is a link to /users/SOS-CURRENT-VERSION, which is itself a
link to /users/sos/v4, which is shared by NFS. The name of the installation directory (here,
/s08) is a compile-time option.

10

2.2. THE PREDEFCONTEXTS FILE 11

2.2 The predefContexts file

.

The predefContexts file lists system services which must be run automatically
when SOS is started. It must exist in the directory /sos/etc. The syntax
of each entry is the name of a context, followed by a predefined integer which
serves to compute its context’s OID. If SOS binaries are installed in /sos/bin,
the file /sos/etc/predefContexts looks like this:

/eos/bin/ASmain
/s08/bin/SSmain
/s0s8/bin/NSmain
/808/bin/CSmain

- wWwN =

Ordinary users should not change the predefContexts file. The absolute
path /sos/etc/predefContexts may be overridden using the PREDEFCON-
TEXTS environment variable.

2.3 Storage Service environment

A Unix directory called sosDsk must be created in /sosRun. A subdirectory
with the name of the machine? must also be created in sosDsk. For instance,
to run SOS on a machine named “adele”, you need to have the directories :

/sosRun/sosDsk
/sosRun/sosDsk/adele

Here is an example configuration in a system with 6 machines connected by
NFS, where the same directory /sosRun is used as the working directory on all
machines:

% cd /sosRun/sosDsk

% 1ls -ls

1 drvxrwvxrvx 2 shapiro 512 Jan 14 10:12 adele

1 drwxrwvxrwx 2 shapiro 512 Jan 14 10:12 averell

1 drexrwxrwx 2 shapiro 512 Jan 14 10:12 blueberry
1 drwxrwvxrwx 2 shapiro 612 Jan 14 10:12 carmen

1 drwxrwxrwx 2 shapiro 512 Jan 14 10:12 corto

1 drwxrvxrwx 2 shapiro 6512 Jan 14 10:12 iznogoud

The absolute path /sos/sosDsk may be overriden with the SOSDSK en-
vironment variable. In case of problems, delete the files /sosRun/sosDsk/*/*
and restart SOS.

2I.e. the result of the Unix hostname call.

12 CHAPTER 2. RUNNING SOS AND SOS APPLICATIONS

2.4 Communication Service environment

In order to support distribution, one has to register two services in the Unix file
/etc/services: S0S-CS and SOS-TIMER. The following definitions are used in
our environment:

% grep SOS /etc/services
S0s-Cs 2000/udp csctxtPort # 50S internal
SOS-TIMER 2001/udp timerPort # S0S internal

(If the port numbers 2000 and/or 2001 are not free in your environment,
replace them by any other free numbers.)

Furthermore, you must register the list of potential SOS hosts, in the file
/sos/etc/sosHosts. A host running SOS is capable of communicating only
with those machines listed in its own /sos/etc/sosHosts file. Beware that the
sosHosts files of all communicating hosts must be identical.

For debugging, you can restrict communication to a small set of machines
by carefully editing sosHosts on each of the machines of the subset.

The pathname /sos/etc/sosHosts may be overridden with the SOSHOSTS
environment variable.

2.5 Starting SOS

Once the above-described environment is set, start SOS kernel by running the
sos program, e.g.:

% cd /sosRun
% sos &

Only one instance of the sos program may run at a time on a given work-
station. sos may be run with arguments, for debugging (see Appendix C).

2.6 Starting applications

The services registered in the predefContexts file are started automatically by
the sos program. Their argument vector argv is a copy of the arguments to
SoOs.

Applications may be started, once sos is running, from a Unix program,
e.g. the shell or a debugger. Just use its Unix pathname.

For instance, to run the “Write” program, you must first run sos with the
standard environment; then run the “Write Provider”, wrPrvdr; then run the
Write program, once per client. So, once you start the SOS environment:

% cd /sosRun
% sos &

2.7. CREATING A NEW CONTEXT _ 13

Then, start a single copy of the proxy-provider for Write:
% wrPrvdr & }

Then every participating user types, on his own terminal:
% Write ttyName &

where ttyName is the name of the concerned terminal.
In order to start an application running on different workstations, one should
first start the SOS environment on every participating workstation.

2.7 Creating a new context

A program can fork a new, independent, context by using the SOS kernel prim-
itive newContext. One of its parameters is the Unix filename of the SOS appli-
cation to start.

main() {
newContext(..., "Unix-filename", .. .A);

}

See NEWCONTEXT[2] for more explanation.

2.8 Terminating

A context may terminate itself by executing the exit(int) procedure; the pa-
rameter indicates success (value zero) or failure (non-zero, usually a Unix error
code). This terminates all of its tasks immediately, and the context exits. De-
structors for static objects are run, but not for any automatic or heap-allocated
variables.

To terminate a context from the outside, just send the Unix interrupt signal.
This can be usually done by typing the control-C or DEL character, or by
sending the signal SIGTERN :

% kill process-id

where process-id is the process number of the context to kill. This has the

same effect as executing exit(-1) from within the target context.
To terminate a whole SOS session, send the signal SIGTERM to the sos pro-
gram on each participating machine. Type:

% kill sos-process-id
where sos-process-id is the process identifier of the sos program on that
machine. That terminates the SOS kernel and all currently running contexts.

Each of these terminates immediately, without executing any destructors, and
with a non-zero status code.

Chapter 3

SOS objects

A programmer may create many object types, some of which are for the appli-
cation’s internal use, and others intended for communication with the system
or with other application programs. This latter type must be known to the SOS
run-time system, and more specifically to the SOS distributed Object Manager
called the Acquaintance Service. They will be called SOS objects, or just simply
objects when there is no ambiguity.

3.1 The sos0Object class

An SOS object is simply an instance of some class derived from sosObject.
When the class is instantiated, the constructor for sosObject will be called
automatically, which will take care of all the declaring and interfacing to the SOS
system (it automatically calls the appropriate procedures of the Acquaintance
Service).

3.1.1 Declaring and creating an SOS object

To use an SOS object, the header file context.h must be included. Here is an
example:

#include <sos/context.h>
class myClass: public sosObject {
const chars s;
int i;
public:
void setString (const char* str) raises (nullArg) {
if (!str) raise (nullArg);
else 8 = atr;
}
const char* getString () { return s; }

14

3.2. NAMING OBJECTS 15

myClass (const char* str, int ii) {
8 = str;
i=ii;

};

/* this is an SOS object */ -
myClass* myObject = new myClass ("Hello, world.", 1024);

The last command creates an initialized instance myObject of class myClass,

by calling its constructor defined above. This automatically calls the constructor

*(with no arguments) of class sosObject, which initializes the internal structures

(Acquaintance Descriptor, OIDs). If necessary, any of the other constructors of
class sosObject can be called.

3.1.2 Invoking an SOS object

Using an SOS object is the same as using any other C++ object. Creating
an SOS object is simply calling one of its constructors: this will allocate space
for the data, call the constructors for the base class (including the constructor
for sosObject, which declares the new object to the Acquaintance Service).
Invoking an object is calling one of its procedures defined in its public interface.
For instance, returning to the example in section 3.1.1 above:

myClass *myObject = new myClass (''Hello, world.", 1024);

myObject -> SetString ("Goodbye, cruel world!");
printf ("%s\n", myObject -> getString ());

As there are no public procedures to set or get the i field of myClass, it
cannot be read or changed once the object is created.!

3.2 Naming objects

There are many ways of designating an object. Within a context, the address
of the object or the index of its Acquaintance Descriptor can be used. Across
contexts, a global designation or Object IDentifier (OID) must be used; this may
be completed by a location hint to form a reference®. Furthermore, a symbolic
name-to-reference mapping may be registered with the Name Service.

1C++ also allows access to public fields of the object. As explained below (see §7.6), it
is bad practise (for debugging reasons) to have public fields in an SOS object. For the same
reasons, never give out a pointer to a field of an object.

2“Reference” in this document means an instance of the SOS class ref. There is no
relationship with the C+4 reference concept.

16 ‘ CHAPTER 3. SOS OBJECTS

3.2.1 Adresses and AD indexes

A normal C++ program refers to an object by its address in its context.

The Acquaintance Service refers to an acquaintance by its index in the Ac-
quaintance Descriptor table. Acquaintance Service procedures are available to
convert from one to the other, see GETADDRESS[3] and GETDESCRIPTOR[3].

class myClass: public sosObject {...};

myClass* myObject = new myClass(...);

// myDescriptor is set with the index of myObject
short myDescriptor = AS -> getDescriptor (myObject);
// addr is set with the address of object

sosObject * addr = AS -> getAddress (myDescriptor);

In the above example, myObject, myDescriptor and addr (see also chapter
10) all designate the same object. AS designates the local representative of the
Acquaintance Service.

3.2.2 OID’s and references

An OID is a 64-bit number which identifies an object in the SOS universe,
see OID([2]. Each object has its unique (in this universe) OID, or “concrete
OID” which characterizes its memory segment. It also carries a list of “group
OIDs”. All objects, across contexts, which carry a same OID are in the same
group. With respect to this common OID, all objects in the group are considered
equivalent (they are all incarnations of the same distributed object).

Searching an object by OID could be very expensive. The association of an
OID and a location hint (to speed up searches) is called a reference; see REF[2].

An importation converts a reference into a local object (known by address
or by Acquaintance Descriptor index). One can create a reference by GETREF-
ERENCE(3]. Here are some examples:

ref aRef; // some reference
0ID an0ID;
aRef.get0ID(2an0ID) ; // extract 0ID field
sosObject *myObject = // import
nev dynamic (&aRef) sosObject (...);
short myDesc = // extract descriptor

AS -> getDescriptor (myObject);
ref localRef;
AS->getReference (myObject, &localRef); // create ref
0ID localOID;localRef.get0ID(&1local0ID);// extract its OIDs

3.3. MIGRATABLE OBJECTS : 17

In this example, aRef and an0ID both designate the same global object, and
myObject, myDesc, localRef, and localOID all designate its local represen-
tation. A
For more explanation, see ACQUAINTANCESERVICE[3].

3.2.3 Symbolic names and the SOS Name Service

The symbolic names are the SOS user-level names (see NAMESERVICE[5]). The
Name Service maintains the mapping between symbolic names and references.
It allows, among others things, to register (NS ~> addName) and look up (NS
=> lookup) the symbolic names of objects.

NS ~> addName gives a symbolic name to an object and registers the map-
ping between that symbolic name and the reference with the Name Service.

NS -> lookup asks for the reference of an object, given its symbolic name.
It supposes that the symbolic name has been previously registered within the
Name Service.

Other functionalities supported by the Name Service are presented in Chap-
ter 9.

In order to use the Name Service, one must first import its proxy (see Chap-
ter 4). This is best done at the beginning of the program. Example:

#include <sos/context.h>

dirs = NS;
main() {
// import Name service proxy
NS = new dynamic("/nameServer") dirs(nullIR); // see below

// create object and register it
sos0bject *myObject;
NS ~> addName ("/myDirectory/someName", #myObject);

// get a registered reference

° ref myRef;
NS -> lookup ("/otherDirectory/subDir/randomName", &myRef);
}

3.3 Migratable objects

For an object to be suitable for migration, its class must be declared dynamic.
This insures that invocations generated by the compiler will be indirect proce-
dure calls via a procedure table, which is filled by the dynamic linker.?

3See [Gau87], and section 6.1 in this document.

18 CHAPTER 3. SOS OBJECTS

/* file myClass.h #/
dynamic class
myClass: public sosObject {

};
Using an instance of a dynamic class is exactly the same as for any other
class: you simply invoke its procedures. The extra indirection via the procedure

table is inserted by the compiler, and the user need not be aware of it.
Such a class can have locally-created instances, like below:

/* myObjectl is created locally #/
myClass #myObjectl = new myClass ;

It can also have instances which are imported (migrated) from elsewhere.
For instance:

/+ myObject2 is imported from elsevhere. Syntax explained below. %/
myClass smyObject2 = new dynamic (xyz) myClass (ir);

The special syntax new dynamic is explained further on (§4.1.1).

Importing an object makes the importer a Client of the resource represented
by the proxy; the client réle is detailed in Chapter 4.

Instances of a dynamic class (either created locally or imported) may be
exported (or re-exported) to other clients. A proxy exporter is known as a
Provider; this role is explained in Chapter 8.

Chapter 4

Client applications

An application program which wants to make use of some resource, a client of
the resource, needs a local object which it can invoke, which is a representative
of the resource. This representative is called a prozy, and is normally imported
from the resource at the time of need. Later, in Chapter 5 we show how a
resource’s server communicates with a proxy; in Chapter 7, we show how the
proxy itself is programmed; and in Chapter 8 we will show how a resource
prepares and exports a proxy. For now, we will look at how a client acquires
and uses a proxy.

