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TYPOL

A Formalism to Implement Natural Semantics

Un Formalisme pour Implémenter la Sémantique Naturelle

Thierry Despeyroux

INRIA - Sophia-Antipolis
2004, Route des Lucioles
F-06565 Valbonne Cedex (France)

Abstract

CENTAUR is an interactive programming environment generator. It allows the spec-
ification not only of the syntactical aspects of a programming language, but also of its
semantical aspects. Those aspects are described using a specification formalism called TY-
POL. The specifications written in TYPOL may be compiled into Prolog to be executed.
This report is the TYPOL (version 2) reference manual for the version 0.5 of CENTAUR.

Résumé

Le systéeme CENTAUR est un générateur d’environnement de programmation interactif.
1l permet de spécifier non seulement les aspects syntaxiques d’un langage de programma-
tion, mais aussi ses aspects sémantiques. Ces derniers sont décris a 1’aide d’un langage
de spécification sémantique, TYPOL. Les spécifications écrites en TYPOL peuvent étre
compilées en Prolog afin d’&tre exécutées. Ce rapport est le manuel de référence TYPOL
(version 2) de la version 0.5 de CENTAUR.
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Introduction

To date, four main lines have been explored in the formal specification of programming
languages: denotational semantics — especially to specify dynamic semantics —, attribute
grammars — mostly for static semantics and translations ~, algebraic abstract data types
and structural operational semantics.

All these semantics (except the last one) have a great default: they lead to very large
specifications, not very easy to manage, not even to write.

We have developed a new semantics, calling it natural semantics. The main ldea, of

it is that computing the semantic value of an expression of a language is no more than
proving a particular theorem in a theory (made of axioms and inference rules) that express:
the semantics of this formalism. Examples of such predicates are: “this ezpression has this
type”, or “this expression in language L may be translated into that expression in language
L? ”.
* Natural semantics retains the best aspects of earlier methods. It has its origin in.
the structural operational semantics [13], but focus on the pure logical part of it. The
name natural comes from the fact that we write our semantic definitions in the natural
deduction style [14,15], using Gentzen’s sequents [8]. As in denotational semantics and in
structural operational semantics, semantics may be defined recursively on the structure
of the formalism. But we can also write non structural definitions. The style of this
definition does not need to be operational (but it can be operational), and it is no longer
functional, but relational. Notice that conditional rewriting rules may be expressed using
natural semantics, but rewriting is a particular example of what can be expressed in this
semantics. As in attribute grammars, algebraic data types, and in B.N.F., the definition
style is declarative. Natural semantics also uses very powerful concepts: pattern matching,
unification and overloading.

We would like natural semantic specifications to be as close as possible to traditional
mathematical style, short, readable and elegant. We want also these specifications to be
executable. Notice that the SIS system of Peter Mosses [10,7] proves some years ago that
these goals were reachable. Trying to reach our goals results in a computer formalism called
Typol. The language is still under development but it has already been experimented with
extensively. Typol programs may be executed from inside the Mentor meta-syntactical
editor [6,5], or from inside the new Centaur{16] system. So, Mentor and Centaur with Typol
are two complete meta-compilers. Natural semantics is close enough to mathematical logic
to allow proofs on Typol programs. One example has been the proof of correctness of a
translation from a subset of ML into CAM (Categorical Abstract Machine [3]) [4]. This
experiment shows such proofs could be computer driven.

This report wants to be a complete reference manual and a guide to Typol and Natural
Semantics. It refers to version 2 of Typol that is implemented in the version 0.5 of Centaur.
It contains numerous examples of semantic specifications written in Typol and running
under this system. In the technical parts of this report we will assume that the reader has
a good knowledge of Centaur.

Typol programs are entered in the computer using a traditional ASCII representation.
These programs may be unparsed with a nice pretty-printer that produces TEX inputs.
This pretty-printer is run after type-checking, so it is possible to associate automatically
different fonts to different types of objects, in accordance with standard mathematical



practice. Abstract syntax trees are also unparsed using their concrete representation. All
this encreases the readability of semantic definitions. A lot of examples in the rest of this
document are produced using this strategy. In this manual, we will sometimes use the
ASCII representation of Typol programs, sometimes a computed form of output, using or
not appropriate unparsers for the manipulated formalisms. Different outputs may be the
external representations of the same Typol program.

A Typol type-checker is now available. It is a major component of the Typol program-
ming environment. A number of processors in this environment must be executed after
type-checking. It is the case of course for the code generator, to produce Prolog code, but
also for the pretty-printer that produces input for TgX, as we said above. Of course, all
these components are written in Typol. The Typol type-checker has (at least) two goals.
The first one is to solve ambiguity when two languages that use the same name for an
operator are involved (in a translation for example). Most of the time the context will be
sufficient to resolve the ambiguity, but we may have to specify what operator we really
mean. The second goal is to infer the type of variables. In Typol, the scope of variables is
limited to the rule where they appear. But variables declarations are allowed. The scope of
such declarations is the set of rules where they appear. It is not necessary to declare in this
way all variables, because often their type may be inferred. In particular, it is almost never
useful to declare variables that stand for abstract syntax fragments when these variables
occur in the subjects of the rules.

Typol specifications are compiled into Prolog code. When executing these specifications,
Prolog is used as the motor of our deductive system. We have tried hard to keep the
semantics of our rules independent of Prolog features. In particular the semantic of a
Typol rule is independent of the order of the sequents in the numerator of the rule (as it is
in logic). For efficiency reasons we would like conditions occurring in rules to be evaluated
as soon as possible, to avoid building useless proof-trees. This means that we need a Prolog
system with build-in coroutines. The first version of Typol used a C-Prolog interpreter [12].
The current implementation of Typol, uses MU-Prolog [11] with success.

Now, as other formalisms, Natural Semantics makes use of special notations, with a
very precise meaning associated to these notations. The tree first chapters describe these
notations and provide many examples. The formal description of the syntax is given in
Appendix A. '

Chapter 4 explains the error messages produced by the Typol type-checker.

The three last chapters form a practical guide to use Typol under Centaur. It explains
how to compile and debug Typol programs, and how to interface Typol with the rest of the
system. .

The appendix B gives a list of problems or bugs that may be encountered when using
the current version of Centaur.



1 Rules

The basic notion of Typol is inference rules. Let us see first what are the compdnents
of a Typol rule. :

1.1 'Tree Patterns | | '

It seems that in all specification formalisms (not only denotational but also in abstract
algebraic specifications) the way of specifying tree navigation is heavy. In usual semantic
specifications we have to give two redundant pieces of information:

o What is the structure of the abstract syntax tree of a formalism,

e How to select a branch of this tree, and how to build such trees.

This is usually done by giving constructors and destructors (selectors) acting on trees.
Using tree patterns will simplify this problem, because patterns contain in themselves all
the information we want. ,

Tree patterns may contain variables, denoting subtrees. We can refer to these subtrees,
just naming the corresponding variable, and we can rebuild a tree just writing a new pattern.
So there is no longer a distinction between constructive and destructive ob jects, and the
way of selecting one component is self-contained.

1.1.1 Fix-arity Operators

Let us take as example the Asple programming language [7], that will help us all over
this report. The imperative part of an Asple program may contains while-loops. As usual,
while loops are made of two parts: the first one is a (boolean) expression, the second one
is a list of statements. In the Metal [9] definition of Asple, this will be expressed by the
following abstract syntax declaration:

| while -> EXP STMS; |

This means that the while constructor is a fix-arity operator having two sons, the
first one from phylum EXP, the second from phylum STMS. The Typol notation for fix-arity
operator is a prefix notation. We can talk about a while node, writing:

while(X,Y)

In this pattern, X and Y are two variables, denoting respectively the first and the sécond
son of our while node. So we can refer to these two components just saying X, or Y (See
section 1.5 page 10 for details on variables).

By convention, we will very often use as name for a variable the name of the corre-
sponding phylum in the abstract syntax. So, we will write:

[ while(EXP ,smsﬂ

Using the appropriate pretty-printer, this will be unparsed as follow:



| whileEXP dosTMS end |

Here are some more examples for fix-arity operators:

if (EXP,STMS1,STMS2)
#program(DECLS, STMS)
output (EXP)
bool()
plus()

The “#” character in front of the operator name program is not meaningful. It is
necessary here because “program” is a keyword of Typol. Notice that bool and plus are
nullary operators. The empty pair of parenthesis is useful here to avoid ambiguity with
variables. In Metal, bool and plus are seen as singletons. They are defined using the
following syntax:

| bool -> implemented as SINGLETON; |

The pretty-printed version of these examples will be:

if EXP then STMS, else sTMS, fi
begin DECLS STMS end
output EXP
bool
+

1.1.2  Atomic Operators

Atomic operators are nullary operators. They usually contain some value. Typically,
identifiers are represented in the abstract syntax using atomic operators. There are three
kinds of atomic operators: they may be implemented as IDENTIFIER, STRING or INTEGER.
Here are some examples of atomic operator definitions, in Metal:

id ~> implemented as IDENTIFIER;
number -> implemented as INTEGER;

In Typol, it is possible to talk about the value of atomic operators, using variables:

id X
number N
boolean V

In these patterns, X, N and V are variables denoting the values of atomic operators. It
is possible to write patterns using constants. These constants are integers for operators
implemented as INTEGER, or strings for operators implemented as IDENTIFIER or STRING.

id "foo"
number 24
boolean "true"




These patterns denote respectively an identifier with internal value “foo”, the integer
24, and the boolean “true”. They will be pretty-printed in the following manner:

foo
24
true

1.1.3 List Operators

List operators may have an arbitrary number of sons. All these sons, we will say
elements, must belong to the same phylum. In Metal, list operators will be defined using
the * or + notations: '

decls => DECL + ... ;
stms -> STM * ... ;
idlist -> ID * ... ;

These declarations mean that the decls operator denotes a list of declarations, each
one belonging to the DECL phylum, that the stms operator denotes a list of statements, each
one belonging to the STM phylum, and that the idlist operator denotes a list of identifiers.

