N

N

EVER : a full-screen editor for nested relations
D. Plateau, P. Pauthe

» To cite this version:

D. Plateau, P. Pauthe. EVER : a full-screen editor for nested relations. RT-0088, INRIA. 1987, pp.14.
inria-00070078

HAL Id: inria-00070078
https://inria.hal.science/inria-00070078
Submitted on 19 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00070078
https://hal.archives-ouvertes.fr

Rapports "lechniques

j N° 88

DORYY

EVER : A FULL-SCREEN EDITOR
FOR NESTED RELATIONS

YRS ART]

T

T T

Didier PLATEAU
Patricia PAUTHE

BRI AR

—TTS

NOVEMBRE 1987

-

Ever : a Full-screen Editor for Nested Relations (*)

Ever : un éditeur plein écran de relations imbriquées

Didier Plateau ,
GIP Altair (IN2, INRIA, LRI), Rocquencourt, BP 105, 78153 Le Chesnay Cedex, France
Patricia Pauthe
Centre de Recherche CGE, Route de Nozay, 91460 Marcoussis, France

Abstract:

Ever is a full-screen multi-window editor for alphanumeric terminals, built on top of the database machine Verso
[Verso 86]. It allows the user to construct, maintain and query a nested relation database through a uniform and
intuitive presentation. Ever was designed to avoid an awkward syntax, to present data in a natural way, to give the
user the right to failures and to automate some tasks such as temporary relations management. This paper describes

the overall design and implementation of Ever, and draws general conclusions concerning database editors.

Résumé:

Ever est un éditeur plein écran pour terminaux alphanumérique et servant d'interface a la machine base de données
Verso [Verso 86]. Il permet a l'utilisateur de définir, de mettre 2 jour et d'interroger un ensemble de relations
imbriquées (non sous premi¢re forme normale) a travers une représentation visuelle uniforme. La conception d'Eves
€té dirigé par le souci de dégager I'utilisateur des contraintes d'une syntaxe rigide, de présenter les données sous une
forme naturelle, de fournir 2 I'utilisateur le droit & I'erreur et d'automatiser certaines tiches comme la gestion des

relations temporaires. Ce papier propose une description générale des principes et de I'implémentation d'Ever et tire

des conclusions des acquis de ce travail.

(*) This work was performed while the authors were with INRIA and LRI (University of Paris XI, Bat 490, 91405 Orsay Cedex
France), and partially supported by a grant from PRC-BD3

ND PAPIER RECUPERE ET RECYCLE

1. Introduction :

Ever is a full-screen multi-window editor for alphanumeric terminals, built on top of the database machine Verso
[Verso 86]. It allows the user to construct, maintain and query a nested relation database through a uniform and
intuitive presentation. Basically, Ever was intended to improve the existing Verso interface, a line-oriented interpreted
algebraic language. The improvement took several forms : a high level graphic language to avoid an awkward syntax,
a natural representation of data, an increased tolerence to human failures and at last, the automatic handling of some

boring tasks. More generally, the motivation is to provide the user with a friendly interface.

Database Management Systems (DBMS) are used by a wide and heterogenous population (DB manager,
programmers, naive users) whose needs are very different : interactive browsing through the schema and the data or
application programs, design, use, reorganisation of a database. Therefore, the work on database interfaces follows
two main directions :

° high level query languages for naive users, and
° integrated environments for applications development.

The motivation behind high level query languages is to give to non computer scientists the possibility to use the
database and to build some simple transactions. QBE [Zloof 77] was the first attempt to substitute a graphic language
to the traditionnal line-oriented language : with QBE, one can edit schemata, relations and queries through table
iemplates. Another important feature of QBE is that schemata, data, and queries are uniformly viewed as tables. These
two key considerations have suggested several other developments : Isis [Kanellakis et al 85] as a graphic interface for
the SDM model, Snap [Brice, Hull 85] for the IFO model, G-Whiz [Heiler, Rosenthal 85] for the functional model,
Guide [Wong, Kuo 82] for the entity-relationship model, and Ever for the Verso model. More marginal is the natural
language approach : at this day, the natural language techniques are not reliable enough to address a real life problen
See [Thomson et al 83] for an example of this approach.

The second direction is concemed with multimedia database applications : office automation, software
engineering, computer-aided design... These applications need some database services, network services, and a
sophisticated interaction environment : bitmap, mouse, multiwindowed screen, menus, graphic... The objects
involved are formatted text, graphics, images, programs, structured documents. The problem is to integrate existing
and well-known tools : text and graphic editors, electronic mail, spreadsheets, and a DBMS in a uniform
environment so that the application can connect these different modules without painfull transformations. Table
[Biggerstaff et al 84] (text formatting + table editing), Timber [Stonebraker, Kalash 82] (text, icones, images, and
relations) or OBE [Zloof 82] (text+electronic mail+QBE) illustrate this trend.