4.1 Importing an object
4.1.1 Syntax

For the client, proxy acquisition appears like a special case of instantiation. The
following construct is used:

importRequest ir= ...;
myClass * myObject;

myObject = new dynamic (resource) myClass (&ir,...);

where resource is either a symbolic name or a reference for the resource
provider. The resource argument may be omitted, in which case it assumes
the default symbolic name "/services/myClass”.

The first argument of the constructor myClass (&ir...) is a pointer to
an instance of class importRequest (or of some derived class) !. The client
should initialize the importRequest in the manner required by the resource.?

IClass importRequest is derived from the class invokeMessage and its size is limited to
MAXMESSAGE.
2In future versions, this might be performed automatically by a stub compiler.

19

20 CHAPTER 4. CLIENT APPLICATIONS

The importRequest is used to carry importation arguments; the pointer may
be null if there are no arguments.

4.1.2 Re-initialization of an imported object

Importation is different from usual instantiation, in that the first argument to
the constructor myClass (&ir...) must be, if not null, a pointer to an im-
portRequest (or derived).3

This does not allocate a new instance. Instead, an initialized instance is
imported from the resource, and re-initialized in the client’s context by calling
the importation constructor. This in turn calls the constructor for the base class
and for embedded objects; special care is taken by the programmer of the proxy
so that this does not lose the imported information (see §7.3).

4.1.3 Importing from a provider or from storage

The resource parameter of the new dynamic (resource) construct, a sym-
bolic name or a reference, designates an object which provides proxies for this
resource.

The importRequest is forwarded (by the Acquaintance Service) to the provider.

The latter prepares a “proxy candidate” (see chapter 8) which is then trans-
ported into the client’s context.

The resource parameter above may also designate an object stored with
the Object Storage Service (Chapter 10). In this case, the object’s image is
copied from the SOS disk and activated in the client’s memory.

In both cases, the mechanisms are the same, and the client sees no difference.

4.1.4 Pre-requisites

Requesting the importation of some object X has the side-effect of importing
other objects which are designated as the “pre-requisites” for X (see §7.4). These
are imported using the same mechanism as described above. The pre-requisite
is initialized using its contructor with a single argument, an importRequest#*.
It is given a copy of the importRequest used for X.

4.2 Using an imported object

An imported object is used just like any other object. It is accessed by invoking
its procedures. See Chapter 3.

3The compiler forbids calling a constructor whose first argument is a importRequests in
any other circumstance than in an importation.

4.3. COMPILING A CLIENT 21

4.3 Compilihg a client

Any SOS program is a client of the SOS services and runs in an SOS context.
It should include the standard header file context.h:

#include <sos/context.h>

The code for a client is compiled with the command sosCC[1]. For instance:
% 808CC -0 client clienmt.c

This compiles the source file client.c into an executable SOS application
named client.

As we will see (Chapter 6), the code for the proxy is loaded and linked with
the client at run-time if necessary. It is more efficient and easier to debug if the
code is linked statically:

% 808CC -0 client client.c proxy.o

The imported proxy is allowed to call procedures defined or linked with
the importer. In particular, the proxy may call library functions (for instance
printf defined in the standard library libc.a). To this effect, the library
should be linked with the client application. '

By default, sosCC always links the standard libraries, i.e 1ibc.a, 1ibC.a
and 1ibD.a. Other libraries may also be linked (see appendix C).

4.4 Debugging a client

The client’s execution depends on the correct execution of the imported proxy.
Therefore it is wise, during the debugging phase, to replace any importation
request with a local instantiation of a stub object, with the same interface as
the proxy.) _

Dynamic linking of the proxy’s code makes debugging harder because the
environment is less stable, and because the Unix debuggers don’t know how
to read the symbol table. It is therefore wise to link the code statically when
possible.

The dynamic library 1ibD.a provides run-time information about the cur-
rent state of imported proxies. This library is automatically linked when source
files are compiled with s0sCC. A complete description of the debug facilities can
be found in DLINFO([8] and in “On the use of the dynamic linker in SOS \Li
in directory doc/dlink of the current distribution.

More, with either dynamic or static linking, procedure Zdebug() is available,
to list the dynamic classes currently linked (see ZDEBUG(8]).

22 CHAPTER 4. CLIENT APPLICATIONS

For instance:

#include "dyninfo.h"

main() {
Zdebug() ;
}
The default output from this procedure goes to the standard error output
(file descriptor 2).

4.5 Example

Let us use the example of an SOS version of the UNIX write command. A
client is the program of a user who wishes to write to another user, importing
a proxy. The procedures of the proxy are then used to send the message on the
terminal of another user (procedure Write):

#include <sos/context.h>
#include "wxProxy.h"

/* Start a Write client, to send messages to another terminal.
* Import a write proxy, from the provider.

* Then wait for user input, and give to write proxy.

*/

main (int argc, const chars* argv)

{

// create request message, and ask for importation
wrImportRequest args (tty);
vrProxy *myWrProxy =

nev dynamic (wrProviderName) wrProxy (&args);
cerr << argv[0] << " is ready (" << rcsid << ")\n";
// if importation fails, the program will abort
// due to uncaught exception

// read user input & call proxy
while (...) { // read

myWrProxy -> Write (buffer, strlen (buffer)+1);

4.5. EXAMPLE 23

}

The class wrImportRequest is derived from importRequest and has a con-
structor to initialize the message.

As explained above, the effect of this is to send a copy of import request to the
proxy-provider named by the constant wrProviderName, invoking its giveProxy
procedure. The resulting object is installed as myWrProxy; it is initialized by
calling the constructor which takes an wrImportRequest as its only argument.
The above example is strictly equivalent to the following syntax, where the
mapping of symbolic name to reference has been made explicit:

vrImportRequest args;

const char* wrServer = wrProviderName;

ref tmp;

NS -> lookup (wrServer, &tmp);

wrProxy* myWrProxy = new dynamic (&tmp) wrProxy (&args);

Chapter 5

Cross-context
communication

We have seen that a client communicates with a resource via a proxy, an object
in the client’s context, which represents the remote resource. The proxy in turn
usually communicates, across the context boundary, with one or many objects of
the same group, which we call its servers. This chapter explains the mechanism
of this communication, so that in the later we can explain how to program the
server (Chapter 5.5) and the proxy itself (Chapter 7).

Support for cross-context communication is provided by the kernel primitive
crossInvoke. Other forms are shared memory!, shared persistent data, and
dependencies?. This chapter explains in depth the cross-context communication
provided by the kernel.

A proxy and its servers must be part of the same group. A proxy can perform
a cross-context invocation to any member of the group, for which it has a “trap
reference”.

5.1 Groups

A group is a set of co-operating elementary objects across context boundaries.
A group is characterized by an OID; all of the members of the group carry this
OID in their Acquaintance Descriptor.

1In SOS Prototype V4, there is no support for shared memory. However we encourage
the use of shared memory as an efficient communication medium between the proxy and the
server. Since the prototype is built on top of Unix, you can use the System V shared memory
operations (see shmop(2)) in the Unix manual.

2Not implemented yet.

24

5.2. TRAP REFERENCES _ 25

5.2 Trap References

A trap reference is a reference (see REF[2]); it is also the capability for an
object to cross-invoke the designated object. A trap reference is set by the
provider before the object migrates, and is updated by the migration process
(see SETTRAPREF(2]).

An object carries within its Acquaintance Descriptor, a list of trapRefs.
When invoking crossInvoke, one has to specify which trapRef is the target of
the invocation (by default, the kernel assumes the first one).

5.3 The kernel primitive crossInvoke

The semantics of crossInvoke (see CROSSINVOKE[2]) is like a Remote Proce-
dure Call: the caller waits until the callee returns. Two “stub” pieces of code
are necessary to interface with crossInvoke: the caller’s (or proxy’s) piece must
marshall the invocation arguments within an invocation message, and unmar-
shall the reply message; the callee’s (server’s) piece do the converse work. In
order to exchange arguments and reply, the caller, and the callee use two base
classes: invokeMessage and returnMessage. We describe the content of these
classes below.
The crossInvoke primitive takes three parameters:

¢ A pointer to an invokeMessage (or some derived class), containing ap-
propriate values.

The bare invokeMessage contains kernel-supplied information, including
the opaqueField of the trap reference, and application-supplied infor-
mation, the opCode field set by (the programmer of) the proxy, with an
identification of the procedure the server should execute. This field is
set by the caller’s “stub” piece of code, and is interpreted by the callee’s
“stub” piece of code.

e a pointer to an array of segmentDesc pointers (described below).

e an optional index in the caller’s list of trapRefs. By default, the kernel
assuImes zero. .

The primitive crossInvoke returns a pointer to a returnMessage (or to
an instance of some derived class). The bare returnMessage contains kernel-
supplied information. A programmer is concerned with the retCode. This is the
counterpart of the opCode. This code is set by the server’s “stub” procedure,
and is interpreted by the caller, once receiving the reply.

It is up to the “stub” code of the caller to copy the arguments and the
opCode for the cross-invocation into the invokeMessage, and, upon return, to
decode the reply, possibly raising an exception, depending on the return value
retCode.

26 CHAPTER 5. CROSS-CONTEXT COMMUNICATION

The size of invokeMessage and returnMessage is limited to the constant
MAXMESSAGE.

The two “stub” pieces of code, could be generated automatically by a stub
compiler, like in [Jon85]. We have planned such a tool.

5.4 Segments

If a large size of data is to be passed, one may use segments.

A segment is an array of bytes, supporting some operations protected by
capabilities. During a crossInvocation, segments can be passed in both direc-
tions with capabilities to allow reading and/or writing them (see copYTo[2]).
The most frequently used capabilities are:

e sgCopyFrom in order to allow the destination to read the segment. For
example, if a proxy wants to send an object to the server, it allocates
a segment with sgCopyFrom capability, and then, assigns the concerned
object to this segment (see ASSIGN[2]). Then, the server will read the
segment once it receives the invocation.

segmentDesc* segs[2]; // declare two segments

/*

* First, ve allocate a segment with maxSize size.

* sgCopyFrom capability allows to apply the "copyTo"
* operation to this segment in the destination context.
* Second, we assign "object" to this segment.

*/

segs[0] = new segmentDesc(0, sgCopyFrom);

sega[0] -> aseign (object, sizeof(object));

segs[1] = 0; // the last segment must be null

crossInvoke(..., segs);

¢ sgCopyTo in order to give right to the destination to write the segment. If
a caller wants to get, upon return, an object from the callee, it can allocate
a segment with sgCopyTo capability. The callee will copy the concerned
object within this segment during the crossInvocation.

Others capabilities and operations supported by segments are described in the
reference manuel (see SEGMENTDEsc[2]).

5.5 Servers: Programming the stub Procedure

A server is an object which defines the stub procedure, and towards which some
proxy has a trap reference.

5.6. EXAMPLE 27

A stub decodes the invocation message. Depending on its opCode, it will
perform some action. When this action is finished, stub stuffs the results into
a return message, and terminates, causing the return message to be sent. The
stub catches all exceptions which its action might raise, and transforms them
into appropriate retCodes in the return message. Code for the stub procedure
of the “Write”server is given in the next section.

5.6 Example

Let us return to the example of the SOS “Write”. A client uses the Write
procedure of the object wrProxy to send the message to its server. This message
is sent as a segment with capability sgCopyFrom, thus allowing the server to read
the contents of the segment.

enun {vrSend, wrQuit};

int
vrProxy::Write (char* msg, int len)
raises (error)
raises (closed)

// create and initialize invocation message
vrInvokeMessage args (wrSend, len);

// put the message in a segment
segmentDeac *buf[2];
segmentDesc 8d(0, sgCopyFrom);
sd.assign(msg, len);

buf[0] = &ad;

buf[1] = 0;

// cross-invoke server, and get answer
vrReturnMessage* res =
(vrReturnMessage*) crossInvoke (&args, buf);

// decode answer

if(res->retCode != wrOk)
raise (error);

return res->result;

}

The wrInvokeMessage is a derived class of invokeMessage. wrSend is the
opCode for this request. The wrReturnMessage is derived from returnMessage.