In Typol, there is a special notation for lists. It is possible to write patterns denoting
a list with a fix number of elements. The first example is for empty lists:

The following examples are for lists with a given number of elements denoted by vari-
ables: ' '

idlist[A]
idlist[A,B,C,D]

It is also possible to isolate some elements in the beginning of a list from the rest of this
list, using the dot notation: ’

idlist[A.Q]
idlist[4,B,C,D.Q]

In these examples, the variables A, B, C and D stand for elements of the list (say identi-
fiers), and the variable Q stands for a (sub)list of identifiers. There is no way to match a
sublist elsewhere that at the end of a list.

1.1.4 More about Patterns

Typol patterns are as general as possible, and you can write very complicated patterns,
if you want. Here are some examples of patterns. The first one denotes a list of identifiers,
the first of which is the identifier “foo”:

[ idlist[id "foo".qQ] |

5



The following pattern represents an if-statement, with an empty else-part, and where
the expression on the right hand side is a sum:

[[1£ (bop (EXP1,plus() ,EXP2) ,STMS,stms[]) |

It can be unparsed in the following manner:

[if EXP, + EXP, then STMS i |

One should be careful when reading pretty-printed patterns. The external representa-
tion may be ambiguous while it is of course not the case for the abstract representation.
So the following patterns are distinct:

id "foo"-
idlist[id "foo"]

but they may have a single concrete representation:
foo

There is also a problem with empty lists that are almost always represented by nothing.
All those problems are not Typol problems, but only pretty-printer’s problems. It only
means that sometimes some patterns should not be pretty-printed. :

1.1.6 Technical Details

e Operator names are always in lowercase. They are those used in the Metal definition
of the formalism. We will see later that renaming is possible (see section 3.1 page 16
for details).

e When an operator name is also a reserved keyword of Typol, it must be prefixed with
the “#” character. ez: #program

e To disambiguate operators it is possible to postﬁ'x the name of an operator with the
name of a formalism (in uppercase). ez: if::ASPLE

e Values for an atomic operator must be exactly the same as the internal representation
used by Centaur for this atom, that is lowercase if the internal representation is in .
lowercase etc... .

1.2 Propositions

In natural semantics, computing the semantic value of an expression in a language is
no more than proving that a particular proposition holds. Very often, this proposition is
a relation between two or more objects. Typol offers various way of writing propositions:
propositions, relations, labelled relations, and anonymous propositions.



1.2.1 Propositions

This is the more traditional style of propositions. Its general form is: -

where P is a name (let’s say a predicate), and x is a list of Typol expressions, sepa.rated
by commas. Here are someé examples of such propositions: A
IS.BOOLEAN(V)

1S.WELL_FORMED (if (EXP,STMS1,STMS2))
GREATER(25,0)

1.2.2 Relations

Relations are infix propositions. Some binary infix relational operators are predefined
as predicates. There is no special meaning associated with these symbols. Here is the list
of these predefined operator symbols:

[T-> > => <> << >> =¢= <= >=<=> |2 <=> (- =) ? & : |

You can decide on your own that the meaning of
| x: t
p->c¢
v <= v?

is

- x has type t
p can be translated into ¢
v 18 a prefiz of v?

‘Both arguments of these binary relational operators may be lists of Typol expressions.

1.2.3 Labeled Relations

It is possible to attach labels to a relational operator. This means that it is possible
to distinguish some parameters among all the parameters of a predicate. Labels are list
of Typol expressions. Any relational operator may labeled. In the following example, the
relational operator -> is labeled by two labels i and o.

{i -> o}

When the Typol pretty-printer is used, left and right labels are respectively unparsed
above and under the relational operator. For example, if we want to say that the state of
an abstract machine will change to an other state, producing some output o and consuming
some input i, we may write:

[s {i -> o} 8” |

and this will be unparsed as:




1.2.4 Anonymous Propositions

Anonymous propositions are propositions that are not named. Let’s say that these
propositions don’t use a predicate symbol. As for relations, the meaning of such propositions
is not fixed. The general form of these predicates is:

(=]

where x stands for a list of Typol expressions.
1.2.5 Technical Details

e The names of predicates are always in uppercase.
e A list of arguments may be empty.

e When the list of arguments of a predicate is empty, the empty parentheses must be
present to avoid ambiguity with variables.

. Predicates may be overloaded on the number and types of their arguments.

1.3 Sequents

Sequents express the fact that some hypotheses are needed to prove a particular proposi-
tion. A sequent has two parts: the first part contains the hypotheses; the second one, called
consequent, is a proposition. These two parts are traditionally separated by the turnstile
symbol “”. An hypothesis should be a set of propositions. In the current implementation
of Typol hypotheses are a list of Typol expressions. The first expression in the right part
of a sequent in called the subject of the sequent. Here are some examples of sequents:

|- #program(DECLS, STMS)
env[] |- DECLS -> e
e |- EXP : ¢
|- IS_BOOLEAN(t)

how they may be pretty-printed:

|  begin DECLS STMS end
pg b DECLS — p
pHEXP:T
F IS_.BOOLEAN(T)

and their intuitive meaning;:

-The program #program(DECLS, STMS) is well typed.

-Given an empty environment, the list of declarations DECLS produces
the environment e (p).

-The ezpression EXP as type t (T) given the environment e (p).

-t (1) is boolean. '




In the first example the proposition is an anonymous proposition, and the subject is

#program(DECLS, STMS). The second and third examples use relations (resp. -> and :),

“and the subjects are DECLS and EXP. The last example use a traditional proposition, and
“the subject is t. ’

Typol offers another kind of sequents: the named sequents. See section 2.4 page 14 for -

more details.

1.3.1 Judgements

" The various forms of sequents participating in the same semantic definition are called |

judgements. These different judgements are used without being given explicit names. We
can say that in a semantic definition, the turnstile symbol is overloaded.

1.3.2 Abbreviated Sequents

When a list of hypotheses is empty, it is possible to omit the turnstile symbol in a
sequent. In this case, the consequent must be enclosed into a pair of parentheses. So the
following sequents are equivalent: -

|- P(x) (P(x))
l-x =>y (x ->y)
-x{i >0} y|x{i->0}y)

The semantics of a sequent and its abbreviated form is the same (in particular the
‘generated code is the same), excepted when the consequent is an anonymous proposition.
So |- x is not equivalent to (x). See section 5.2 page 25 for more details.

1.4 Inference Rules & Axioms

An inference rule explains when a sequent can be deduced from other sequents. It
~ has two parts, named numerator and denominator. These two parts are separate by an
horizontal line. The denominator consists of a sequent, and the numerator consists of
a collection of sequents, also called premises, separated by ampersands. A rule with an
empty numerator is called an aziom. The subject of the sequent in the lower part of the
rule (denominator) is called the subject of the rule. Intuitively, an inference rule states that
if all the sequents in the numerator hold (i.e. they can be proved), then the denominator
holds. Here are some examples of inference rules and axioms:

env[] |- DECLS -> e & e |- STMS

|- #program(DECLS, STMS);
e |- declsl] -> e;
e |- DECL -> el & el |- DECLS -> o2

e |- decls[DECL.DECLS] -> e2;




They can be pretty-printed in the following manner:

Ppg - DECLS : p p - STMS
I begin DECLS STMS end

p Fdecls}:p

p - DECL: py p1 - DECLS : po
p - DECL: DECLS : p2

The first rule explains when an Asple program is well typed: if, given an empty envi-
ronment, the declarative part produces the environment p, and if using this environment
the statement part is well typed, then the whole program is well typed. The second rule
(in fact an axiom) says that an empty list of declarations does not modify the environment.
The third rule explains that in Asple, the elaboration of declarations is linear.

The horizontal line between the numerator and the denominator must contain at least
three dashes, and the whole inference rule may be typed in a single line for parsing.

1.5 Variables

Variables are very similar to Prolog variables. The main difference is that Typol vari-
ables are typed. There is a strong difference between a variable and a variable name. A
variable name is a reference to something that may be a variable or not. A variable name
is local to an inference rule or an axiom, while a variable survives outside an inference rule.
Variable names stand for abstract syntax trees or constants. Using the same variable name
in different occurrences (but in the same rule) means that values denoted by these variables
must be unified. In fact, the name “variable” is used both for variables and variable names.

Typol variables are typed. There types must be declared by the user unless they are
used inside a pattern so they can be deduced by the type-checker. Declared variables
are written using lowercase identifiers, while others are written using uppercase identifiers.
Here are some possible variable names:

| DECLS STMS STMS1 STMS2 STMS’ ro e #use x x’ x’’ |

Typol keywords may not be used as variable names (in lowercase), but it is possible to
use the “#” prefix if necessary. When parsing, only the case of the first letter is meaningful.
So you can write:

| Decls Stms rO0 |

1.5.1 Reserved variables

The variable names subject and this_rule are reserved. The value of these variables
are respectively the path from the root of the abstract syntax tree to the subject of the rule
and the path to the current rulé’in the source. These variables are used in the interface
with Centaur. See section 5.3.4 page 29 for more details.
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1.5.2 Anonymous Variables

Sometimes, the name of a variable appears only once in an inference rule. In this case,
this variable may not be explicitly named, using an anonymous variable: the variable name
 is replaced, as in some Prolog implementations, by an underscore:

L]

Notice that each occurrence of an anonymous variable in a rule denotea different vari-
able. Anonymous variables are not typed. ‘

1.6 Typol Rules

To make semantic specifications cleaner, and the connection between semantic defini-
tions and the rest of the world easier, some additional information may be hooked to the
inference rules. A Typol rule is a triple made of an optional rule name, an inference rule
(or an axiom) and this information:

[ <rulename> <inference.rule> <infos> |

The rule name may be any any Typol expression followed by a semicolon, and is optional.
- Here is an example of named rule with an empty infos part:

["empty declaration list": e |- decls[] -> e; |

The <infos> part is divided in three parts which are described in the following subsec-
tions:

[ <where> <provided> <actions> |

1.6.1 Where

This part is not yet implemented. It is supposed to allow factorizing very similar rules,
saying that a variable is in fact one in a collection of patterns.