28

CHAPTER 5. CROSS-CONTEXT COMMUNICATION

On the server side, the following code is executed:

void

wrServer: :stub
(invokeMessage* request,
returnMessages reply,
segmentDesc** segs)

// Casting the reply and request to their derivated
// classes.

wrInvokeMessage * req = (wrInvokeMessages) request;
wrReturnMessage * res = (wrReturnMessage*) reply;

switch (request->opCode) {

case wrSend: { ' /* Send message to terminal */

// map received segment to a character string
const int size = req->size;

char *msg = nev char [size];

segmentDeac segdesc (0, sgCopyTo);
segdesc.assign (msg, size);

segs[0] -> copyTo (&segdesc);

// output immediately

// clean up & return

delete [size] msg;
res->result = tty->bad();

if (res->result)

' res->retCode = wrFailed;

else
res->retCode = wrik;
break;
}
case wrQuit: /* close connection */
res -> result = 1;
res -> retCode = wrik;
break;
default: /* unknown operation */
reply -> retCode = wrBadCodeOp;
}

Chapter 6

Code objects

6.1 Code objects

We will now explain the concept of code attached to a migratable object.

Any object is composed of (i) internal data, and (ii) the code (the object’s
procedures) which can interpret or modify this data. Programs which use an
object are allowed to do so only via its public procedures. Only the code has
knowledge of the layout of the data. Therefore, when migrating an object, it is
necessary to migrate its code also; for it to be useable, it must be dynamically
linked with the extant code in the target context. .

6.2 An acquaintance and its code object

The Acquaintance Descriptor of an SOS object myWrProxy, of class wrProxy,
contains a reference to an SOS object which we call here code-for-wrProxy, in-
stance of class code (see CODE[2]). When an instance of myWrProxy is migrated
to some other context, code-for-wrProxy is migrated too, and initialized in
the destination context. The initialization procedure for class code runs the
dynamic linker, and initializes the procedure table.

It would be wasteful not to share code objects when possible, i.e. between o

instances of the same actual class. Therefore, the system checks that code- °
-for-wrProxy doesn’t already exist in the destination context before migrating
it.2 The migration procedure for class code (see GIVEPROXY[2]) actually copies
code-for-wrProxy into the destination.

When preparing an object for migration, you must call setCodeRe? (see
SETCODEREF[2]) to set the code reference in the Acquaintance Descriptor. We

1C++ also allows access to public fields of the object. As explained below (see §7.6), it is
bad practise to have public fields in a migratable object.
2See Prerequisites in Appendix A.

29

30 CHAPTER 6. CODE OBJECTS
return to this later (see §6.6).

6.3 Declaring and using a code object

Consider the non-dynamic instance myWrProxy1 in the example below. It will
be attached to whatever code object already exists for its class wrProxy at in-
stanciation time. If none is loaded yet, it will be read in from a default location;
this default may be changed by adding a name® after the keyword dynamic-
in the class declaration. For instance, the following declaration says that the
SOS symbolic name for the code for class wrProxy (if none is present yet) is
"/myExport/wrProxy.code" instead of the default "/export/wrProxy.code":

// declare (in file "wrProxy.h")

dynamic ("/myExport/wrProxy.code") class
vrProxy: public sosObject {

}
// novw instantiate
vrProxys myWrProxyl = new wrProxy;

Alternatively, one can call the dynamic linker explicitly before the first in-
stantiation of that class. The following piece of code achieves the same result
as the previous example (see sOsFINDCODE[2]):

// declare (in file "wrProxy.h")

dynamic class -
wrProxy: public sosObject {

};
/*

* invoke dynamic linker before any instantiation
* or importation for this class

*/

ref myCode;

NS -> lookup ("/myExport/wrProxy.code", &myCode) ;
sosFindCode ("wrProxy", &myCode);

// now, instantiate

30r a reference.

6.4. THE RELATION OF AN OBJECT TO ITS CODE 31

vrProxy* myWrProxyl = new wrProxy;

The first argument to sosFindCode is the name of the class, the second the
reference of the code object.

6.4 The relation of an object to its code

Two objects which have been declared of the same dynamic class do not neces-
sarily execute the same code, because every object has its own procedure table.
Its class of declaration, or “apparent class”, controls the size of the table, and
the name and type of the procedure corresponding to each entry; these will be
identical for all objects of the same apparent class. However the contents of
an entry is filled with a pointer into the object’s code object, which may be
different according to how it was instantiated and/or migrated.

In the example above, myWrProxy1 was created locally using whatever code
already exists for wrProxy. An other instance may be imported from elsewhere,
possibly with its own code. Their interfaces must be compatible, but the actions
may be different.

6.5 Creating a code object

The code object may be either created and permanently stored on disk, using
the makecode utility (see §6.7), or created on-the-fly, in the provider. The latter
case is described through the following example where the code of the class
wrProxy is found in a Unix file named wrProxy.o:

code* wrCode; .
wrCode = new code("wrProxy", "wrProxy.o"”, 0);

The list of filenames must be followed by a NULL pointer.*

6.6 Using a code object
A code object is attached to an object, before exporting it, using setCodeRef.
// candidate for exportation

' wrProxy* candidate = new wrProxy(...);

ref wrCodeRef;,

4Separate compilation is supported only via the mergexport utility to merge several source
or binary files into a single importable binary file (see MERGEXPO 1])

32 CHAPTER 6. CODE OBJECTS

// creates the reference for wrCode

AS->getReference(wrCode, &wrCodeRef);
candidate -> setCodeRef (wrCodeRef);

If not set by the proxy itself, the provider of wrProxy objects must set the
code reference of the candidate to the reference of the stored code object:

ref wrCodeRef;
wrProxy* candidate = newv wrProxy(...);

NS -> lookup ("/export/vwrProxy.code", kwrCodeRef);
candidate -> setCodeRef (wrCodeRef);

6.7 Storing a code object

The makecode utility is an interface to class code and to storage. Once a Unix
.o file has been obtained, an SOS code object may be obtained, by running the
makecode command in the SOS environment:

% makecode wrProxy wrProxy.o

The above command takes the Unix file wxProxy.o containing the compiled
code for the dynamic class wrProxy and transforms it into a code object stored
on the SOS disk under the name /export/wrProxy.code (see MAKECODE[7)
for a full description).

Chapter 7
Programming the proxy -

A proxy is an object which represents a remote resource for some client. It is
located in the client’s context. The client invokes the resource by local invoca-
tions of the proxy. The proxy is normally imported from the resource at the
time of need, by requesting it from a provider.

The proxy is a real object, with local procedures. It may elect to reply to
invocations directly. It may also request more information from a server for the
resource, executing in some other context. '

The proxy and its servers must be in the same group. The proxy normally
communicates with a:server by cross-invoking it; there is a trapRef from the
proxy to each of its servers.!

A proxy has a complex life-cycle. It must first be created and initialized.
Then it can be migrated, or else copied, to some client; there it is re-initialized.
From there it may be re-exported (or else copied again) to another client. Finally
it may be destroyed.

The system preserves trapRefs across migration. Also, it preserves its exe-
cution environment, based on the concept of pre-requisites, i. e. objects which
must accompany the migrated object.? However, it is up to the programmer of
the provider to set up the trapRets initially; it is up to the programmer of the
proxy to set up the pre-requisites.

The life-cycle of the proxy, and all the things a proxy programmer must
know to program and debug a proxy, are the subject of the present chapter.

1They may also communicate by other means, e. g. shared memory or shared persistent
data.
2In version 4, only code objects can be defined as pre-requisites.

33

34 CHAPTER 7. PROGRAMMING THE PROXY

7.1 The life-cycle of a proxy

The subject of this section is examining the different phases of the life of a proxy,
from its initial creation, to migration, its functional existence as a proxy in its
client’s context, to its final destruction. The programmer of the proxy must be
aware of the existence of these phases, and their different requirements.

A proxy is a migratable object, so it must be an instance of a dynamic class.

1. Creation :

A proxy starts its life by an instantiation as an ordinary object, in the
context of a proxy provider. This is a local creation, using a constructor
without an importRequest* as first argument,.

However it is done with the idea of exporting it and using it in a client
context. The constructor must prepare the environment and the internal
data it will need in its future life as a proxy. For instance, a proxy in our
SOS Write example will contain a local view of the server it is attached
to via the server OID. It will need an environment consisting of its code
object (see §6.1).

2. Ezporting :

The provider may now select the object thus created for exporting (see
GIVEPROXY[2]). This entails setting its group OID and trapRefs, and
deciding between giveCopy and giveSelf (see Chapter 8).

The system takes care of the actual exporting and installation of the data
in the target context. The object’s pre-requisites, if not already present in
the target context, are first migrated into it and initialized (and recursively
for their pre-requisites). This ensures, in our example, that the code object
is in the client’s context before the SOS Write proxy is installed therein.

The object’s trapRets and dependency links are preserved across exporta-
tion.

3. Re-initialization at client :

Once the data for an object is imported into the client’s context, either by
an explicit import request, or implicitly as a pre-requisite, the system calls
the object’s constructor. In other words, the data is initialized at least
twice: once when created, and once at import time. This re-initialization
normally does very little work, for instance it may fill pointers with locally
legitimate values. However there is no restriction, it might completely re-
write the data, or allocate another data segment (and set this), or request
more importations (by executing new dynamic).

4. Activity :

Now the proxy is installed in the client’s context.

7.2. THE ALLOCATION OF A PROXY IN THE PROVIDER’S CONTEXT35

The client may invoke it, and the proxy may call local procedures of the
client.

The proxy may communicate with other objects in the same group. For

instance, it may share memory with another proxy or a server on the same
machine. Or it may invoke a server in some other context; a server is an
object towards which the proxy has a trapRef, and it is invoked by the
system primitive crossInvoke. This proxy may itself be cross-invoked (if
it is the target of a trapRef from some other object in its group).

5. Re-ezporting :

Now this client may itself be a provider, and decide to re-export the same
object. Be warned that this re-exported object must not be the destination
of a trapRef : this trapRe? is not re-initialized when the target migrates.

6. Destruction :

The proxy may now be destroyed by the client executing delete. This
will run the proxy’s destructor.

However, the proxy might also be destroyed accidentally, for instance if
the client’s context is killed or its machine crashes. Therefore it is wrong
to depend on the execution of the destructor.

For instance, the destructor should not call back the server to clean up,
for two reasons. First, as indicated above, you cannot count on this ac-
tually happening. Second, the destructor is also called as a side-effect of
exporting with giveSelf.

Each of these phases will now be examined in detail.

7.2 The allocation of a proxy in the provider’s
context

Consider our example of the SOS Write. The provider exports proxies to allow
clients to send some text to someone else’s terminal. It instanciates a server
that is in charge of sending these messages.

In order to export an object, it must be created initially.3 Thus, the proxy’s
class must define at least one constructor, which the provider can use to create a
local instance. This constructor must not have a importRequest# (or derived)
as its first argument.

31t is possible to export directly from disk to the client, or to re-export an imported object.
But in all cases an initial copy must be created in some provider's context; this is the operation
we are interested here.

36 ’ CHAPTER 7. PROGRAMMING THE PROXY

It is good practise for this constructor to also prepare the proxy for exportin g,
by setting its code reference (see SETCODEREF[2]), and setting the other pre-
requisites (see §7.4).

For instance, in the SOS Write example, let us create the Write proxy.
Suppose we have the following declarations (e.g. in an include file wrProxy.h):

Y

dynamic class wrProxy: public sosObject {
friend class wrProvider;

0ID serverld;
char termName [maxTermName];

wrProxy (0ID&, const chars) // local comstructor (for provider only)

raises (tooBig);

public:
wrProxy (wrImportRequest*); // importation comstructor
“wrProxy(); // destructor
int Write (chars, int); // write msg on terminal
void Quit(); // close connection
virtual void print(); // check state

};

The private wxrProxy(0OID&, const char*) constructor can only be called
by the provider. The OID field of the created instance is initialized with the
server OID and termName with the name of the terminal. Assuming the code
object has already been created using makecode, the reference of this code object
is searched within the Name Service, and the proxy’s acquaintance descriptor
is updated.

/* The creation constructor, for creating a proxy-candidate.
* This is reserved to the provider.
*/
wrProxy: :wrProxy (0IDk id, const char* tty)
raises (tooBig)
raises (noCode)

sexrverld = id;

if (strlen (tty) > maxTermName)
raise (tooBig);

strcpy (termName, tty);

// set code reference too code object

7.3. THE IMPORTATION INTO THE CLIENT’S CONTEXT 37

ref wrCodeRef;
begin
NS->lookup (wrProxyCodeName, &wrCodeRef);
except .
when (notFound)
raise (noCode);
end
this -> setCodeRef (wrCodeRef);

7.3 The importation into the client’s context

Proxy importing is triggered by the client doing a “dynamic” instantiation:

main (int argc, const chars argv[])

{
char* wrProviderName =;

// create request message, and ask for importation
vrImportRequest args (tty);
wrProxy *myWrProxy =

nevw dynamic (wrProviderName) wrProxy (&args);

// if importation fails, the program will abort
// due to uncaught exception

}

The “dynamic” instanciation is characterized by the keyword dynamic, and
by the fact that the first (in this case, the only) argument to the constructor
is a pointer to an importRequest (in this case, derived from importRequest).
This will request an importation from the named provider.