1.6.2 Provided

The provided part contains alist of conditions, that are sometimes called side-conditions.
These conditions are checked as soon as possible, when the rule is used. They are part of the
semantics, and are used to write some constraints that cannot be expressed in a structural
manner, using patterns. This is in particular the case when it is necessary to say that two
objects must be different, as in the following example:

[ provided DIFF(x,y); |

From the syntactic point of view, a provided part is a list of premises. But these premises
are most of the time simple propositions. In the example, we use a Prolog predicate (See
section 5.2 page 25 for details).

11



1.6.3 Actions

As it is done in other systems, such as Yacc for example, it is possible to attach actions
to semantic rules. Of course these actions are not part of the semantics, and cannot interfere
with the formal system. These actions may only read the variables of the inference rule
to which they are attached. Actions never fail. So it is possible, by using actions, to
isolate pure semantic definitions from their side effects. These actions are very useful for
extracting some pieces of information from the formal system. They can print messages,
call the redisplay procedure of Centaur to show the current expression (i.e. the subject) of
the current rule, give control to the user, etc... '

The actions are done after that the whole numerator of the rule has been proved. But
we should be careful. If it is possible that for some reason the sytem will backtrack after
doing an action, this action will not be undone.. What is done is done.

From the syntactic point of view, an action is a list of premises. But these premises are
most of the time simple propositions. Here is the general form of an: action:

| do <premise_s> ; |

1.7 Semantic Specifications

A semantic specification consists in an unordered collection of inference rules or axioms,
together with a declarative part (see section 3 page 16). Theses rules define a formal system
in which it is possible to prove that some particular propositions hold. No hypotheses are
made about the unicity of proofs in those systems.

The order of the rules in the specification is not meaningful. Changing this order will
not affect the semantics of the specification. If at one time, more than one rule may be
used in building the proof tree, the most specific rule will be tried first. This does not mean
that other possible choices are not legal. In fact, this implies that inference rules are sorted
by the compiler. This is not done in the current implementation of Typol.
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2 Modularity

Modularity is an important feature of Typol. It is very useful to handle large semantic
specifications, and to make them easier to read (overloading is a very iice feature, but
abuse of overloading leads to obscurity). ' '

2.1 Programs & Bodies

A Typol program is the unit of compilation of Typol specifications. It is made of three
parts. .
The first part is the name of the program. This name is used for generating the names
of Centaur and Prolog files that are created by the system. Assuming that the name of
“the program is F00, these files will be F00.po, F00.ty and foo.pg for, respectively, the
‘polish form, the textual form of the program, and the Prolog code generated by the Typol
compiler. The name of a program must be in uppercase.

The second part is a list of global declarations. These declarations may be use decla-
rations (see section 3.1 page 16), or importation of sets of inference rules (see section 2.5
page 15). »

The third part is a body. The body of a program is again made of three parts. The first
part contains a list of (local) variable declarations (see section 3.2 page 16). The second
part is a list of inference rules, or sets (see section 2.3 page 14). The third part is reserved
for future extensions. ‘

Here is the general form of a Typol program:

program <UCID> is
<globals>
<body>

end <UCID> ;

The repetition of the program name after the keyword end is optional. The general
form of a body is:

<locals>
<rules>
<reserved>

2.2 Braces

It is possible to collect some rules using braces. ‘These braces don’t have any semantic
meaning. There are pure syntactic sugar. Here is an example of such braces:

e |- decls[] -> e;

e |- DECL -> o1 & el |~ DECLS -> e2

e |- decls[DECL.DECLS] -> e2;

}

13



2.3 Sets

A set is a named collection of inference rules. This collection of rules is a complete
formal system. In a set, an (anonymous) sequents in the numerators of a rule refer to the
same set of rules. This is also the case in a program, which is a particular sort of set. A
set is made of two parts. ‘The first part is the name of the set. As for programs, this name
must be in uppercase. The second part is a body, again as for programs. The general form
of a set is very similar to programs:

set <UCID> is
<body>
end <UCID> ;

As for programs, the repetition of the set name is optional. We give now a complete
example of set, which is part of the static semantics of Asple.

set TYPE.OF is

var x : ASPLE::ID;

var m : ASPLE::MODE;
env[type(x, m).L] |- x : m;

env[E.L] |- x : m;

end TYPE OF;

set TYPE_OF is
z:p-LbEz:p

Fz:
EI-JL sz:u

end TYPE_OF;

2.4 Named Sequents

Sequents in the numerator of an inference rule refer to the local set or program. It is
possible to name explicitly an other set to be used. This allows switching from one formal
system to an other one. For example, assuming that in the type-checker of Asple there is a
set named TYPE_OF, that specifies how to find the type of an identifier in the environment,
we can explicitly switch to this system writing:

| TYPE.OF(e |- id X : m) |

This will be unparsed in the following manner:.. .

type.of
p F idx:p
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Here is an other example. The predicate IS.BOOLEAN is defined in the set TYPE.-
COERCION which contains all predicates on Asple types. In an if-statement, the type of
‘the expression must be boolean. So the following rule appears in the Asple type-checker
specification: ' .

; ‘type-coercion
| pFEXP:u F IS.BOOLEAN(u) p b STMS, p - STMS,
p I il EXP then STMS; else STMS; fi

2.5 Importing Sets

Set definitions are local to the current program. But it is possible to import sets defined

in an other Typol program, renaming them if it is necessary, using import clauses. Import .

"clauses must appear in the second part of Typol programs. The syntax of import clauses
is:

[import <renaminglist> from <UCID> ; |

where <UCID> is the name of the Typol program from which sets are imported, and
<renaming.list> contains set identifiers or renaming declarations of the form:

[<OLD_-NAME> as <NEW.NAME> |

Here are some examples of such import clauses:

import TYPE_OF from ASPLE_ENV;
import A, B, C as X, D as Y from FOO;
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3 Types

To be compiled, a Typol program must contains some declarations. The abstract syntax
of every syntactic construction must be define, and some variables must be declared. The
possibility of defining new types is under development.

3.1 The USE declaration

A formalism must be declared before it is used. The use clause imports all the abstract
syntax of a formalism, and possibly renames some operator names (to limit overloading).
A use clause is global to a Typol program. It syntax is :

| use <UCID> <renaminglist> ; |

where <UCID> is the name of a formalism and <renaming.list> contains a list of
renaming declarations beginning by the keyword renaming and separate by colons:

| <OLD_.NAME> as <NEW_NAME> |

Here are some examples of such use clauses:

use ASPLE;
use TYPOL renaming Icid as ident, ucid as bigident;

3.2 Declaration of variables

In a Typol rule, variables in uppercase may be used only when their types may inferred
from the context by the type-checker. Variables in lowercase must be used when it is
impossible to infer the types of these variables, or when one wants to restrict the type of
an expression. Declarations of variables are local to a set. The following syntax must be
used:

| var <LCID.S> : <TYPE> ; |

where <LCID_S> is a list of identifiers in lowercase, and <TYPE> is a type. Allowed
types are: string, integer, path, every phylum from a formalism (as ASPLE::EXP), and
private types. A private type is only represented by an identifier in lowercase. We do
not yet check that used types are legal (in particular, we do not check that a particular
phylum does exist in the definition of a formalism). Here are some examples of variable
declarations:

p : path;

X, ¥y ¢ TYPOL::IDENT;
name : string;

e : env;

n, n’, n’’ : integer;
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3.3 Creating a new operator

It is possible to create new operators. This possibility is still under development. These
operators are not encoded when compiled into Prolog (but list operator are implemented
as binary trees). So it is possible to use in Typol some Prolog terms. Definitions of new
operators are global to a program. The following syntax must be used:

[ define <LCID_S> : <OP.TYPE> ; |

whére <LCID.S> is a list of identifiers in lowercase, and <OP_TYPE> is of the form:

[(<SONS_.TYPE> ) — <LCID> |

where <LCID> is the name of a private type, and <SONS_TYPE> is a list of types that
are the allowed types for the corresponding sons (as in METAL definition). The allowed
types for sons are the same as for variables.

It is possible to create list operators, using the following notation for <SONS_TYPE>:

. <TYPE> *

and it is possible to build free terms, saying that <SONS_TYPE> is either *, for a fix
arity operator, or * x for a list operator. In this case, the type-checker will never check
what is under the defined operator. Here are some examples of operator definitions:

define foo : ( TYPOL::EXP, string) — bar;
define fop : ( * ) — bar;
define foq : ( TYPOL:LCID %) — bar;

Creating free operator may be dangerous. The Typol type-checker cannot use a free
term to infer the type of an undeclared variable. Schemes may be incorrect under a free
operator, and ambiguities may occur. In these cases the generated code may be different
from what is expected by the programmer.
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4 Errors in a Typol program

When running the type-checker under Centaur (see section 6.1 page 33 to know how it
is called), the exact point where the error occurs becomes the current expression, while the
message is displayed. The type-checker stops after each error, and the following menu is
displayed.

Continue
Abort
Help

By selecting one of the items, the user may continue or abort the type-checking process.

The following sections contain an example for each kind of error in Typol programs.
Error messages produced by the Typol type-checker appear as comments in these programs.
In each case we include some explanations. We discuss not only why there is an error, but
also what are the consequences, if any, for the rest of the type-checking process.

4.1 Multiple declaration of a formalism

Multiple declaration of a formalism is allowed in Typol!. As it may be an error, the
user is given a warning, as in the following example:

program E.1 is

use TYPOL renaming rule as typol.rule;
use TYPOL renaming lcid as ident;
—Warning: The language TYPOL is used twice.

|- typolrule(A,B) ;

|- ident X ;

end E_1;

Here, two use-clauses import the same formalism (TYPOL). A warning is printed, but
renaming-clauses are valid. So, in the example above, typolrule and ident are correct
node operators.

4.2 Unknown formalism

When a formalism is used, the Typol type-checker attempts to locate the abstract syntax
of that formalism. If “L” is the name of a formalism, its abstract syntax will be found in
the “Lt.pl” file, in the formalism directory. If searching the definition of a formalism does
not succeed, an error occurs.

1The Typol type-checker prefers to give a warning instead of an error message when multiple non-
contradictory declarations exist.
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program E2 is
use FOO;
—Fatal error: I don’t know anything about FOO

end E_2;

The language FOO is unknown to the system (i.e. no abstract syntax definition of FOO
may be located). As this may generate a large number of irrelevant errors in the rest of the
program, the type-checker stops. This is the only case where type-checking aborts. Section
6.2 page 33 explams how to generate the abstract syntax tables used by the type-checker.