Beware that the proxy, which was initialized once before exportation, is
being re-initialized again! Care must be taken so that the constructor does not
overwrite useful values. For instance, the following is wrong:

wrProxy :: wrProxy (wrImportRequest* ir){} // WROKG .

This calls the constructor, with no arguments, of the embedded object serverId,
which will reset the data to some null value.

There are two solutions. The recommended solution is to have a constructor
with a first importRequest# argument for all embedded objects:

38 ‘ CHAPTER 7. PROGRAMMING THE PROXY

/* importation constructor for the wxProxy:
* there is nothing to do.
* Remember to call the importation constructor of OID
* 80 that the field serverId doesn’t get over-written.
*/
vrProxy: :wrProxy (wrImportRequest* ir):

serverld(ir) {};

This ensures the programmers of class wrProxy that the constructor should
not overwrite the data.* This is safe, because a constructor with a first im-
portRequest* argument cannot be called outside of an importation. All the
standard SOS date structures (for instance ref and 0ID) are provided with this
kind of constructor.

This is not always possible, for instance if a class is part of a library of
standard classes which you can’t or don’t want to change. Then it is possible to
use the “copy” constructor X(X&) [Str85, page 180). This is not quite the same
as “doing nothing” but usually works.

7.4 Pre-requisites

Migrating some object X has the side-effect of requesting the import of other
SOS objects, the designated “pre-requisites” for X. These are migrated using the
general migration mechanism. The only difference is that, whereas the initial-
ization of X is done under the control of the C++ compiler, the pre-requisites are
imported by the system itself. Therefore the choice of an initialization procedure
cannot depend on the number or type of arguments. A pre-requisite must have a
constructor which has a single argument, an importRequest*; the pre-requisite
is initialized by calling this constructor with a copy of the importRequest used
in the importation request for X.

The pre-requisites are imported, and initialized, before the initialization of
X takes place. The main use® of pre-requisites is for code objects (Chapter 6).

7.5 The proxy’s activity

Different proxies may have the same interface, i.e. are allowed the same actions,
but do not have the same rights. Some actions can be performed locally by
the proxy, some others can be forwarded to the server using the procedure
crossInvoke. In our SOS Write example, the user message is forwarded to its
destination by calling the Write procedure of the proxy. This message is packed
in a segment which is passed as argument of the crossInvoke procedure towards
the server.

*Except to update context-dependent data. See also permPtr in Chapter 10.
5And in the Prototype Version 4, the only one.

7.5. THE PROXY’S ACTIVITY 39

/% The client asks to write a message on the terminal.
* This cross-invokes the server. :
*/
int
vrProxy::Write (char* msg, int len)
raises (error)
raises (closed)

{
// if 1 already did a Quit, don’t invoke server
if (serverld == 0)
raise (closed);
// create and initialize invocation message
vrInvokeMessage args (vrSend, len);
// put the messagé in a segment
// cross-invoke server, and get ansver
wrReturnMessage# res =
(wvrReturnMessage*) crosslnvoke (%args, buf);
// decode answer
if(res->retCode != wrQk)
raise (error);
return res->result;
}

The invocation and return message are fespectively derived from type invokeMessage
and returnMessage (see §5.6) :

// operation codes between wrProxy and its server
// (field opCode)

enum {wrSend, wrQuit};

// return codes (field retCode)

enum {vrOk=0, wrBadCodeOp=-1, wrFailed};

// parameters passed with cross-invocations
struct wrInvokeMessage: public invokeMessage{

int size; -
wrinvokeMessage (int op, int sz) { opCode = op; size = sz;};

40 CHAPTER 7. PROGRAMMING THE PROXY

vrInvokeMessage (int op) {opCode=op; size=0;};

I H

struct wrReturnMessage: public returnMessage {
int result;

};

7.6 Debugging a proxy

It is hard to debug migratable objects. The following tips are provided to make
life easier on yourself.

e No pubiic fields. A migratable class should not have any fields that clients
could read or change directly.

Instead, member functions should be available to read or set the fields.6

e When possible, link statically. The code for a dynamic class can be linked
either dynamically or statically. In the latter case, no functionality is lost,
because the run-time system checks if the code it needs is there; if what
was statically loaded is not the right code, the system reverts to dynamic
loading.

Performance is bound to be better in the static case, unless you loaded
the wrong code.

Debugging is easier in the static case, a static environment is easier to
master. Furthermore, the existing Unix debuggers don’t know how to
access the symbol table of dynamically-linked code.

At any time, debug facilities” and the procedure Zdebug (see ZDEBUG(8))
can help you to check the already linked dynamic classes.

A same binary file may be either statically or dynamically loaded. The com-
piler’s debugging option -g is useful only in the first case (standard debuggers
don’t support dynamic linking):

% 808CC -g -c wrProxy.c

This option is useful for debugging statically-linked code, but for dynamically-
linked code only results in increasing the loading overhead enormously.

The C++ translator generation can also provide help for debug. The pro-
cedure tables of dynamic classes are printed when the option -F is used:

% s0sCC ~-F wrProxy.c > wrProxy..c

SInline procedures pose no problem, because the compiler ignores the inline attribute for

dynamic classes.
"Described in DL.INFO[8]and in “On the use of the dynamic linker in SOS V4", directory
doc/dlink of the current SOS distribution.

7.7. OPTIMIZATION : 41

The output file wrProxy. . ¢ contains useful comments, with the index of the
dynamic tables. For instance, for the dynamic class wrProxy:

/* wrProxy dynamic tbl:
-2 (- D) : _wrProxy__ctorFPCwrImportRequest___
-1 (- D) : _wxProxy__dtor

(V=) : _soaObject_giveProxy

(V-) : _sosObject_stud

(VD) : _wrProxy_print

(- D) : _wrProxy__ctorFRCOID__PC__

(- V) : _wrProxy__ctorFPCvrlmportRequest

o

(- V) ¢ _wrProxy_getTermName
(- V) : _wrProxy_Write
(- V) : _werProxy_Quit
(VD) : _wrProxy_print

WONNDON B WN =
~
}

*/

An extra indirection is generated for all method calls of a dynamic class. The
first column is the index of the procedure in the procedure table, and must be
the same as the index of this extra indirection in the caller code. Two characters
appears between parenthesises. The first is V if the method is virtual, the second
D if the method is dynamic. The rest of the line is the C name of the procedure.
Virtual methods appear two times, for needs of pointers to method. Note that
non-dynamic (but then virtual) methods can appear in this table when the
dynamic class inherites from a non-dynamic class with virtual methods.

The negative indexes are for internal needs of the system.® They may be
undefined. |

You can also use the tracing facilities of the kernel (see Appendix C).

7.7 Optimization
When your code is perfectly running, a good improvement to binary files size is

to recompile them with option +z (delete generation of dynamic method names)
and without option -g :

% 808CC ~c +z proxy.c

8This is where are stored the constructor and the destructor, for use in migrations triggered
by the system (see §7.4).

V) : _wrProxy__dtor) N

Chapter 8

Proxy providers

To use a service, a client application has to import a proxy for that service : the
client fills an importRequest message, and then calls the proxy’s contructor,
using the new dynamic construct. At this time, the importRequest message is
automatically transferred to the provider’s context, and the giveProxy proce-
dure of the requested object is activated.

A proxy provider is an SOS Object which redefines the giveProxy procedure.
This procedure can be split into two steps :

1. it decodes the importRequest message; depending on its contents, and
on the identity of the requestor, it selects the appropriate object to be
exported (see §8.1).

2. it sets up the group OID(s) and the trap reference(s) of the object and
chooses the mode of exportation (copy or move), thus preparing it for the
migration (see §8.2).

When giveProxy returns, the Acquaintance Service takes care of the actual
migration and installs the proxy in the requestor’s context.

8.1 Selecting a proxy candidate

An object which is to be exported as a proxy (which we will call a “candidate”
in this chapter) must first exist, either in the provider’s context, or in the SOS
secondary storage (managed by the SOS Storage Service). In the former case,
it may be an object that the provider has already imported or, it is a locally-
created object.

42

8.1. SELECTING A PROXY CANDIDATE 43

8.1.1 Creating the proxy candidate

In order to create a candidate, the provider has to instantiate it by new; it
is impossible to export an object allocated on the stack (a C++ automatic
variable), in static storage, or embedded in another object; unpredictable
results would occur. For instance, in the “Write” example :

void
vrProvider: :giveProxy (const importRequest* ir, proxyDesc* result)
raises (refused)
{ .
wrProxy* candidate;
0ID servex0id = ...;
const char # ttyName = ...;

// instantiation
candidate = new wrProxy (server0id, ttyName);

}

If the code object for wrProxy is not yet 16aded, the compiler searches it
under a default SOS pathname. A non-default pathname can also be specified
(see §6.3).

8.1.2 Retrieving a candidate from storage

When the candidate exists on the SOS storage (suppose, for example, we need
to access a “mailbox” type), there are two cases to be considered : the provider
doesn’t need to do some special initialization or it does (for example, setting up
its trap reference).

In the first case, the provider has just to fill the proxy descriptor with the
reference of the stored candidate :

void
mBoxProvider: :giveProxy (const importRequest* ir, proxyDesc* result)

raises(refused)
{

ref myBoxRef;

char const* myBoxName = ... ;

NS->lookup (myBoxName, &myBoxRef);

result->proxy = myBoxRef;
}

In this case, the Acquaintance Service takes care to forward the Vmigration
request in the storage context, and the steps described in the following section
are skipped.

44 CHAPTER 8. PROXY PROVIDERS

When the candidate needs some initialization, the provider must first import
it from storage, then initialize it :

void
mBoxProvider: :giveProxy (...)
raises(refused)
{
ref myBoxRef=...;
// importation + instanciation
mailBox+ myBox = new dynamic (&myBoxRef) mailBox (nulllR);
myBox -> setTrapRef(Server);
}

8.2 Preparing the proxy candidate for migra-
tion

8.2.1 Creating group and setting trap reference

If a proxy has to communicate with a server, it must belong to the same group
and have a trap reference to that server (trap references are only allowed within
the same group). All members of the same group have a common OID. Providers
create groups and update them with new members. A provider calls giveMy0ID
to create or extend a group, and it calls setTrapRef to make a proxy point to
its server (and/or possibly vice-versa).

void
mBoxProvider: :giveProxy (...)
raises(refused)
{
wrProxy* candidate;
wrServer* server;

giveMyOID (server, 1);
// server acquires provider’s group 0ID, so does candidate

giveMyOID (candidate, 1);
candidate->setTrapRef (server);

// candidate’s trap reference points to server
server->setTrapRef (candidate);

// and vice-versa

8.3. EXAMPLE 45

8.2.2 Setting code reference

Before exporting, the code reference of the candidate must be set. This is
normally done by the candidate itself.

8.2.3 Choosing the mode of exportation

If the selected candidate is an instance of the provider’s context, the provider has
to decide between either exportation of a copy of the candidate or migration of
the candidate itself. For each of the cases above, a separate function is provided,
which fills a descriptor for the object (ready to be exported by the Acquaintance
Service). _

giveCopy causes a bitwise copy of the proxy to be exported and re-initialized
in target context. The original remains in the provider’s context (and may be
re-exported) : ‘

candidate -> giveCopy();

giveSelf causes the proxy to effectively migrate (copied to target context
and re-initialized; the original is then destroyed in the provider’s context) :

candidate -> giveSelf();

8.3 Example

We will show the example of a provider for the “Write” application. It will create
and extend an appropriate group (by allowing the server and the proxy candidate
to inherit its OID). It will finally set up a trap reference before exporting the
candidate as the requestor’s proxy.