4.3 Renaming of an unknown operator

Renaming an operator means that the “standard” name of that operator is made un-
‘available. The new name must be used instead. The type-checker checks that the old name
is legal.

program E_3 is
use TYPOL renaming foo as bar;
~Error: “foo” is not a TYPOL operator.

|- foo(A) ;
—Error: I can’t infer any type for this rule.

|- bar(A) ;
—Error: I can’t infer any type for this rule.

end E_3;

The abstract syntax of TYPOL does not contain any operator named foo, so it is impos-
sible to rename it. No declaration for bar is done either, because we do not know what
type it should be given. This could be improved.

4.4 Multiple renaming of an operator

For convenience, it is possible to give more than one name to an operator. But this
may be an error, so the user is given proper warning.
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program E_4 is

use TYPOL renaming lcid as ident, lcid as identifier;
—Warning: the TYPOL operator “Icid” is already renamed.

|- ident X ;

|- identifier X ;

I- lcid X ;
—Error: I can’t infer any type for this rule.

end E 4;

The TYPOL operator 1cid is renamed twice. Both ident and identifier are new names
for TYPOL: :1cid. But 1cid will not mean TYPOL: :1cid.

4.5 Importing or defining an existing set

It is not permitted to reimport or to redefine an already defined set.

program ES is

import FOO as BAR;

import FO0O;

import BAR;

~Error: the set BAR is already imported or defined.

set FOO is
~Error: the set FOO is already imported or defined.

end FO0O;

end E5;

When importing FOO as BAR, BAR is defined, but not F00. So FOO can be imported or
defined, but not BAR. When importing F00 again, F0O is defined, and may not be redefined.
4.6 The variables “subject” and “this_rule” are predefined

The variables “subject” and “this_rule” are two reserved variables in Typol. They give,
when it is possible, an access to the subject of the rule, and to the rule itself in the source
program. These variables do not need to be declared and they may not be redefined.
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program E6 is
var subject : string;
—Error: The variable “subject” is predefined.

set FOO is
var this.rule : string;
—Error: The variable “this_rule” is predefined.

end FO0O;

end E.6;

4.7 Multiple declaration of a variable

Multiple declaration of a variable is not permitted within a set or a program.

program E_7 is
var a : string;
var a : integer;
|- lcid a ;

|- integer a;

set FOO is

var a : integer;
|- integer a ;

end F0O;

end E_7;

—Error: The variable “a” is already declared.

| =Error: I can’t infer any type for this rule.

In a set or a program, if one attempts to redefine an already declared variable, the old
definition remains unchanged. So in E_7, a is a variable of type string, not integer.

Remember that declarations of variables are local to the program or to th

set, in the Algol style.

4.8 Missing definition of sets

e surrounding

A set that is used must be either imported or defined in the same program.
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program E_8 is
use TYPOL;

FOO(A) & BARQ) ‘
~Error: The set FOO is neither imported nor defined.

|- number A;

‘set BAR is
end BAR;

end E.8;

Here the set FOO is not defined, and this an error. On the other hand i:he set BAR is
used before it is defined and this is allowed. Note that the message is printed only at the
first occurrence of the name of the undefined set.

4.9 Not completely instanciated type

The type of a rule must be completely inferred by the type-checker. This means that
every variable that is in a rule must receive a type.

program E9 is
use TYPOL;

|- integer A, B;
~Error: I can’t instanciate the type of B.

end E_9;

Variables in lowercase must be declared. But variables in uppercase may not be
declared?. There types must be inferred from the context (the rest of the rule). If it
is not possible, an error occurs. Here, the type of A (integer) may be deduced from the
type of the operator integer. It is not possible to deduce the type of B.

4.10 Unresolved overloading

Only one type must be possible for a rule. Ambiguous types are not permitted.

2Variables in uppercase may be used when their types may be inferred from the context. Variables in
lowercase must be used when it is impossible to infer the types of these variables, or when one wants to
restrict the type of an argument.
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‘program E.10 is
use TYPOL;
use METAL;

|- node_id(PHYLUM, lcid A) ;

t- lcid A ;
~Error: I can infer more than one type for this rule.

end E_10;

‘The operator 1cid exists both in the TYPOL and the METAL abstract syntax. In the
first rule, the type-checker can deduce that 1cid stands for TYPOL: :1cid, because node.id
is solely a TYPOL operator. But in the second rule, it is not possible to deduce from the
context whether 1cid stands for TYPOL: :1cid or METAL: :1cid, and this is an error.

4.11 Missing declaration of variables

Variable in lowercase must be declared. If they are not declared, some messages are
emitted, and they are treated as uppercase variables. '

program E_11 is
use TYPOL;

|- lcid a ; .
—Error: The variable “a” must be declared.

end E._11;

4.12 Other type errors

All other errors are type errors that occur within a single Typol rule. For the moment
only error message covers all these errors:

| =Error: I can’t infer any type for this rule |

It is the case in the following situations:

o When a variable in uppercase is used with different incompatible types within a rule.
e When unknown operators are used.
e When an operator is used with a wrong arity.

e When an operator has a son.with an improper type.

Most of the time, the type-checker provides a more accurate message:

| ~Error: Type error possiblé here. |
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This means that they may be a problem at the current eXpression (or an incompatibility

between the current expression and its father).
Further versions of the Typol type-checker will provide more accurate information, as

it is to be expected.
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5 Interfacing Typol with the environment

Of course a Typol program must be able to communicate with Prolog and Centaur.
Typol has been extended to achieve this goals. ' o

5.1 Defining Prolog predicates

A set of rules in the body of a set or program may define not only sequents, but also
Prolog predicates. The syntax of these predicates is the same as for anonymous predicates.
They may be used as premise (see section 1.4 page 9). In this case all occurrences of this
sort of predicate in place of a premise in the same set will refer to the predicate defined
in this set. As usual, these predicates may be overloaded on the number and types of
arguments. Some extra parenthesis are needed around the list of arguments. '

This sort of predicates must be manipulated with caution. The generated Prolog code
does not contain any type information. In fact, defining a Prolog predicate in this way, is
like writing Prolog code (but Typol objects are automatically encoded while compiling). -

Here is an example of set defining such a predicate:

set IS_IN.LIST is
var x : ASPLE::ID;

(X, idlist[X.L]);
(x, idlist[Y.L]);

end IS_IN_LIST;

As for sequents, we can refer to a Prolog predicate defined in a set from outside this set
‘by naming this predicate. In this cases the extra parenthesis must not appear.

[TsINLIST(id "foo", idlist[id "foo", id "bar"]) |

5.2 Interface with Prolog

It is possible to use from inside a Typol program a predicate written in Prolog. A
- Prolog predicate may be called as described in the previous section. The predicate must
be in lowercase in Prolog, but will be used in uppercase in Typol. This predicate must be
declared in the Typol program, using an import clause, without the “from” part. Notice
that renaming is possible.
Here are some examples of declarations of Prolog predicates:

import WRITE, NL, PLUS;
import A, B as X, D;
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When using a Prolog predicate, be sure that types are compatible between Typol and
Prolog. That is possible only for simple objects (integers, strings and variables) unless this
Prolog predicate is part of the Typol environment (i.e. is a Typol predefined predicate).
The orders of the parameters are the same in Typol and in Prolog, but don’t forget the
empty brackets in Typol, when the arity is zero as in: NL().

The following table shows how simple Typol objects are translated into Prolog:

- TYPOL PROLOG
integer | ezx: 23 integer ezx: 23
string ez: "foo” | identifier | ez: foo’
variable | ez: A x _ | variable | ez _a x_|

. When more complicated objects are used, a set defining an anonymous predicate must
be used. Let us see now a complete example of interface between Typol and Prolog.

The TYPOL side:
import ADD;
var a, b, ¢ : ASPLE::EXP;

.l-... & SOMME(a,b,c)

set SOMME is
ADD(A,B,C)

(number A, number B, number C);
end SOMME;

The PROLOG side:

add(P,Q,R) :- R is P + Q.

It is not necessary to know how Typol trees are encoded into Prolog. The interface is
done automatically by the set ADD.

5.3 Interface with Centaur

Communication with the host system is of course very important. You can avoid using
the interface between Prolog and Typol, but it is impossible not to use the interface with
Centaur. '

This interface has three goals:

o Coercion of Centaur objects into Prolog ones, and back.

¢ Calling Lelisp functions and the messages management system from within a Typol
program.

e Keeping trace of a Typol program execution in the Centaur data structure.

It is made of a collection of predefined Prolog predicates, which will probably found in
actions, or in provided clauses.
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5.3.1 Moving objects around
GETVAR
Syntaz: GETVAR(var,p)

- Function: Give a pointer to Centaur tree stored in Le lisp variable. If “var”
is “k”, give a pointer to the current expression in the current view.

Arguments: “var” must be instanciated to a string that is the name of the
variable. “p” must be a variable that will be instanciated to an integer,
which is a pointer to the tree stored in the variable “var”.

GETTREE
Syntaz: GETTREE(lang,p,term)
Function: Coerce a Centaur tree into a Typol object.

Arguments: “lang” must be instanciated to a string that is the name of a
formalism. “p” must be instanciated to an integer that is a pointer to a
tree. “term” must be a variable that will be instanciated to a Typol object.

Ezample: GETVAR("k”,a) & GETTREE("typol”,a,t) gives in t a Typol

representation of the abstract syntax tree that is the current expression of
the current view.

SENDTREE
Syntaz: SENDTREE(lang,term,p)
Function: Coerce a Typol object into a Centaur tree.

Arguments: “lang” must be instanciated to a string that is the name of a
formalism. “term” must be instanciated to a Typol term of type “lang”.
“p” must be a variable that will be instanciated to an integer, which is a
pointer to the tree corresponding to “term”.

Note: term must not contains non-instanciated variables.

SENDVAR
Syntaz: SENDVAR(lang,var,p)

Function: Affect a Centaur tree to a Le lisp variable.