/* Create a provider object.
*/
wrProvider: :wrProvider(unsigned long seed)
{
// allocation of a group OID for the Write service
0ID oid;
oid.groupAllocate (seed);
AS -> addGroupOID (this, oid);

46 CHAPTER 8. PROXY PROVIDERS

/* Exporting a proxy
* Algorithm: create a proxy-candidate

* create a server
* connect them with a trap reference
s/

void

vrProvider: :giveProxy
(const importRequest* ix0,
proxyDesc* result)
raises (refused)

// cast the import request into its kmown type
const vrImportRequest* ir = (const wrImportRequest#*) ir0;

wxServer *server = 0;
vrProxy *candidate = 0;
// create a server and a proxy candidate
begin
// create server, put it in group, and get its OID
server = nev vrServer (ir->termName);
giveMyOID (server, 1); // to create a group
0ID sexrver0ID;
AS->get0ID (server, &kserverOID);

// create candidate
begin

candidate = new wrProxy (server0ID, ir->texrmName);
except

when (noCode) {

}

end

// prepare the candidate for exportation:
// make candidate a member of the group
giveMy0ID (candidate, 1);

// allow proxy to invoke server
candidate->setTrapRef (server);

// candidate vill migrate and become proxy
candidate->giveSelf (result);

// many things can go wrong: can receive exceptions
// cantOpenTty, tooBig, notFound, noCode, etc.
// in all cases there is not much we can do.
except
vhen (othexrs) {

8.3. EXAMPLE

if (server) delete server;
if (candidate) delete candidate;
raise (refused);

end

47

Chapter 9

The Name Service

9.1 Introduction
The Name Service of SOS allows users to reference SOS Objects by symbolic
names (character strings); it maps these symbolic names with SOS references.

The Name Service is realized by a set of name servers; each of them handles a
part of the name space.

9.2 Thﬁe name space

The name space is a single tree. A symbolic name is composed of name compo-
nents which are directory names separated by the / character. Names beginning
with a / are absolute names and refer to the root directory. All others are rel-
ative names and are interpreted relatively to the current directory.

The name’s authority refers to the directory’s name which manages it.

9.3 Name Service proxy importation

To use symbolic names, you have to import a proxy from the Name Service :

dirs* NS;

NS = new dynamic('/nameServer") dirs(nulllR);

48

9.4. REGISTERING AN OBJECT 49

9.4 Registering an object

The addName function allows to register an object name with the Name Service.
The named object can be specified by its reference or by its address. The name
is registered within one server which manages the authority for that name; if
there’s more than one server managing the authority, only one of them is choosed
to handle the new name.

The function takes three arguments :

e The first is the symbolic name of the object.
o The second is either the reference, or the object.

e Setting the optionnal third argument to 1 allows to overwrite the entry cor-
responding to the symbolic name, if this name already exists and doesn’t
refer to a directory.

This example presents three usages of the addName function.

// the object is specified by its reference
myClass* myObjectl = new myClass;

ref myref;

AS -> getReference(myObjectl, &myref);

NS -> addName("/myObjectl”, myref);

// the object is specified by its address
myClass* myObject2 = nev myClass;
NS -> addName("/myObject2", myObject2);

// overwrite myObject2 by myObject3 under symbolic name /my0Object2
myClass* myObject3 = nev myClass;
NS -> addName('/myObject2", myObject3, 1);

9.5 Creating a new directory

The addDir function creates a new directory in the naming tree. There is only
one argument : the symbolic name of the directory.

If the named directory already exists, the entry is not affected and an ex-
ception is raised. : ’

For example :

NS -> addDir("/myDirectory");

9.6 Removing a name

The delName function allows to remove the mapping between a name and a
reference. If the name is managed by several servers, the mapping is removed
on all the servers.

50 CHAPTER 9. THE NAME SERVICE

For example :

NS -> delName("/myObject");

9.7 Finding the reference of an object

When an object has been registered with the Name Service, its reference can be
retrieved with the lookup function, which takes two arguments :

e The first is the symbolic name of the object.

e The second is a pointer to a reference structure which will be filled by
the Name Service.

For example :

ref refObject;

NS -> lookup("/myObject", krefObject);

9.8 Reading the contents of a directory

The contents of a directory can be read using the getDirEntries function.
That function fills a buffer with NSentry structures, each of them describing a

directory entry.
An NSentry structure contains :

e dep : the length of the structure.

e length : the length of the entry’s name.
e type : the type of the entry.

e name : the name of the entry.

The getDirEntries function takes three arguments; the first one is the
name of the directory, the second one is a pointer to the buffer to be filled and
the last is the expected number of entries. It returns the total number of entries

of the directory.

This example presents the usage of getDirEntries to read four entries in
the ¢‘/users’’ directory.

char* bf = new char[sizeof(NSentry) = 4];
int nb = 0;

9.9. CHANGING THE CURRENT DIRECTORY 51

nb = NS -> getDirEntries("/users", bf, 4);
NSentry * e = (NSentry *) bf;
for (int i = 0; i < 4; i++) {

cout << e -> name;

e = (NSentry*) ((char*) e + e->dep);

9.9 Changing the current directory

The current directory is the directory from which the relative names are inter-
preted. The changeDir function allows to change it. The Name Service proxy
importation set the current directory to the root.

NS -> changeDir ("/myDirectory");

Chapter 10

Object storage

10.1 Vertical migration

Objects may have an active and a passive representation. Objects in the ac-
tive state (i.e. in volatile contexts) are managed by the Acquaintance Service:
this is the state of newly created objects. Active objects may be passivated,
i.e. managed by the Object Storage Service.

The Storage Service is in charge of vertical migration, e.g movement between
passive and active representations.

10.2 Permanent objects

To have a permanent representation, an object’s class must derive from perm-
Object (which itself derives from sosObject). Every active permObject is
automatically associated with a single storage object which controls its internal
structure.

To use a permObject, two separate operations are necessary: creation (or
importation), and initialization. The first operation is performed by the con-
structor of permObject, the second by operation initC() (after creation) or
initA() (after importation). A permObject is stored on disk only when its
method checkpoint is called.

Here is an example of a simple permanent object class.

dynamic class
myClass: public permObject {
int i;
public:
myClass(int ii) {i=ii; initC();}
myClass(importRequest * ir): (ir) {initA();}

52

10.3. COMPOSITE OBJECTS 53

};

In the following example, the function £() creates (using the first construc-
tor) and, stores (using checkpoint()) a permanent object, and registers the
stored version with the name service:

£0O{
// create a permanent object
myClass * myObject = new myClass (1234);

// save the state of myObject
myObject -> checkpoint();

// get the referemce of myObject as stored on disk
ref myRef;
myObject -> getPermRef (&myRef);

// nov register myRef with the Name Service
NS->addName ("/myDir/myName", myRef);
}

Later you will be able to activate the stored object, using its name.
For instance :

main(){
// importation from storage
importRequest myImportRequest;
myClass* myObject = new dynamic ("/myDir/myName™)
myClass (&myImportRequest);

10.3 Composite objects

SOS permanent objects can be made of multiple segments. The storage of com-
posite objects is handled by the system if you respect the following conditions:

1. Data for which you have a pointer in one of your segments defines an
indirect segment (which has no imposed structure).

2. Pointers to indirect data must use the system type permPtr

Usage of such pointers, called pointers to permanent data (or simply permPtr’s),
is controlled by the system, once the user has initialized them with the operation
setPtr.

54 CHAPTER 10. OBJECT STORAGE

A permPtr is untyped; typed versions of permPtr are available by macro-
generation.

For instance, the following creates class myClass with an indirect segment
containing an object of type myIndSeg.

// define the structure of an indirect segment

class myIndSeg {
int j;
public:
myIndSeg (int ii) {j=ii;}
nyIndSeg (importRequests* ir) {}
void print();

};

// define the "permPtr on myIndSeg" type
typedef myIndSeg * myIndSegp;
declare (gpermPtr,myIndSegp);
typedef gpermPtr(myIndSegp) myIndSegPtr;

// define permanent composite object type
dynamic class
myClass: public permObject {

public:
int i3
myIndSegPtr indPtr; //permanent pointer to myIndSeg object

// constructor to create
myClass (int, int);
// constructor to import from disk
myClass(importRequest# ir) : (ir), indPtr(ir) {
this -> initA ();
}

};

// to create an instance of myClass...
myClass: :myClass .(int ii, int jj) {
// ... initialize for creatiom, ...
this -> initC ();
// ... initialize direct segment, and ...
i=ii;
// ... create and initialize indirect segment, ...
myIndSeg #*tmp = new myIndSeg (jj);
// ... and initialize permPtr to indirect segment.
indPtr.setPtr (getHead (),

10.3. COMPOSITE OBJECTS

tmp,
sizeof (myIndSeg));

55

56 CHAPTER 10. OBJECT STORAGE

The following small program creates a permanent object with an indirect
segment, of type myObject, stores it, and registers its name with the Name
Service, before exiting:

main () {
// create permanent object with indirect sgmt
myClass * myObject = new myObject (123, 456);
// store it
myObject -> checkpoint ();
// register its name
ref myRef;
myObject -> getPermRef (dmyRef);
NS -> addName ("/myObjectName", myRef);
exit(0);
}

For this composite object, the procedure permObject: :checkpoint() will
store, both the direct segment defined by myClass, and the indirect segment,
defined by myIndSeg.

Activation is done as before, but only the direct segment is loaded at acti-
vation time. The indirect segment(s) will be loaded only if necessary, i.e. at the
time they are accessed.

For instance the following program uses the previously stored object. At
importation time, only the direct segment is loaded. When the indirect segment
is first used, it is also loaded.

main () {
// import proxy from name service
dirs * NS = new dynamic ("/nameServer") dirs (nullIR);
// load permanent object
myClass * myObject =
new dynamic ("/myObjectName") myObject (nullIR);
// now its direct segment may be accessed
cout << "Value:" << myObject->i << "\n";

// first access to indirect segment loads it
myIndSeg* s = myObject -> indPtr;
8 <> j+=2;

// mark as modified

indPtr -> mark();

// further accesses are direct to memory
cout << "Other value: " << s8->j << "\n";

// checkpoint now stores the modified value
// of the indirect segment
myObject -> checkpoint () ;

10.3. COMPOSITE OBJECTS _ 57

exit(0);
}

In this program, we have changed the value of the indirect segment after
readmg it from disk. The new value is not put onto disk until checkpoint()
is called. Only those segments which were signalled as changed by calhng the
mark() procedure will be written to disk.

Chapter 11

Remote communication
protocols

The Communication Service allows the programmer to choose among different
protocols for communicating between proxies and servers on different machines.
Currently, only the SOS Remote Procedure Call Protocol (SOS-RPC), and a
reliable multicast protocol are available. The SOS-RPC is the default protocol;
this means that when a proxy makes a cross-invocation to a remote server, by
default, they communicate using the SOS-RPC. Other protocols will be added
in the future. We have presented how to set up the network environment in
Chapter 2. In this chapter, we outline how to deal with the SOS-RPC. We also
present the use of the multicast in SOS.

11.1 SOS-RPC

A proxy and its server are bound through their trap references. When the
proxy and its server are in the same site, the kernel manages cross-invocation
between them. When the proxy is migrated to a remote site, it must be able to
communicate with its server. In order to provide such a possibility, we establish
a connection between the proxy and its server. This connection ensures the
remote extension of the cross-invocation. This extension is named SOS-RPC
protocol. How this connection is installed and used is transparent for the user.

11.2 How to deal with the multicast

The communication service provides a multicast support. In order to deal with
the multicast, one must first get a proxy of the SOS-RPC manager. The

58

11.2. HOW TO DEAL WITH THE MULTICAST 59

provider of the SOS-RPC proxy is named /xpcMgr. This proxy provides the
createFamily method described below.

11.2.1 Family creation

A family is a set of related SOS Objects, which can communicate together by
multicast. A family has a name and a family OID. The creator has to provide,
the family name, the family OID, and the number of members per site. By
default, we assume one member per site. Hereafter is the example of the creation
of the Speak family.

#include "rpc.h"
const char* speakFamilyName = "/speakFamily";
speakProvider: :speakProvider(){

// gets a proxy of communication service
RPC = new dynamic ("/rpcMgr') rpcMgrProxy(nulllR);

// alocates a group value to the 0ID

const unsigned long SPEAKFAMILY_OID = 14012;
0ID familyOID;

family0ID.groupAllocate(SPEAKFAMILY_OID);

// creates the family with the allocated O0ID, the name of the family
// and the maximum number of members per site
RPC->createFamily(familyOID, speakFamilyName, MAXMAXMEMBERS);

}

The createFamily operation is idempotent.

11.2.2 How to join a family

Only objects derived from the sosFamily class may join a family. The jonction
takes place at the instanciation of the derived object. Hereafter is an example
of the creation of a member of the speak family previously created.

class speakRpc : public sosFamily {
public:
speakRpc(chars, 0ID, const chars);
void send(char*, int, 0ID);
void stub(invokeMessages, returnMessage*, segmentDesc#x);

};

60 CHAPTER 11. REMOTE COMMUNICATION PROTOCOLS

speakRpc: :speakRpc(char* name, 0ID memberOID,
chars familyName) : (member0OID, familyName)
{...}

The caller must specify the family name (here familyName), and the internal
identifier of this member within its family (here membex01ID). If the member OID
is not provided, the concrete OID of this member is assumed to be its internal
OID within its family.

11.2.3 How members communicate

'The sosFamily object provides a procedure fcrossInvoke allowing the invo-
cation of one particular member, or the set of all other members (except the
caller). This procedure is the equivalent of the crossInvoke primitive. A call to
the family may be either a selective call, or a non selective one, i.e. a multicall,

If this is a selective call, one has to specify the same arguments as for a
crossInvoke primitive, plus the member OID of the specific member which is
the callee. This call returns a pointer to a returnMessage. We give an example
of a selective invocation by one speak client to a particular other one, here
specified by the thisOne argument.

void

speakRpc::send (char* msg, int len, OID thisOne)

{ .
speakInvokeMessage args (spkSend, len);

// put the messsage in a segment
segmentDesc *buf[2];

// send to a particular member
fcrossInvoke(&args, buf, thisOne);

For a multicall, the first and second arguments have the same meaning as
for selective call. The third argument must be equal to nu110ID. The first reply
is returned as the result of the multicall to the caller. Other replies are saved
within the communication context. '

11.2.4 How to get other replies

After the return of a multicast, the caller may get others replies from other
partners by calling the giveNextReply procedure, provided by the sosFamily
object. '

Bibliography

[Abr87]

[Gau87]

[Jon85]

[Sha86a])

[Sha86b]

[Sha86c]

[Sha87a]

[Sha87b]

[Str85]

[Str87]

Vadim Abrossimov. Exception handling in C++ programs. In Un recueil
de papiers sur le systéme d’ezploitation réparti & objets SOS, Rapport Tech-
nigue INRIA no. 84, Institut National de la Recherche en Informatique et
Automatique, Rocquencourt (France), May 1987.

Philippe Gautron and Marc Shapiro. Two extensions to C++: a dynamic
link editor, and inner data. In Proc. C++ Workshop, USENIX, Santa Fe
NM (USA), November 1987.

M. B. Jones, R. F. Rashid, and M. R. Thomson. Matchmaker: and interface
specification language for distributed processing. In Proc. 12th Annual ACM

Symposium on Principles of Programming Languages, pages 225-235, ACM,
New Orleans LA (USA), January 1985.

Marc Shapiro. SOS: a distributed object-oriented operating system. Ivn 2nd
ACM SIGOPS European Workshop, on “Making Distributed Systems Work?”,
Amsterdam (the Netherlands), September 1986. (Position paper).

Marc Shapiro. Structure and encapsulation in distributed systems: the
Proxy Principle. In Proc. 6th Intl. Conf on Distributed Computing Sys-
tems, pages 198-204, IEEE, Cambridge, Mass. (USA), May 1986.

Marc Shapiro and Sabine Habert. Un systéme d’exploitation orienté ob-
jets pour SOMIW. In 3émes Journdes d’Etude Langages Orientés Objet,
AFCET, Paris (France), January 1986.

Marc Shapiro, Vadim Abrossimov, Philippe Gautron, Sabine Habert, and
Mesaac Mounchili Makpangou. Un recueil de papiers sur le systéme
d’ezploitation réparti d objets SOS. Rapport Technique 84, Institut National
de la Recherche en Informatique et Automatique, Rocquencourt (France),
May 1987.

Marc Shapiro, Vadim Abrossimov, Philippe Gautron, Sabine Habert, and
Mesaac Mounchili Makpangou. SOS : un systéme d’exploitation réparti basé
sur les objets. Techniques et Sciences Informatigues, 6(2):166-169, 1987.
Bjarne Stroustrup. The C++ Programming Language. Addison Wesley,
1985.

Bjarne Stroustrup and Jonathan E. Shopiro. A set of C++ classes for co-
routine style programming. In Proceedings and additional Papers, C++

Workshop, USENIX, Berkeley, CA (USA), November 1987,

61

Appendix A

Glossary of terms

Acquaintance:
An SOS object activated and initialized in some context is called an ac-
quaintance of that context.

Acquaintance Descriptor (AD):
An Acquaintance Descriptor is the data structure local to a context, which
the Acquaintance Service uses to store information about an acquaintance.
An Acquaintance Descriptor contains essentially: the array of the object’s
OID’s, the array of its trapRets, its prerequisites, the list of dependent
objects, as well as its address.

Acquaintance Service (AS):
AS (ACQUAINTANCESERVICE(3]) is the SOS distributed Object Manager.
Maintains Acquaintance Descriptors, and connections between objects
(trapReferences). Supervises migration. Manages dependencies.

Candidate:
An object created or selected by a proxy provider, to be exported as a
proxy.

Code Object:
A code object is an SOS object which serves as a carrier for the compiled
procedures of a migratable class (see §6.1, copE[2]). Initializing a code
object consists of performing a dynamic link.

Constructor:
A C++ instance is initialized by a constructor for its class (which in
turn calls a constructor for its base class and for included objects). If a
constructor’s first argument is of type importRequest* (or derived), it can
be called only in an importation. (See also Initialization and Procedure

Table.)

Context:
A context is a virtual memory space, containing objects. Each context

62

63

is initialized with a proxy for the Acquaintance Service. Communica-
tion within the context normally occurs by invocation. Communication
between contexts is possible only via a proxy.

Cross Invocation:
A cross invocation is an invocation between two contexts of the same ma-
chine. (It can be continued onto an other machine by using the Communi-
cation Service.) The primitive CROSSINVOKE(2] is called by a proxy only,
to call (one of) its server(s), designated by its trap reference. The system
transports the invocation message and calls the server’s stub procedure
(sTuB[2)]).

Dependent:
An object’s dependents are those objects which should be signalled au-
tomatically when an “important” (to be defined) state change occurs.
When this happens, a previously-registered dependency procedure of each
dependent is called. (((Not implemented yet.)))

Dependency Procedure:
See dependent.

Dynamic class:
A dynamic class is a class declared with the keyword dynamic, so that its
code can be dynamically linked (see §3.3, DYNAMIC[2)).

Dynamic instance:
A dynamic instance is an instance of a dynamic class, which furthermore
is instanciated using the new dynamic construct (see §4.1.1). Such an
instance is an imported instance.

Dynamic constructor:
A dynamic instance is imported and re-initialized by applying a dynamic
constructor, i. e. it is instantiated by new dynamic, and whose first argu-
ment is a importRequest* (or derived).

Dynamic linking:
When a code object is first imported into a context, the extant code is
linked with it (see §6.1, byNaMiIc[2]). The newly imported code may now
call, or be called by, the extant code [Gau87).

Elementary Object:
An elementary object is a localized piece of data, with associated code,
accessed by invocation. An instance of a C++ class is an elementary
object. An SOS object is an elementary object which is known to the
SOS system; we often use the word “object” as a shorthand for “SOS
object”.

Exception:
An invocation can either return normally or with an exception (EXCEP-
TION([2]). In this case execution does not continue in sequence; control

64 APPENDIX A. GLOSSARY OF TERMS

may be regained by the program only by explicit action (begin ... except
...vwhen ...end in SOS C++).

Exportation:
A provider may export an object to some other context. (((Currently, the
only way to do this is for the target context to request an importation.)))

Group:
A Group (GROUP[2]) is a grouping of co-operating elementary SOS objects
across contexts. It is a virtual communication space. The members of a
group have at least one OID in common. For the system, a group is
a distributed object; the members are incarnations of the group in some
context, and are all considered equivalent. Communication within a group
is unrestricted (whereas it is restricted outside of a group). The normal
way of creating a group is to export objects, allocating a common OID to
all of them.

Initialization:
When instantiating or importating an object, an initial procedure is in-
voked. For C++ objects, the initial procedure is a constructor. For an
object created or imported under the control of the C+4++ compiler (the
normal case), the compiler invokes one of its constructors. A migration
can also be performed directly (e.g., migrating a prerequisite). In this
case it is initialized by calling the procedure at index SOS_CTOR_INDEX (if
defined) in the object’s procedure table.

Importation:
Objects may be imported on request to the Acquaintance Service (see
§4.1.1, pynamic[2]). The AS forwards this request to a provider, which
creates or selects object according to the request. Then the AS transports
the object into the requesting context. Finally the object is initialized
(again). See also Migration.

Invocation:
Invoking an object is calling one of its procedures. The normal invocation
mode is local invocation, i.e. a simple procedure call. Invocation of an
instance of a dynamic class is indirect via its procedure table. See also
Cross Invocation.

Migration:
Some SOS objects can be migrated, i.e. exported from some context and
imported into an other (see §3.3). When an object is migrated, this may
cause migration of other, prerequisite objects. Migratable objects are
instances of dynamic classes.

Name Service (NS):
NS (NAMESERVICE([5]) is the SOS distributed service for mapping symbolic
names into references. Any object can be declared with the NS.

65

Object Identifier (OID):
An OID is a 64-bit integer (OID[2]). An elementary SOS object carries
an array of Object Identifiers. The first (index 0) is its own, unique ID or
“concrete OID”. The others identify its group(s).

Object Storage Service (OSS):
OSS is the distributed service for storing passive images of objects onto
disk (STORAGESERVICE[4]). In particular, Code objects may be stored
with the OSS.

Object:
An object is either an elementary object or a group.

Prerequisite:
The prerequisites of an SOS object X are those objects Y, Z, ..., which
must be present and initialized in the target context, before X is migrated
and initialized (see §7.4). For instance, any object has its code as a pre-
requisite. (((Currently the general case is not implemented.)))

Principal: ‘
An obsolete term for both Provider and Server.

Provider:
An object which exports other objects (i.e. proxies). Often, but not nec-
essarily, the provider also acts as a server.

Procedure Table:
A per-object table of pointers to the virtual procedures, or (for a dynamic
class) to all the procedures. Invocations occur indirectly via the procedure
table.

Proxy:
A proxy is a local representative of a resource (PROXY[2]). The proxy may
be an interface to one or more remote servers. A proxy is usually acquired
dynamically, at the time of need, by an importation request directed to
a provider. A proxy communicates with other members of the group by
cross-invocation or any other means (e.g. shared memory).

Reference:
A reference or REF[2] is a fully-qualified, location-independent, fast object
handle. It contains: an OID, a location hint, and an opaqueField which
is used at the application’s discretion. (((Subject to revision.))) When a
reference is presented to the system, it searches for some object carrying
the specified OID, using the hint to speed up the search.

Resource: i
A service, implemented by a group, which is accessible to clients via a
proxy interface. A resource is implemented by co-operation of providers
(which create proxies in response to clients’ requests), servers (which fulfill
the service), and proxies (each client’s local interface to the resource, and

66 APPENDIX A. GLOSSARY OF TERMS

local server). Any SOS object, suitably compiled and initialized, may
fulfill any or all of these three roles.

SOS object:
A C++ object declared to the system (see §3.1.1, s0sOBJECT[2])), by
deriving its class from sosObject. See elementary object.

Server:
An object which responds to a proxy’s requests.

Stub:
See Cross Invocation. The word “stub” is also used to name the commu-
nication code of both the caller and callee of a cross-invocation. See also
Stub Compiler.

Stub Compiler:
A program which automatically generates the communication code for a
cross-invocation (transforming data into an external representation and
back, and initiating the communication) from a description of the invoca-
tion interface. (((Not implemented yet.)))

Trap Reference:
A trapRef of an object is a reference. It is a capability to some other
object in its group, which it can cross-invoke.

Appendix B

Changes

B.1 Changes from V1 to V2

The syntax for indicating the provider has changed. In V1, it was part of the
instance declaration:

dynamic (fileServer) file * f;
f = nev file ();

In V2, it is part of the instantiation:
file * f;
importRequest ir = ...;

f = nev dynamic (fileServer) file (&ir);

Existing services have been expanded, and new services added. SOS now
runs distributed applications, using the Communication Service and a distributed
version of the Acquaintance Service and of the Name Service.

Programs in V1 had to contain a

include <sos/sos.h>

This is now reserved for operating-system programs. Application programs
in V2 should do a

include <sos/context.h>

B.2 Changes from V2 to V3

The new kernel allows to stop an individual application. A cross invocation to
a terminated context raises crossInvokeException.

67

68 APPENDIX B. CHANGES

A new primitive newContext allows an application to start an other applica-
tion. When contexts’ pathnames are relative, they are searched from the direc-
tories listed in the Unix PATH environment variable (this affects predefContexts
and NEWCONTEXT[2]).