Arguments: “lang” must be instanciated to a string that is the name of a
formalism. “var” must be instanciated to a string that is the name of a

variable. “p” must be instanciated to an integer that is a pointer to a tree.
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Ezample: SENDTREE("typol” t,a) & SENDVAR("typol”,”k” a) affects the
abstract syntax tree corresponding to the Typol object t to the current ex-
pression of the current view.

TREE_SEND

EXISTF

- Syntaz: TREE_SEND(lang,p,ext)

Function: Coerce a Typol object into a Centaur tree, and send it in a view.

Arguments: “lang” must be instanciated to a string that is the name of a
formalism. “p” must be instanciated to an integer that is a pointer to a
tree. “ext” is a string that is used as an extension. The name of the view in
which the Centaur tree is send is built using the name of the current view
and this extension. ‘

Syntaz: EXISTF(f,1,p)

Function: Find the file “/” and return the complete path “p”. If “l” is
the integer 0, the search is done in all “semantics” directories. If “1” is a
formalism name, the search is done only the root directory of this formalism.

Arguments: “f” must be instanciated to a string. “p” must be a variable
that will be instanciated to a string. “1” may be either the integer 0, or a
string that is the name of a formalism in the system.

5.3.2 Calling the message facilities

PRMESS

Syntaz: PRMESS(f],n,args)
Function: Print a message.

Arguments: “f” must be instanciated to a string that is the name of the
file of messages to be used (without extension .mess). If “l” is a string
that is the name of a formalism, the file is search in the root directory of
this formalism. If “l” is “resources”, the file is searched in the resources
directory. “n” must be instanciated to an integer, which is the number of the
message to be printed. “argi” are optional parameters to the message. Only
integers and strings may be used as parameters. At most three parameters
may be given.
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5.3.3 Calling Le_lisp

GETSYM
Syntaz: GETSYM(argl,arg2)
Function: Get the symbolic address of a Lelisp function.

'Arguments: “argl” must be instanciated to a string that is the name of a
Le.lisp function. “arg2” must be a variable that will be instanciated to an
integer, which is a Le lisp pointer.

PUSHARG
Syntaz: PUSHARG(type,val) -
Function: Push one argument on top of the Le lisp execution stack.

Arguments: “type” must be instanciated to a string that is the name of
a type allowed by the C to Lelisp interface (i.e. fix, float, string, vector,
pointer). “val” must be instanciated to a value of type “type”.

Note: Arguments must be pushed one at a time.
 LISPCALL

Syntaz: LISPCALL(type,nargs,ll.name,res)

Function: Call a Lelisp function. |

Arguments: “type” must be instanciated to a string that is the name of
the type od the resulting value. “val” must be a instanciated to an integer
that is the number of arguments of the Lelisp function. “ll.name” must
be instanciated to the symbolic address of the Le lisp function. “res” must
be a variable that is unified with the result of the call.

5.3.4 Pointing back to the Centaur data structure

While the Prolog structure manipulated by Typol is, in some sense, a copy of the
Centaur structure, it is not possible to know directly to which node in the original structure
correspond a node in the Prolog one. But if we have a path from the root to a certain point
in the Prolog structure, we can retrieve, following this path, the corresponding point in the
original structure.

The Typol compiler generates Prolog code in such a way that a path from the root of
the structure to the subject of the “current” inference rule is maintained when it is possible.
This path is accessible through the Typol variable “subject”, which must be not used for
other purposes. The following collection of predefined predicates permits to manipulate the
information contained in the variable “subject”.
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REDISPLAY

TRACK

KEEP

LAST.K

Syntaz: REDISPLAY(path,lang,proc)

Function: Move the current expression that becomes the subject of the
current rule, and execute a named procedure.

Arguments: “path” must be instanciated with a path (very often, it will be
the Typol variable subject), “lang” must be instanciated to a string that is
the name of the formalism of the subject, proc must be instanciated to a
string that is the name of a Le.lisp function.

Syntaz: TRACK(path,lang), TRACKV(path,lang,var), TRACK(path,lang,p),

TRACK()

Function: Move the current expression that becomes the subject of the
current rule, or update the given variable, or give an integer that is a pointer
to the corresponding structure, without updating the current expression.
Without parameters, update the current expression using the last path
saved by KEEP (see below).

Arguments: “path” must be instanciated with a path, and “lang” must be
instanciated to a string that is the name of a formalism.

Syntaz: KEEP(path,lang)

Function: Save path and lang in a global variable.

| Syntaz: LAST _K(path,lang)

Function: Give the last pair path-lang saved.

Some comments are necessary to use these predefined predicates:

e If you want to call the redisplay procedure after each semantic rule, use REDISPLAY.

e Sometimes you would like to memorize a particular point, and then redisplay it later
on. In this case, use KEEP to memorize the path, then TRACK & LISPCALL to

update the current expression and call the redisplay procedure.

o The redisplay procedure costs in time. The same remark may be applied to TRACK.
So, if you don’t need a redisplay every time, don’t use TRACK to often, but use

KEEP instead.
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o It is possible to redefine the procedure that is called, to suppress the redisplay. This
will not, of course, suppress the updating of the current expression, which continue
slowing down the Prolog execution.

The functionalities described in this section may change or disappear in the future. See
section 7.4 page 37.

5.4 Executing a Typol program from within Centaur

To execute a Typol program one have to construct a Prolog goal, and then ask Pro-
log to solve this goal. To do that, the correspondance between a Prolog predicate and it
correspondant into the Typol program must be known. This correspondance may be com-
plicated in general, but is simple in the case of a Typol rule with an anonymous predicate
as conclusion. The following table shows this correspondance:

TYPOL PROLOG
program FOO is

- - - OV e > G - - - - -

(a,b); foo(.a,.b) :~ ...

set BAR is

(a,b); foo$bar(.a, b) :- ...
end FOO;

Goals are sent to Prolog using the {prolog}:send Lisp function:

| ({prolog}:send "£00(12, ’bozo’).") |

It is easy to pass simple objects as parameters, as shown in the above example. To pass
more complicated objects, or to get back a result into Le_Lisp world, one must use a special
interface rule, as shown in the following example:

env(] I-p->¢q

provided GETVAR(k,subject), GETTREE("foo" ,subject,p);
do TREE_SEND("bar",q,".res");

In that example, the current expression of the current view is used as argument p. The
name of its formalism is foo. The result q of the computation (may be a translation), is a
tree in language bar, and is sent in an other window.

A more sophisticated protocol will be developed in the future.
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6 The Typol environment

6.1 The Centaur-Typol environment

As it is usual in Centaur, the file Typol.env define some specific menus to be used by
the Typol user. The root menu for Typol is the following:

File =
Display =>
Edition =
Navigation =
Typol Navi. =
Typol =

The first four submenus are the standard ones. The menu called “Typol Navi.” provides
some quick procedures to navigate in a Typol program.

File =
Display =
Edition =
Navigation =
Typol Navi. | FindRule
Typol Search
' UpRule
FindSet
UpSet

FindRule: Prompt the user for the subject of a rule, and find a rule with that subject.

Search: Prompt the user for a Typol expression, and find a rule using it. This Typol
expression may be a rule name.

UpRule: Go up to the enclosing Typol rule.
FindSet: Prompt the user for a Typol set name, and find this set.
UpSet: Go up to the enclosing set of rules.

The last menu allows to call the Typol type-checker and the compiler:

File =>
Display =
Edition =
Navigation =
Typol Navi. =
Typol Type-Check

Compile -
Compile (Db)
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Type-Check: Type-Check a Typol program.
Compile: Compile a Typol program into Prolog, in the “normal” mode.

Compile (Db): Compile a Typol program into prolog in debug mode (see section 7.2 page
35). |

6.2 The Centaur-Metal environment .

Every Typol program must be type-checked, before it is compiled into Prolog. The
smallest Typol declaration (i.e. the use declaration) produces the biggest effect: it imports
all syntactic type information concerning a particular formalism. A

When the Typol type-checker evaluates a use declaration, it must find somewhere the
specification of the formalism that is used. This information is found in a file named
x.t.pl, where x is the name of the formalism. This file is built by executing a Typol -
program, which is a translator from Metal to Prolog, on the Metal specification of the
formalism. The following picture shows how to generate this file. The selected item is
displayed in boldface.

File =
Display =
Edition =
Navigation =
Metal Compile

Prolog Tables

6.3 The MU-Prolog environment

Two facilities offered by MU-Prolog are used in the Typol environment. First, an
error handler has been written to l_oa,d automatically undefined predicates, when possible.
Second, the logic preprocessor (Ipp) may be used when coroutines are needed. '

6.3.1 Naming conventions and autoloading

In MU-Prolog, an attempt to use an undefined predicate is considered as an error. An
error handler has been written to catch that error; when an undefined predicate is call,
it tries to find a definition of that predicate in a canonical way: if the predicate foo or
foofbar. .. is called it tries to load the file foo.pl, and if this file does not exists it tries
with foo.pg.

The Typol compiler follows of course this naming convention. If you define a set FOO in
the typol program BAR, the corresponding Prolog predicate is named foo$bar. ... If you
need to write your own Prolog predicates directly in Prolog, it should be tedious to create
a file for each predicate. You can use the same naming convention as the Typol compiler.
In this case it is necessary to say from which file a particular Prolog predicate is imported,
using the from clause. If the file foo.pg contains the prolog predicate foo$open(Name),
use the following declaration:
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{ import OPEN from FOO); |

If you want to load or to reload some files directly in Prolog, use load(Name) and
reload(Name) instead of the standard predicates consult and reconsult (tt [...] [-...]).

6.3.2 The Logic Preprocessor

The MU-Pmlog logic preprocessor (Ipp) may be used to generate automatically wait
declarations[11]. We suggest that Prolog files generated by this pre-processor should be
named *.pl. So these files will be chosen for auto-loading.