Arguments passed to sos are transmitted to the contexts listed in the pre-
defContexts file.

The maximum number of contexts running under SOS is raised to 16.

The makexport step for compiling migratable code and creating code objects
doesn’t exist any more; its functionality is subsumed by sosCC. Therefore there
are no more .e files; all the necessary information is in the .o files. Now the
code for a proxy can be linked statically with the client.

Applications can now import an object from remote storage.

The maximum length of file names must be of 13 characters for compatility
with the Metaviseur.

The restriction that all sosObject instances must be created by new is raised.
However, a proxy-candidate must be instantiated by new.

If the environment variable DLPATH is not set, the dynamic linker searches
directory /sos/export.

The list of SOS hosts is now read from file /sos/etc/sosHosts.

A trace option -T integer has been added to sos and all contexts, to allow
tracing of cross-invocations and/or task scheduling.

B.3 Changes from V3 to V4

The Unix filenames for the Sos environnement (e. g /sos/etc/predefCon-
texts) can be overriden with a environnement variable like PREDEFCON-
TEXTS. Furthermore, the value of the default is a compile-time option of the
kernel and predefined services.

An object can cross-invoke an other object located in the same context. This
is useful when the called object has migrated in the context of the calling object.

There is a new kernel more reliable.

The distribution management of the name space has changed. You can run
SOS in any order on different machines with each proxy of the Name Service
having the same view of the name space.

It is now possible to compile an SOS application with gec, the GNU C
Compiler without flag “-O”. It provides faster code and smaller executables.

In dynamic class declarations, the compiler accepts list of file names. Ne-
vertheless, the current version only performs importation of the first referenced
name (see MERGEXPORT(1]).

Traces of dynamic classes (mentioned in comments) in the C file generated
have changed (see chapter 7).

Interface of the class code has changed. This does not concern call to con-
structors, just methods to find code information (like the class name or the class

B.3. CHANGES FROM V3 TO V4 69

dynamic table), (see CODE[2]).

Run-time interface verification has been introduced. A key is supplied by
the compiler (see DKEYOF([2]) and passed as extra argument to sosImport or
sosFindCode. A null key disables the check. This modification should be trans-
parent to users, but all files with dynamic class declarations have to be recom-
piled. ,

Facilities for dynamic linking debug have been introduced in the library
1ibD.a (see DL_INFO[8]). The procedure Zdebug() is always available but the
standard error (stderr) becomes the default output (see ZDEBUG(S8]).

Appendix C
Compiling and debugging

In this chapter, we explain how to compile and how to debug SOS programs.
We first show some examples of sosObject declarations. Then we talk about
the compiler for SOS programs (soscC). Debugging involves two sections: the
first one deals with the debug of an executable SOS program, and the second
one is about traces, a useful debug option to the sos program.

C.1 Declarations of sosObject

To use SOS objects, a program must include the file context.h. It contains the
declarations needed for the execution of an SOS context.

#include "context.h"

Here are a few examples of declarations from a hypothetical C-++ source
file:

dynamic
struct A: public sosObject { ... };
struct B {
A *al; // OK
A a2; // 0K (can’t be exported)
};
A #a3; // OK
A a4; // VWRONG: static
B bi; // WRONG: bi.a2 static
B *b3; // OK

70

C.2. TERMINATION AND DESTRUCTORS 71

void p (A& a5){...} // OK
void q (A *a6){...} // 0K
void r (A a7) {...} // 0K (can’t be exported)

AR 8 (...) // OK
A t (¢...) {...} // 0K (can’t be exported)

wain () {
static A a8; // WRONG: static
static B b3; // WRONG: b3.a2 static
A a9; // OK (can’t be exported)

A* a10 = new A; // OK
A* all = new dynamic A (...); // OK

One cannot create static SOS objects. The examples marked “WRONG?”
in the program above will not be considered errors by the compiler, but will
produce unpredicatble results at run-time. .

Furthermore, automatic (i.e. stack-allocated) objects, and objects embedded
within other objects, can’t be exported (see Chapter 8). They are marked “can’t
be exported” above. '

The keyword dynamic is explained in §3.3.

C.2 Termination and destructors

An SOS context, by default, never terminates. To terminate a context, it must
execute the exit(int) procedure, with an integer parameter. By Unix con-
vention, a zero value indicates that the context terminated successfully, and
non-zero indicates an error. All the currently-executing tasks are immediately
terminated. The detructors for static objects are then run. (Unfortunately, the
destructors for non-static objects, allocated either on the stack or in free store,
are not executed.) Finally the Unix process exits.

A context may also be killed from the outside by sending it a signal.

Terminating the sos program by sending it a signal SIGTERM (signal 15) has
the effect of also immediately terminating all of the currently-running contexts.
In this case, no destructors are run at all.

C.3 Compiling

Compilation is done by a special version of the C++ compiler sosCC (see

sosCCJ1]).

For instance, to compile a proxy, a provider, a client or a server, do this:

% 808CC ~c myFile.c

72 APPENDIX C. COMPILING AND DEBUGGING

This produces a linkable file myFile.o.
An executable SOS program (provider, client or server) is produced by :

% 808CC -o myProgram myFile.o otherFile.o ..

80sCC always links the necessary libraries, i.e acquaintance.a, 1ibD.a,
kernel.a, libc.a, 1ibC.a and directory.a. Other libraries may also be
linked with your executable (see §C.3.1).

C.3.1 Compiling a client

A client must be linked with all libraries needed by imported proxies. A small
auxiliary file per library is needed to force inclusion of all of that library’s
definitions. For instance, if the proxy may need the termcap library, do this:

% dl1ib -o dtermcap.o /lib/libtermcap.a
% 808CC -c client.c
%4 80s8CC -o client client.o dtermcap.o -ltermcap

The first line prepares the auxiliary file. The second one compiles client.c.
The third links it statically with dtermcap.o, which forces every symbol in the
termcap library to be linked.

When a client imports a proxy, this causes the code for the proxy do be
dynamically linked, unless it is already present. Therefore, you can make exe-
cutions faster, by linking the proxy code statically:

% 808CC -o client client.o otherFile.o proxy.o ...

Statically-linked proxies are also easier to debug.

C.4 Debugging

Debugging an SOS program can be done with an Unix debugger; it supposes
you have previously compiled files with the -g option.

% 808CC -g -c myFile.c

However, it is more difficult to debug an SOS program which imports proxies.
That is because Unix debuggers don’t know how to read the symbol table of the
proxy when its code is dynamically linked. So, for debug and when possible, it
is wise to link statically the code of the proxy with the client.

% 808CC -0 client client.o proxy.o .

Dynamic debug facilities are supplied in the library 1ibD.a (see DL.INFO[8]).
The procedure Zdebug() is available to list the dynamic classes currently
linked (see ZDEBUG[8)).

C.5. TRACES 73

#include "dyninfo.h"

main() {
Zdebug() ;
}

If SOS crashes and won’t restart correctly, kill SOS, delete the files /sos/sosDsk/*/*
(or SOSDSK/#/*) and restart.

C.5 Traces

Unix debuggers only allow to trace the execution of a task inside a context;
they don’t permit to follow connections or cross-invocations between contexts
and scheduling of tasks inside a context. An option to SOS programs permits to
keep traces about context’s activities, cross-invocations and scheduling of tasks.

An integer is associated with each type of trace: 1, for context’s activities
(connections between contexts through Unix sockets); 2, for cross-invocations
(send and receive); and 4, for scheduling of tasks (choice of the task to be
executed).

To obtain traces for each pre-defined context (i.e. each entry in the pre-
defContexts file), run the sos program with the -T option followed by an
integer, which is the sum of the traces values desired. For instance, to get full
information :

% sos ~-TT7T&

The -T option is also available for any SOS context; for instance, to obtain
information about cross-invocation activities in the wrPrvdr context, run it this
way:

% wxPrvdr -T 2 &

Traces are written in the file /tmp/xxx where xxx is the Unix name of the
context, followed by the Unix process-id of the context. For instance, in the
previous example, traces are written to the file /tmp/wrPrvdr1675 if 1675 is
the process-id of wrPrvdr.

Appendix D

The write example

This chapter presents the code for the SOS “Write” example. This is part of the
SOS distribution in the directory examples/wr. We divide this code in three
parts, the proxy, the client and the provider. The Makefile shows the structure
of the “Write” application:

$Header: Makefile,v 3.2 88/03/29 19:50:09 shapiro Locked $

#CFLAGS= ~I$(INCL) -c

CFLAGS= -0 -c -I$(INCL) -I/usr/include/4.2
where to find SOS

SOSDIR==/s0s=="gos/v3

SOSDIR=../..

INCL= $(SOSDIR)/include

BIR = $(SOSDIR)/bin

LIB = $(SOSDIR)/1lib

EXP = $(SDSDIR)/export

CC = $(BIN)/sosCC

SOBJS= vrSer'ver.o wrProvider.o wrProxy.o wrMain.o wrImportReq.o
COBJS= wrClient.o wrImportReq.o

all: vrProxy.o Write wrPrvdr
all.dl: wrProxy.o Write.dl wrPrvdr.dl
only works under sos

makecode: wrProxy.o
makecode wrProxy wrProxy.o

74

75

install: all all.dl)

install Write Write.dl wrPrvdr wrPrvdr.dl $(BIN)
cp Write Write.dl wrPrvdr wrPrvdr.dl $(BIN)
cp vrProxy.o $(EXP)

write with static link
Write: $(COBJS) wrProxy.o $(EXP)/dirproxy.o
$(CC) -o Write $(COBJS) wrProxy.o $(EXP)/dirproxy.o

Write with dynamic link
Write.dl: $(COBJS)
$(CC) -o Write.dl $(COBJS)

provider with static link
wrPrvdr: $(s0BJS) $(EXP)/dirproxy.o
$(CC) -DSOSTRACE -o wrPrvdr ${SOBJS} $(EXP)/dirproxy.o

provider with dynamic link
wrPrvdr.dl: $(s0BJS)
$(CC) -DSOSTRACE -o wrPrvdr.dl ${SOBJS}

wrClient.o: wrProxy.c wrClient.c
$(CC) $(CFLAGS) wrClient.c

wrServer.o: wrServer.h wrServer.c
$(CC) $(CFLAGS) wrServer.c

wrProvider.o: wrServer.h wrProvider.c
$(cC) $(CFLAGS) wrProvider.c

wrMain.o: wrServer.h wrMain.c
$(CC) $(CFLAGS) wrMain.c

wrProxy.o: vrProxy.h wrProxy.c
$(CC) $(CFLAGS) wrProxy.c

wrimportReq.o: wrProxy.h wrImportReq.c
$(CC) $(CFLAGS) wrImportReq.c

clean:
rm ~-f ${all} *.0 *.8 __err core a.out *.X

.SUFFIXES: .c .X .0 .8
.c.X:
$(CC) ~I$(INCL) -F $*.c > $*.X

76 APPENDIX D. THE WRITE EXAMPLE

check: wrClient.X wrMain.X wrProvider.X wrProxy.X wrServer.X

D.1 The “Write” proxy

The “Write” proxy cross-invokes its server in the “Write” provider’s context to
write a client input on its destination terminal or to close the “Write” session.
It performs some actions locally, for example, to print its state.