If you use Ipp, the semantics of your Typol rules will no longer depend on the order of
the premises, in the numerator of the rules. :

It is possible that lpp takes some wrong decisions with non-defined predicates that are
not tests (this will only slow down the speed of execution). It may be preferable not to run
Ipp on separated files. It is better to concatenate first all the files vou need, and to run !pp
on the result, as in the following example:

cat typol_tc.pg typol.env.pg typol.test.pg typol.aux.pg > foo
1lpp <foo >typol_tc.pl

It is possible that in the future, the functionality of Ipp will be included in the Typol
compiler.
6.3.3 The Prolog menu

The standard menu bar may be modified to allow easier access to Prolog. This may be
done by adding the two following lines in the startup file of Centaur (file “.centaur” in your
home directory):

({menubar}:add-menu #:interface:the-menu-bar #:interface:prolog-menu 1)
(send ’redisplay #:interface:the-menu-bar ())

The Centaur menu bar is modified as follows:

| System [ Prolog [ Views |
Call
Restore

Call: Enter a Prolog session. The input is taken in the shell window. To go back to
Centaur, type ctrl-D.

Restore: Restore the initial Prolog state as it was at the beginning of the Centaur session.
This is useful to clean up all the Prolog data base, when too much Prolog clauses
have been loaded or when some Typol programs have been recompiled. Information
to check the consistency of the system is preserved.
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7 The Typol debugger
7.1 Why a Typol debugger?

For a long time, debugging Typol programs was performed using the trace facilities of
Prolog. Three main difficulties, mostly due to the fact that the user was obliged to debug
something different from what he had written, were encountered with this strategy:

e The connection between the Typol rules and the generated Prolog clauses is not
obvious. The names of the clauses are synthesized using the name of the Typol
program, the name of the enclosing set, and some type information. The number of
parameters in a Prolog predicate is greater than in the corresponding Typol sequent
because access chains to different objects are generated by the compiler. The order of
the parameters in a sequent may be not the same in the generated Prolog predicate.
In the future, these problems can only get worse as there will no longer be a one-one
mapping between Typol rules and generated Prolog clauses.

e Centaur trees are coerced into Prolog terms, and these are very difficult to read: lists
are represented as binary terms; the abstract syntax operators are encoded; the terms
are very large.

e In MU-Prolog, it is very difficult to control the execution process. Tracing is much
too verbose. Clauses that do not match the current goal are tried, if no index table
exists. When a goal succeeds, the bindings after the success are not shown.

This is why a real Typol debugger was necessary. By real we mean that the debugger
must speak the same language as the user (that is Typol rules, and concrete syntax of
formalisms), and that some control on the execution process is possible (skipping some
details, going backwards, selecting one rule, etc...). The debugger presented here is a first
step toward a ideal Typol debugger.

7.2 Compiling Typol programs in debug mode

As it is usually done, to be debugged, a Typol program must be compiled in a special
mode, called the debug mode. The following picture shows how to select this mode in
Centaur. The selected item is displayed in boldface.

File =
Display =
Edition =>
Navigation =
Typol Type-Check

Compile
Compile (Db)

In this mode two predicates, called $pre.action and $post-action are generated
respectively before and after the code produced by the compiler in the normal mode.
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These predicates get as parameters the path to the corresponding Typol rule in the
source code and the path to the subject of this rule. In the future, an environment con-
taining every variables of the Typol rule will also be passed to these predicates. A last
parameter consists in a new variable (i.e. a variable that does not already appear in the
generated code for the rule), which is the same for the two predicates. This variable is a
link that binds the $pre_action and the $post_action together for each rule, and is used
by the “Skip” command of the debugger (see below).

The execution of a Typol program compiled in the debug mode is a bit slower than the
execution of the same program compiled in normal mode. It also takes some extra memory
space. Of course, it is possible to use some modules that are compiled in debug mode and
some other that are not compiled in this mode. The behaviour is as expected.

7.3 The role of $pre and $post actions

The $pre and $post actions have two purposes. The first one is to send a signal to
Lisp, telling that something happens (the value of this signal indicates what happens).
The second is to make the environment (i.e. the path to the current rule, the path to the
subject, and all other variables in the future) accessible to Lisp.

The signal emitted by the $pre and $post actions may have four dlﬂ'erent values that
correspond to the traditional ports of a Prolog debugger:

TRY: This means that a rule is chosen (because the conclusion matches the current sequent
to be proved). This signal is emitted by the $pre actions only, when entering a rule.

PROVED: This mean that the conclusion of a rule is proved (i.e. all the premises have
been proved). It is emitted by the $post actions only, when exiting normally a rule.

BACK: This mean that we are backtracking, and an other proof for a sequent must be
founded. This signal is emitted by the $post action when re-entering a rule during
backtracking.

FAIL: This mean that a rule is finally not applicable (i.e. no satisfactory proof may be
built). It is emitted by the $pre actions when exiting a rule while backtracking.

When the signal is emitted, the $pre and $post actions wait until an answer coming
from Lisp tells how to proceed. Five different answers are currently implemented:

Continue: Let the execution proceed normally. That is the action will succeed if the
value of the signal was TRY or PROVED, and it will fail if the value was BACK
or FAIL. When the answers are always Continue, $pre and $post actions do not
affect the execution at all.

Abort: Abort the current execution.

Fail: Force backtracking. The action will fail. This is possible only when the value of
the signal was TRY or PROVED. This may be used to choose an other rule if any
(when used at a TRY point), to find an other proof for a particular rule (when used
at a PROVED point) , or to go backwards in the execution (To go backwards in
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the execution (i.e. to undo), the answer must be always Fail when it is possible,
otherwise Continue). Note that it is possible, using Fail to force a failure, but it is
not possible to force a success as in the C-Prolog trace mode. -

Retry: Force to go forwards again. This is possible only when the value of the ‘signa,l
was FAIL or BACK. It is be used to go forwards again after undoing, or to replay
something that has been already done. :

Skip: May be used only when the signal was TRY. Go ahead directly to the corresponding
PROVED or FAIL. No signal is emitted until the right point is reached. If after
a Skip that drives you to a FAIL you want to see the details, use Retry, then
Continue normally. As we explained before, the $pre and $post actions get as one of
‘their parameters a special variable that is the same for the two actions. Normally this
variable is free. When the answer is Skip, this variable is bound (in the $pre_action),
and therefor also in the $post.action. Until the corresponding $post.action is
reached, no signals are emitted. We know that the right point is reached when the
skip variable of an action is bound.

The answers must be elaborated in the Lisp world, as it is explained in the following
section.

7.4 The semantics managers

A special program, called the semantics manager, must decide what answer must be
returned when a signal is emitted by a $pre or post action. This (Lisp) program may
access everything in the environment saved by the action, before taking its decision. So
the final decision may depend on many information: the rule involved, the subject of the
rule (and in the future everything in the environment of the rule). It may look a some
annotations hooked somewhere in the semantics or on the subject. It may prompt the user,
etc...

Three different managers have already been written in Lisp. As these managers are in
fact automata, it may later be possible to describe their behaviour in Esterel[1,2], and then
produce the Lisp code by compiling these specifications.

In the current implementation, the name of the manager is kept as an annotation of the
Centaur views, so different views of a Centaur session may use different managers. And it
is possible to switch from a manager to an other one at any time.

The following figure shows how to choose the Typol debugger as manager in the Asple
environment. Again, the selected item is displayed in boldface. -

File =
Display =
Edition =>
Navigation =
Control None
Asple Debug

Breakpoint
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7.4.1 The simplest manager: None

The manager called “None” is the default manager of a view. It is very difficult to
imagine a simpler manager: it does nothing (it doesn’t look at any information), but
always answers Continue. The behaviour of a Typol program compiled in debug mode
and run using this manager is the same as that of the same program compiled without the
debug option. It will only be a bit slower and use more space in the Prolog stack.

7.4.2 The Typol debugger

This manager may be used to debug Typol programs. It systematically shows the
current Typol rule, and the subject (when it is possible), and prompts the user with a
menu, depending on the value of the signal received. The entries of these menus are exactly
the answers described in section 7.3 as we can see in the following figure. -

TR.'Y PROVED || BACK FAIL
Continue - - -
Abort Continue Continue |} Continue
Ski Abort Abort Abort
P Fail Retry Retry
Fail Hel Hel Hel
Help €p ep ep

In the future, it will be possible to get the value of any Typol expression in the current
rule.
7.4.3 The Asple debugger

This is the most sophisticated manager written so far, and it gives a good idea of what
is possible. Two menus are used by this manager to interact with the user.

Redisplay [X

Semantics (Un)Set  Done
Breakpt <| <[>[»
Done

. The first menu allows to customize the debugger: the user may ask to see the subject
(Redisplay) and /or the current semantic rule. He may ask to take breakpoints into account
or not. )

The second menu permits to drive the computation, and to set (or unset) breakpoints
somewhere in the Asple program, or on a particular Typol rule. Breakpoints are imple-
mented as annotations of Centaur trees. If the toggle “Breakpt” is on in the first menu,
the computation stops whenever a breakpoint is encountered, otherwise breakpoints are
ignored. The buttons marked “>” and “<” are for stepping forwards, or backwards. Those
marked “>” and “<” are for running forwards or backwards until a breakpoint is encoun-
tered (if the “breakpt” toggle is on, of course).

When the user clicks on one of these four buttons, the adequate sequence of answers to
Prolog signals are generated. For example, for going backwards, the generated answers will
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be Fail when it is possible, Continue otherwise. The environment is accessed only when
it is necessary. In particular, if the toggles “Breakpt”, “Redisplay” and “Semantics” are
off, no access to the environment is done.

7.5 How to call the Typol debugger
The following steps must be followed:
e Compile the Typol program in debug mode (see section 7.2 page 35).
e Select the view where the Typol program must be executed.
e Set the manager of the Centaur view to be the Typol debugger. The following lisp

command must be executed:

(let ((control-block (send ’control-block (current-view))))
({control-block}:manager control-block ’debugger)

)

o Execute the Typol program as usual.
The following piece of code disables the Typol debugger:

(let ((control-block (send ’'control-block (current-view))))
({control-block}:manager control-block ())

)

This may be done in a menu driven mode. The file ASPLE.env contains an example
of a control menu that allows to select a manager.
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A The complete syntax of Typol

This appendix gives the complete syntax of Typol. In the implemented version, the
abstract syntax of Typol differs from the following. Some more operators exist, that
must not be used. There are either obsolete (but allow compatibility with polish files
coming from Mentor), or reserved for future development. Two phyla are extended:
PREMISE, with the operator rule, and PROPOSITION with type_s). These features are
here for technical reason and must not be used.

A.1 TYPOL.metal .

definition of TYPOL is
chapter AXIOM
rules .
<AXIOM> ::= <TYPOL_PROGRAM> ;
<TYPOL_PROGRAM>
end chapter ;
chapter PROGRAM
rules
<TYPOL_PROGRAM> ::=
#program <UCID> #is <GLOBAL_S> <BODY> #end <UCID_OPTION> #;

program (<UCID>, <GLOBAL_S>, <BODY>)
abstract syntax
program -> UCID GLOBAL_S BODY ;
PROGRAM ::= program ;

end chapter ;

chapter GLOBALS

rules
<GLOBAL_S> ::= ;
global_s-list (())
<GLOBAL_S> ::= <GLOBAL_S> <GLOBAL> ;
global_s-post (<GLOBAL_S>, <GLOBAL>)
<GLOBAL> ::= <USE> ;
<USE>
<GLOBAL> ::= <IMPORT> ;
<IMPORT>
<GLOBAL> ::= <DEFINE> ;
<DEFINE>

abstract syntax
global_s -> GLOBAL * ... ;
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GLOBAL_S ::= global_s ;
GLOBAL ::= use import define ;
end chapter ;

chapter USE
rules
CUSE> ::= #use <UCID> <RENAMING_PART> #; ;
use (<UCID>, <RENAMING_PART>)
<RENAMING_PART> ::= ;
renaming_s-1list (())

<RENAMING_PART> ::= #renaming <RENAMING_S> ;
<RENAMING_S>
<RENAMING_S> ::= <RENAMING> ;

renaming_s-1ist ((<RENAMING>))
<RENAMING_S> ::= <RENAMING_S> #, <RENAMING> ;
renaming_s-post (<RENAMING_S>, <RENAMING>)

<RENAMING> ::= <LCID> #as <LCID> ;
operator_renaming (<LCID>.1, <LCID>.2)
<RENAMING> ::= <UCID> #as <UCID> ;

phylum_renaming (<UCID>.1, <UCID>.2)

abstract syntax

use -> UCID RENAMING_S ;

renaming_s -> RENAMING * ... ;

operator_renaming -> LCID LCID ;

phylum_renaming -> UCID UCID ;

RENAMING_S ::= renaming_s ;

RENAMING ::= operator_renaming phylum_renaming ;
end chapter ;

chapter IMPORT

rules ‘
<IMPORT> ::= #import <IMPORT_ITEM_S> #from <UCID> #; ;
import (<IMPORT_ITEM_S>, <UCID>)
<IMPORT> ::= #import <IMPORT_ITEM_S> #; ;

import (<IMPORT_ITEM_S>, void ())
<IMPORT_ITEM_S> ::= <IMPORT_ITEM> ;
import_item_s-list ((<IMPORT_ITEM>))

<IMPORT_ITEM_S> ::= <IMPORT_ITEM_S> #, <IMPORT_ITEM> ;
import_item_s-post (<IMPORT_ITEM_S>, <IMPORT_ITEM>)
<IMPORT_ITEM> ::= <UCID> ;
<UCID>
<IMPORT_ITEM> ::= <UCID> #as <UCID> ;

set_renaming (<UCID>.1, <UCID>.2)
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abstract syntax
import ~-> IMPORT_ITEM_S FROM ;
import_item_s -> IMPORT_ITEM + ... ;°
set_renaming -> UCID UCID ;

IMPORT_ITEM_S ::= import_item_s ;
IMPORT_ITEM ::= set_renaming ucid ;
FROM ::= ucid void ;

end chapter ;

chapter DEFINE

rules

<DEFINE> ::= #define <LCID_S> #: <OP_TYPE> #; ;
define (<LCID_S>, <OP_TYPE>)

<OP_TYPE> ::= #( <SONS_TYPE> #) #-> <LCID> ;
op_type (<SONS_TYPE>, <LCID>)

<SONS_TYPE> ::= #x* ;
star ()

<SONS_TYPE> ::= <LIST_OF> ;
<LIST_OF>

<SONS_TYPE> ::= <TYPE_S> ;
<TYPE_S>

KLIST_QF> ::= #x* #x ;
list_of (star ())

<LIST_OF> ::= <TYPE> #* ;
list_of (KTYPE>)

<TYPE_S> ::= ;
type_s-list (())

<TYPE_S> ::= <TYPE> ;
type_s-1list ((<TYPE>))

KTYPE_S> ::= <TYPE_S> #, <TYPE> ;

type_s-post (<TYPE_S>, <TYPE>)

abstract syntax
define -> LCID_S OP_TYPE ;
op_type =-> SONS_TYPE LCID ;
type.s =-> TYPE * ... ; .
star -> implemented as SINGLETON ;
list_of => LIST_TYPE ;

OP_TYPE ::= op._type ;
SONS_TYPE ::= star type.s list_of ;
LIST_TYPE ::= star TYPE ;

end chapter ;

chapter BODY
rules
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<BODY> ::= <LOCAL_S> <RULE_S> <AUXILIABY_FUNCTION_S> H
body (<LOCAL_S>, <RULE_S>, <AUXILIARY-FUNCTION,S>)

abstract syntax
body =-> LOCAL_S RULE_S AUX_FUNCTION.S ;
BODY ::= body ;
end chapter ;

chapter LOCALS
rules _

<LOCAL_S> ::= ;
local_s-list (())

<LOCAL_S> ::= <LOCAL_S> <LOCAL> ;
local_s-post (<LOCAL_S>, <LOCAL>)

<LOCAL> ::= <VAR_DECL> ;
<VAR_DECL>

<VAR_DECL> ::= #var <LCID_S> #: <TYPE> #; ;
var_decl (<LCID_S>, <TYPE>)

<TYPE> ::= <PHYLUM_ID> ;
<PHYLUM_ID>

<TYPE> ::= <IDENT> ;
<IDENT>

abstract syntax
local.s =-> LOCAL * ... ;
var_decl -> LCID_S TYPE ;

LOCAL_S ::= local_s ;
LOCAL ::= var_decl ;
TYPE ::= phylum_id IDENT ; .

end chapter ;

chapter RRULES

rules
<RULE_S> ::= ;
CRULE_S> ::= <RULE_S> <RULE> ;

rule_s-post (<RULE_S>, <RULE>)

CRULE> ::= #{ <RULE.S> #} ;
brace (<RULE_S>)

<RULE> ::= <EXPRESSION> #: <INFERENCE_RULE> #; <INFO0S> ;
rule (<EXPRESSION>, <INFERENCE_RULE>, <INFO0S>)

<RULE> ::= <INFERENCE_RULE> #; <INF0OS> ;
rule (void (), <INFERENCE_RULE>, <INFOS>)

CRULE> ::= #set <UCID> #is <BODY> #end <UCID_OPTION> #; ;
set (<UCID>, <BODY>)

|
rule_s-list (Q)) L
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<INFERENCE_RULE> ::= <PREMISE_S> <LINE> <CONCLUSION> ;
inf_rule (<PREMISE_S>, <CONCLUSION>)
<INFERENCE_RULE> ::= <CONCLUSION> ;
inf_rule (premise_s-list (()), <CONCLUSION>)
<LINE> ::= YLINE ;
lcid-atom (%LINE)

abstract syntax
rule.s -> RULE * ... ;
brace =-> RULE_S ;
set -> UCID BODY ;
rule -> RULE_NAME INF_RULE INFOS ;
inf_rule -> PREMISE_S CONCLUSION ;

RULE_S ::= rule_s ;

RULE ::= rule set brace ;
INF_RULE ::= inf_rule ;
RULE_NAME ::= EXP void ;

end chapter ;

chapter INFOS
rules

<INFOS> ::= <WHERE> <PROVIDED> <DO> ;
infos (<WHERE>, <PROVIDED>, <D0>)

<PROVIDED> ::= ;
provided (premise_s-list (()))

<PROVIDED> ::= #provided <PREMISE_S> #; ;
provided (<PREMISE_S>)

<D0> ::= ;
do (premise_s-list (()))

<D0> ::= #do <PREMISE_S> #; ;
do (<PREMISE_S>)

abstract syntax
infos -> WHERE PROVIDED DO ;
provided -> PREMISE_S ;
do =-> PREMISE_S ;

INFOS ::= infos ;
PROVIDED ::= provided ;
DO ::= do ;

end chapter ;

chapter PREMISES
rules
<PREMISE_S> ::= ;
premise_s-1list (())
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<PREMISE_S> ::= <PREMISE> ;
premise_s-1ist ((<PREMISE>))
<PREMISE_S> ::= <PREMISE_S> #& <PREMISE> ;
premise_s-post (<PREMISE_S>, <PREMISE>)
<PREMISE> ::= <SEQUENT> ;
<SEQUENT>
<PREMISE> ::= <SET_NAME> #( <SEQUENT_OR_CONSEQUENT> #) ;
named (<SET_NAME>, <SEQUENT.OR_CONSEQUENT>)
<PREMISE> ::= #( <CONSEQUENT> #) ;
<CONSEQUENT>
<CONCLUSION> ::= <SEQUENT> ;
<SEQUENT>
<CONCLUSION> ::= #( <CONSEQUENT> #) ;
<CONSEQUENT>
<SEQUENT _OR_CONSEQUENT> ::
<SEQUENT>
<SEQUENT_OR_CONSEQUENT> ::
<CONSEQUENT>

<SEQUENT> ;

<CONSEQUENT> ;

abstract syntax :
premise_s =-> PREMISE * ... ;
named => SET_NAME SEQUENT_OR_CONSEQUENT ;

PREMISE_S ::= premise_s ;

CONCLUSION ::= SEQUENT_OR_CONSEQUENT ;

PREMISE ::= PROPOSITION sequent named ;
SEQUENT_OR_CONSEQUENT ::= sequent PROPOSITION ;

end chapter ;

chapter SEQUENTS
rules

<SEQUENT> ::= <HYPOTHESES> #]- <CONSEQUENT> ;
sequent (<HYPOTHESES>, <CONSEQUENT>)

<HYPOTHESES> ::= <EXPRESSION_S> ;
<EXPRESSION_S>

<CONSEQUENT> ::= <PROPOSITION> ;
<PROPOSITION> )

<CONSEQUENT> ::= <RELATION> ;
<RELATION> .