D.1.1 Proxy definitions
The definition of the proxy is in header file wrProxy.h:

static char wrProxy_rcsid[J="$Header: wrProxy.h,v 3.1 88/03/29 10:27:31 shapiro Locked !

static const int maxTermName = 80;
static const char wrProviderName[] = "/services/Write";

class vrImportRequest: public importRequest {
public:
char termName[maxTermName];
vrImportRequest (const char* tty)
raises (ttyNameTooLong);
}i

dynamic class wrProxy: public sosObject {
friend class wrProvider;

0ID serverId;

char termName [maxTermName]; .

vrProxy (OID&, const chars) // local constructor (for provider only)
raises (tooBig);

public:
vrProxy (wrImportRequest*); // importation constructor
“wrProxy(); // destructor

const char* getTermName () {return &termName[0];}

int Write (chars, int); // write msg on terminal
void Quit(); // close connection
void print(); // check state

D.1. THE “WRITE” PROXY 77

D.1.2 Message definitions

The proxy communicates with the server using the message definitions in wrInvoke.h:

static char wrlnvoke_rcsid[]="$Header: wrInvoke.h,v 3.1 88/03/29 10:27:10 shapiro Locked $";

// operation codes between wrProxy and its server
// (field opCode)

enum {wrSend, wrQuit};

// return codes (field retCode)

enum {wrOk=0, wrBadCodeOp=~1, wrFailed};

// parameters passed with cross-invocations

struct wrInvokeMessage: public invokeMessage{
int s8ize;
vrInvokeMessage (int op, int sz) { opCode = op; size = sz;};
wrlnvokeMessage (int op) {opCode=op; size=0;};

}

struct wrReturnMessage: public returnMessage {
int result;

};

78 APPENDIX D. THE WRITE EXAMPLE

D.1.3 The code for the proxy

Finally, here is the code for the proxy itself. Note the presence of a constructor
to create the candidate, for the private use of the provider, and another con-
structor for importation:

/* vrProxy.c */
static char rcsid[]="$Header: wrProxy.c,v 3.2 88/03/29 19:50:32 shapiro Locked $";

#include <stream.h>
#include "context.h"

#include "wrProxy.h"
#include "wrInvoke.h"

extern class dirs* NS;
static const char wrProxyCodeName[] = "/export/wrProxy.code";

/* importation comstructor for the wrProxy:
* there is nothing to do.
* Remember to call the importation constructor of O0ID
* so that the field serverId doesn’t get over-written.
*/
wrProxy: :wrProxy (wrImportRequests ir):

serverId(ir) {};

/* The creation constructor, for creating a proxy-candidate.
* This is reserved to the provider.
*/
wrProxy::vrProxy (OIDE id, comst chars tty)
raises (tooBig)
raises (noCode)

serverld = id;

if (strlen (tty) > maxTermName)
raise (tooBig);

strcpy (termName, tty);

// set code reference too code object
ref wrCodeRef;
begin

NS->lookup (wrProxyCodeName, &wrCodeRef);
except

vhen (notFound)

raise (noCode);

end

D.1. THE “WRITE” PROXY

this -> setCodeRef (wrCodeRef);
}

/* Destructor. Do nothing.

*# (In particular, don’t do Quit: a destxuctor should not
* cross-invoke. The server will be signalled

* automatically by dependencies -- in future versions!!)
=/ ’

wrProxy: : “wrProxy () {};

/* The client asks to write a message on the terminal.
* This cross-invokes the server.
*/
int
vrProxy::Write (char* msg, int len)
raises (error)
raises (closed)

// if I already did a Quit, don’t invoke sexver
if (serverId == ()
raise (closed);

// create and initialize invocation message
wrInvokeMessage args (wrSend, len);

// put the message in a segment
segmentDesc *buf[2];

buf[0] = nev segmentDesc (0, sgCopyFrom);
buf[0] -> assign (msg, lemn);

buf{1] = 0;

// cross-invoke server, and get answver
wrReturnMessage* res =

(vrReturnMessage*) crossInvoke (&args, buf);
// clean up
delete buf[0]; buf[0]=0;

// decode answer
if(res->retCode != wr0Ok)

raise (error); |
return res->result;

}

/* The client asks to close the session.
This invokes the server.
x/

void

79

80 APPENDIX D. THE WRITE EXAMPLE

wrProxy: :Quit()

{
serverld = 0; // make sure won’t cross-invoke again
wrInvokeMessage args (wrQuit);
wrReturnMessage* res =
(vrReturnMessage*) crossInvoke (kargs) ;
if (res-> retCode '= wrQk)
abort ();
}

/% Print a wrProxy intance, for debugging purposes.
*/

void
wrProxy: :print ()

cexrr << termName << ": ";
serverId.print();
cerr << "\n";

D.2. THE “WRITE” CLIENT 81

D.2 The “Write” client

The “Write” client takes a terminal name as argument:
% Write /dev/ttya

It first imports a proxy for this terminal from the “Write” provider, then loops
on waiting user input to give to the “Write” proxy.

D.2.1 The import request

The file wrImportReq.c contains code to create the import request:

include "context.h"
include "wrProxy.h"

wrImportRequest: :wrImportRequest (const char* tty)
raises (ttyNameTooLong)
{
if (strlen(tty) >= maxTermName) {
raise (ttyNameTooLong);
}
else
strcpy (termName, tty);

82 APPENDIX D. THE WRITE EXAMPLE

D.2.2 The client

The code of the client itself is in wrClient.c:

static char rcsid[]}="$Header: wrClient.c,v 3.4 88/03/29 19:50:13 shapiro Locked $";

/*
* wrClient.c
*/

#include <stdio.h>
#include <stream.h>
#include <fcntl.h>

extern chars getlogin();

#include "context.h’
#include "wrProxy.h"

// maximum size of user message + login name + 8
const int maxUserMsg = 128;

class dirs * NS = NULL;

/* Start a Write client, to send messages to another terminal.
* Import a write proxy, from the provider.
* Then wait for user input, and give to write proxy.
*/
main (int argc, const chars argv[])
{
// must first import name service proxy
NS = new dynamic ('/nameServer") dirs (nulllIR);

// skip options on command line
for (int i=1; argec > 1; argc--)
if (argvlil[0] != ’-?)

break;

// choose terminal to write to
const char* tty;
if (arge '= 2) {

tty = ttyname(2);

cerr << argv[0] << ": writing to" << tty << "\n";
} else

tty = argv(i];

// create request message, and ask for importation
vrImportRequest args (tty);

D.2. THE “WRITE” CLIENT 83

wrProxy #myWrProxy =

nevw dynamic (wrProviderName) wrProxy (&args);
cerr << argv[0] << " is ready (" << rcsid << ")\n";
// if importation fails, the program will abort
// due to uncaught exception

// prepare message zone

char buffer [maxUserMsg];

strcpy (buffer, "From ");

strcat (buffer, getlogin());

strcat (buffer, ": ");

const int prepared = strlen (buffer);
char sbufp = buffer + prepared;

// read user input & call proxy
while (cin.get (bufp, maxUserMsg-1-prepared)) // read
{

char term;
cin.get (term); // eat terminator
/* cout << "[" << buffer << "J\n"; // double check */

// strlen+i to include the final ’\0’
myWrProxy -> Write (buffer, strlen (buffer)+1);
}

// exited from loop: must be the end
if (cin.eof()) {
cout << "The end.\n";
}
myWrProxy -> Quit();

delete myWrProxy;
// must do exit or else context does not terminate
exit (0);

84 APPENDIX D. THE WRITE EXAMPLE

D.3 The “Write” provider

It provides proxies for client applications, and creates a local server for each
proxy. We show first the provider code. Declarations are in wrProvider.h:

static char wxProvider_rcsid[]="$Header: wrProvider.h,v 3.2 88/03/29 17:27:58 shapiro L

class
vrProvider : public sosObject {
public:
vrProvider(unsigned long seed);
“wrProvider();
void giveProxy (const importRequest#®, proxyDesc#)
raises (refused);

D.3. THE “WRITE” PROVIDER

D.3.1 Starting the provider

This file wrMain. ¢ starts the provider:

85

static char rcsid[]="$Header: wrMain.c,v 3.3 88/03/29 19:50:23 shapiro Locked $";
// wrMain.c main entry for the write server/provider

#include <stream.h>
#include "context.h"
#include "wrProvider.h"
#include "wrProxy.h"

dirs* NS = null;

main()

{

const unsigned long wr_seed

// importation of a Name Service proxy

= 14010; // Arbitrary

NS = new dynamic ("/nameServer") dirs (nulllIR);

NS -> changeDir ("/");
begin

NS -> addDir ("/services");
except

when (nameExists)

end

// create the provider object
wrProvider theProvider (wr_seed);

// register with the Name Service

ref tmp;

AS->getReference (&theProvider, &tmp);
NS->addName (wrProviderName, tmp, 1);

cerr << "The Write provider is ready. ("

<< resid << ")\n";

// make sure main doesn’t return, so the provider remains allocated

thistask -> resultis (0);

86 APPENDIX D. THE WRITE EXAMPLE

D.3.2 The provider

Here is the code for the provider itself, in file wrProvider.c:

/* wrProvider.c */
static char rcsid[]="$Header: wrProvider.c,v 3.3 88/03/29 19:50:27 shapiro Locked $";

#include <stream.h>
#include "context.h"
#include "wrProxy.h"
#include "wrProvider.h"
#include "wrServer.h"

/* Create a provider object.

*/
vrProvider: :wrProvider(unsigned long seed)
{
// allocation of a group OID for the Write service
0ID oid;
oid.groupAllocate (seed);
AS -> addGroupOID (this, oid);
}

/% Destructor. Do nothing.
*/

wrProvider: : “wrProvider () {}

/* Exporting a proxy
* Algorithm: create a proxy-candidate

* create a server
* connect them with a trap reference
*/

void

wrProvider: :giveProxy
(const importRequest* ir0,
proxyDesc* result)
raises (refused)

// cast the import request into its known type
const wrImportRequest* ir = (const wrImportRequest#) ir0;

wrServer #*server = 0;
vrProxy *candidate = 0;
// create a server and a proxy candidate
begin
// create server, put it in group, and get its OID

D.3. THE “WRITE” PROVIDER

server = new wrServer (ir->termName);
giveMyOID (sexver, 1); // to create a group
0ID serverOQID;

AS->get0ID (server, &server0ID);

// create candidate
begin
candidate = new wrProxy (server0ID, ir->termName);
except
when (noCode) {
cerr << "No code object for write proxy!"
<< "(Did you do makecode?)\n";
if (server) delete server; ’
if (candidate) delete candidate;
exit (1);
}

end

// prepare the candidate for exportation:
// make candidate a member of the group
giveMyOID (candidate, 1);

// allow proxy to invoke server
candidate->setTrapRef (server);

// candidate will migrate and become proxy
candidate->giveSelf (result);

// many things can go wrong: can receive exceptions

// cantOpenTty, tooBig, notFound, noCode, etc.

// in all cases there is not much we can do.

except

when (others) {

cerr << "Write provider received exception!\n";
if (server) delete server;
if (candidate) delete candidate;
raise (refused);

end

87

88 APPENDIX D. THE WRITE EXAMPLE

D.3.3 Server declarations

Finally, here is the server code. First, declarations, in wrServer.h:

static char wrServer_rcsid[]="$Header: wrServer.h,v 1.1 88/03/29 10:05:27 shapiro Locke:

class wrServer : public sosObject {
filebuf ttybuf;
ostream *tty;
public:
wrServer (chars);
“wrServer ();
void stub (invokeMessage*, returnMessage*, segmentDesc*s*) ;

I H

D.3. THE “WRITE” PROVIDER . 89

D.3.4 The server

The code of the server itself is in wrServer.c:

/* ' file wrServer.c o */
static char rcsid[]="$Header: wrServer.c,v 3.2 88/03/29 19:50:35 shapiro Locked $";

#include <stdio.h>
#include <fcntl.h> .
#include <stream.h>

#include "context.h"

#include "wrProxy.h"
#include "wrInvoke.h"
#include "wrProvider.h"
#include "wrServer.h"

/* Create a server object (in the same context as Provider)
* Opens a connection to the specified terminal
*/
wrServer: :wrServer (char* ttyName)
raises (cantOpenTty)

{
if (ttybuf.open (ttyName, output) == 0)
raise (cantOpenTty);
tty = nev ostream (&ttybuf);
) :
/* Delete a server: close tty if not already done
*/
vrServer:: wrServer () {
if (tty)
delete tty;
}

/* Receive a cross-invocation, either to write a message
* on the terminal, or to close the terminal.
*/
void
vrServer::stub
(invokeMessage* request,
returnMessage* reply,
segmentDesc** segs)

wrlnvokeMessage * req = (vrInvokeMessage*) request;

APPENDIX D. THE WRITE EXAMPLE

wrReturnMessage * res = (wrReturnMessage*) reply;
switch (request->opCode) {

case wrSend: { /* Send message to terminal */
// don’t need to check if tty still open
// because proxy will never invoke after closing

// map received segment to a character string
const int size = req->size;

char *msg = new char [size];

segmentDeac segdesc (0, sgCopyTo);
segdesc.assign (msg, size);

segs[0] ~> copyTo (&segdesc);

// output immediately
*tty << msg << "\n";
tty->flush ();

// clean up & return
delete [size] msg;
res->result = tty->bad();
if (res->result)
res->retCode = wrFailed;
else
res->retCode = wrOk;
break;
}

case wrQuit: /* close connection */
#tty << "The end.\n";
delete tty; tty = O;
res -> result = 1;
res -> retCode = wrOk;
break;

default: /* unknown operation */
reply -> retCode = wxBadCodeOp;
}

Imprimé en France
ar ‘
I' Institut National de Recherche en Informatique et en Automatique