<CONSEQUENT> ::= <EXPRESSION_S> ;
<EXPRESSION_S>

<PROPOSITION> ::= <PREDICATE> #( <EXPRESSION_S> #) ;
proposition (<PREDICATE>, <EXPRESSION_S>)

<RELATION> ::= <EXPRESSION_S> <REL_OP> <EXPRESSION_S> ;
relation (<EXPRESSION_S>.1, <REL_OP>, <EXPRESSION_S>.2)

<PREDICATE> ::= <UCID> ;
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<UCID>

abstract syntax
sequent -> HYPOTHESES CONSEQUENT ;
proposition -> PREDICATE EXP_S ;
relation -> EXP_S REL_OP EXP_S ;

HYPOTHESES ::= EXP_S ;

SEQUENT ::= sequent ;

CONSEQUENT ::= PROPOSITION ;

PROPOSITION ::= proposition exp._s relation ;
PREDICATE ::= ucid ;

end chapter ;

chapter REL_OP

rules
<REL_0OP> ::= <SIMPLE_REL_OP> ;
<SIMPLE_REL_OP>
<REL_OP> ::= <LABELLED_REL_OP> ;

<LABELLED_REL_OP>

<LABELLED_REL_OP> ::=
#{ <EXPRESSION_S> <SIMPLE_REL_OP> <EXPRESSION_S> #} ;
lab_rel_op (<EXPRESSION_S>.1, <SIMPLE_REL_OP>, <EXPRESSION_S>.2;

abstract syntax .
lab_rel_op -> EXP_S SIMPLE_REL_OP EXP_S ;
REL_OP ::= lab_rel_op rel_op ;
SIMPLE_REL_OP ::= rel_op ;

end chapter ;

chapter EXPRESSIONS
rules
<EXPRESSION_S> ::= ;
exp._s-list (())

<EXPRESSION_S> ::= <EXPRESSION> ;
exp_s-list ((<EXPRESSION>))
<EXPRESSION_S> ::= <EXPRESSION_S> #, <EXPRESSION> ;
exp_s-post (<EXPRESSION_S>, <EXPRESSION>)
<EXPRESSION> ::= <VALUE> ;
<VALUE>
<EXPRESSION> ::= <SCHEME> ;
<SCHEME>
<VARIABLE> ::= #_ ;
anonymous ()
<VALUE> ::= <NUMBER> ;
"<NUMBER>
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CVALUE> ::= <STRING> ;
. <STRING>
CVALUE> ::= <VARIABLE> ;
" <VARIABLE>
<VARIABLE> ::= <TYPE> ;
<TYPE>

abstract syntax
exp_.s =-> EXP » ... ;
anonymous =-> implemented as SINGLETON ;

STRING ::= string ;

EXP_S ::= exp._s ;

EXP ::= VALUE SCHEME ;

VARIABLE ::= TYPE anonymous ;
VALUE ::= VARIABLE integer string ;

end chapter ;

chapter SCHEMES
rules

<SCHEME> ::= <NODE_ID> #( <EXPRESSION_S> $) ;
node (<NODE_ID>, <EXPRESSION_S>)

<SCHEME> ::= <NODE_ID> <VALUE> ;
#atom (<KNODE_ID>, <VALUE>)

<SCHEME> ::= <NODE_ID> #[ <LIST_DESC> #] ;
#1ist (<KNODE_ID>, <LIST_DESC>)

<LIST_DESC> ::= <EXPRESSION_S> ; .
<EXPRESSION_S>

CLIST_DESC> ::= <EXPRESSION_S> #. <VARIABLE> ;
#pre (KEXPRESSION_S>, <VARIABLE>)

abstract syntax

node -> NODE_ID EXP_S ;
#atom =-> NODE_ID VALUE ;
#list =-> NODE_ID LIST_DESC ;
#pre ~-> EXP_S VARIABLE ;
SCHEME ::= node #atom #list ;
LIST_DESC ::= exp.s #pre ;

end chapter ;

chapter WHERE
rules
<WHERE> ::= ;
where-list (())

abstract syntax

47




where =-> LCID * ... ;
WHERE ::= where ;
end chapter ;

chapter AUXILIARY_FUNCTIONS
rules
<AUXILIARY_FUNCTION_S> ::= ;
function_s-1list (())

abstract syntax
function_s =-=> LCID * ... ;
AUX_FUNCTION_S ::= function_s ;
end chapter ;

chapter IDENTIFIERS

rules

<NUMBER> ::= YNUMBER ;
integer-atom ()NUMBER)

<STRING> ::= YSTRING ;
string-atom (%4STRING)

<IDENT> ::= <LCID> ;
<LCID>

<IDENT> ::= <UCID> ;
<UCID>

<LCID> ::= JLCID ;

lcid-atom (%LCID)
<UCID> ::= JUCID ;

ucid-atom (%UCID)
<UCID_OPTION> ::= ;

void ()
<UCID_OPTION> ::= <UCID> ;
<UCID>
<NODE_ID> ::= <LCID> ;
<LCID>
<NODE_ID> ::= <UCID> #:: <LCID> ;

node_id (<UCID>, <LCID>)
<PHYLUM_ID> ::= <UCID> #:: <UCID> ;

phylum_id (<UCID>.1, <UCID>.2)
<SET_NAME> ::= <UCID> ;

<UCID>
<SET_NAME> ::= <SET_NAME> #$ <UCID> ;
set_name (<SET_NAME>, <UCID>)
<LCID_S> ::= <LCID> ;
lcid_s-1list ((<LCID>))
<LCID_S> :.:= <LCID_S> #, <LCID> ;
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lcid_s-post (<LCID_S>, <LCID>)

<SIMPLE_REL_OP> ::= #: ;
rel_op-atom (’:°)
<SIMPLE_REL_OP> ::= #-> ;

rel_op-atom (’->?) .
<SIMPLE_REL_OP> ::= %RELOP ;
rel_op-atom (%RELOP)

abstract syntax
void -> implemented as SINGLETON ;
lcid ~-> implemented as IDENTIFIER ;
ucid -> implemented as IDENTIFIER ;
integer -> implemented as INTEGER ;
string -> implemented as STRING ;
node_id -> UCID LCID ;
phylum_id -> UCID UCID ;
set_name -> SET_NAME UCID ;
lcid_s -> LCID + ... ;
rel_op -> implemented as IDENTIFIER;

UcCip = ucid ;

LCID = 1cid ;

NODE_.ID ::= node_id lcid ucid ;
PHYLUM_ID ::= phylum_id ;
SET_NAME ::= ucid set_name ;
IDENT ::= lcid ucid ;

NUMBER = integer ;

LCID_S '::= lcid.s ;

end chapter ;

abstract syntax
meta -> implemented as IDENTIFIER ;
undef <-> implemented as IDENTIFIER ;
comment =-> implemented as STRING ;
comment_s -> COMMENT + ... ;
COMMENT_S ::= comment_s ;
COMMENT ::= comment ;

EVERY ::=
undef lab_rel_op lcid ucid integer meta comment #pre import
import_item_s set_renaming void list_of brace var.decl rule
inf_rule provided do node #atom set_name #list phylum_renaming
node_id where lcid_s use local_s rule_s premise_s exp.s '
function_s define comment_s infos sequent program body relation
rel_op set named global_s renaming_s operator.renaming string
op.type type.s anonymous phylum_id star proposition ;
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end definition

A.2 TYPOL.lex

Blepn|naynfusyijugn gzt XS LS EPEPU D PO RS LR IDS Y LY PUY |

Hg=3n|u(=n|na)n ey return(RELOP) ;

TR 2 [ return(LINE);

[A-Z] [A-Za-z0-9_]*’* {lowercases(®; return(UCID);} ;

(a-z#] [A-Za~-20-9_]*’* {lowercases(); return(LCID);} ;

VOO \RT * A\ )\ {shiftleft(); suplast(); return(STRING) ;}
[0-9] [0-9_]* return(NUMBER) ;

-=[*-*\n]*[~\n]l* {shiftleft();shiftleft();

fprintf (yaccout,"-1\n%d\n¥%s\n",yyleng,yytext);
\n fprintf (yaccout,"-2\n");

{fprintf(yaccout,"-3\n%s\n",yytext) ;};
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B Known problems or bugs

Here is a list of problems that may appear while using Typol in Centaur v0.5. Of
course this list is not complete.

— The operators no_tree, meta, comment and comment_s may not be used in a
Typol specification. There do not appear in the prolog table extracted from the
Metal specification.

— Type-checking a Typol program may be 'very slow when many define declara-
tions are used.

— Type inclusion is not yet implemented.

use TYPOL;
var x : TYPOL::UCID;
|- type-s[x];

The operator type-s is declared in the Metal specification of Typol as a list of
TYPOL: : TYPE. The variable x is declared with type TYPOL: :UCID that is included
in TYPOL: : TYPE. But the type-checker detects a type error.

The same problem may appear when an undeclared variable occurs more than
once in a Typol rule. In this case, it may be necessary to use different variables,
and to force them to be equal by using a predicate (EQ) that must be define to
be the Prolog predicate “=".

— Type restrictions are not (yet) checked dynamically.

— The phylum EVERY must be explicitly declared in the Metal specification of a
given formalism before the generation of the corresponding Prolog tables.

— The name of a file containing a Typol program must be the name of that program,
and the polish file must exists (with a name in uppercase) if you want to use the
Typol debugger.

— Don’t forget to reload the generated Prolog file when a Typol program is re-
compiled. This is not yet done automatically, and may be done by using the
“Restore” button in the Prolog menu (see section 6.3.3 page 34). -

— If the Typol debugger is used, the polish file and the Prolog generated code
must be coherent. So don’t forget to save the polish file when a Typol program
is recompiled. :

—~ The syntax of Typol allows to use phylum identifiers as variable names, but this
is not yet accepted by the type-checker.
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overloading 22
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problem 51
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prolog menu 34
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