The two approaches are complementary because the "ideal" interface is probably a high level language built on top
of an integrated environment. This is the goal of what is generally called Fourth Generation Languages (4GL).
"Fourth Generation systems” would be a more appropriate terminology, provided that the software components
grouped under the 4GL label are (or attempt to be) full applications development environments. Among the 4GL
family, we shall mention :

* QMF (Query Management Facility) built on top of DB2 (an IBM product); QMF includes QBE,

* INGRES with CUPID (a graphic interface to QUEL), GEO-QUEL (graphic interface for geographic applications),
QBF (Query By Forms : a query language using form templates), VIFRED (a form editor), RBF (Reports By
Forms), GBF (Graph By Forms) and ABF (Applications By Forms),

* ORACLE with UFI (User Friendly Interface) and IAF (Intercative Aplications Facility : an application

generator).

If 4GL have clearly defined objectives, they lack a methodology, a general approach of the problem. However,
researchers from the Software Engineering field have designed a new generation of tools : interface generators
([Beaudouin-Lafon 85], [Karsenty 86], [Hullot 86], [Coutaz 86]). The idea is to identify the generic objects of an
interface and provide mechanisms to combine them in order to build more complex or more specialized objects. Basic
objects are clearly identified : windows, menus, keyboard and mouse drivers, scrollbars, icones. The mechanisms to
support the implementation of these objects are object oriented languages. This approach seems very promising, but
it has to be further evaluated : how much faster do we develop our applications, and what is the performance of the
resulting programs ?

Back to our contribution, Ever provides a high-level graphic language to interact with the Verso DBMS. The main
features of the Verso system are :

° an algebraic language to query and update a nested relation database and

* a finite state automaton-like device to perform on-the-fly filtering for both unary (selection, projection), binary

operations, and for updates.

Unformally, a nested relation is a relation where each attribute can be a (nested) relation itself. In the Verso model, we

add the following constraint : each relation has at least one "atomic” attribute (so that a tuple is a tree and not a
forest). A formal definition of the Verso model and its algebra can be found in [Abiteboul, Bidoit 84]. In terms of
display, a nested relation is a tree structure where each node contains one or several attributes (i.c. a string of arbitrary
length). To display the tree structure, we introduce the concept of a bucket : each subtree is surrounded with a bucket
(see figures 3, 4, and 5).

In section 2, we give a "paper" demo of an Ever session. Then we get inside the system, and describe the Ever
software architecture (section 3). Finally, we conclude by enumerating the good and "not so good" features of Ever,

and say a word of future extensions.

2. A tour of Ever :

The interfaces to the Verso system are
(i) aline-oriented algebraic language interpretor,
(ii) Ever (if you are smart, you will choose Ever !) and

(iii) batch application programs written in Pascal with embedded algebraic queries.

Line-oriented
language

Pascal
program

Disk

Figure 1 : the three interfaces to Verso;

Ever consists of three editors : a schema editor to create or modify the relation schema, a relation editor used to

browse or update a file, and a query editor which pilotes the whole system and manages a query buffer. Figures 2, 3,
4,and 5 show the different steps of an Ever session.

The task we want to perform is a transaction which requires selection, join and some browsing of the result. Our
application is a "Movies" database consisting of two relations : "Showing" with the movies currently showing, the

name of the theater, and the schedule, and "Starring" with the movie and the casting. We also assume that we want to
find a movie with Robert de Niro, showing after 8pm.

»?

)

”

.4

The buffer shown on Figure 2 contains a list of six queries submitted to Ever to construct this information, and

some of the system answers. The ">" character is the system prompt : each prompted line is a user query. Let us
briefly present the whole process and come back later on the most interesting steps.

° start-up :

a window and a transaction are created. Each Ever window is tied to one and only one transaction, but a transaction
can own several windows. A window is a rectangle : its banner specifies the window number, the transaction which
owns the window, and the execution mode of the window. An Ever screen contains a list of windows which can

partially or totally overlap one another. A "minibuffer” is used at the bottom of the screen for the system feedbacks :
messages, errors, confirmations, help...

‘query 1:

the "open_database Movies" command loads the index and the schema of the dadabase "Movies" in main memory.

° query 2 :

"consult Movies.*" asks the system to display the list of all the Movies relations with their schema (the "*" character
in "Movies.*" stands for "any”).

*query 3:

the natural join of "Showing” and "Starring" is computed. The full specification of the join will require the use of
the schema editor.

° query 4 :

the join result is scanned to select the movies with "De Niro" showing after 8pm. Again, the schema editor will be
used to express the selection predicates.

‘query 5:)

the selected tuples are displayed on screen, using the relation editor.

* query 6 :

the "end" command abort the transaction and ends the Ever session.

The query editor is activated after each "carriage return” : the query is parsed, and interpreted. Under the query mode,
Ever offers a full line edition service, the possibility to browse the whole query buffer, to copy a query.
Let us focus now on queries 3, 4, and 5.Query 3 computes the join of "showing” and “starring” and stores the result

in a temporary file "foo". According to the Verso algebra, the "foo" schema is a merge (or natural join) of the two
input schemata.

> open_database Movies

> consult Movies.*
Movies. showing : (movie (theater (time)*)*)*
Movies.starring : (movie (star)*)*

> foo := Movies.showing * Movies.starring

> result := select foo

> edit resuit

> end

W*1 T*1 Mode = Quer

Figure 2 : the query buffer;

In our example, the only choice left to the user is the range of the two subtrees "star” and "theater (time)*", and a
renaming of some attributes. The query editor gives the control to the schema editor so that the user defines the "foo"

schema (i.e. the join). Ever creates two additionnal windows which contain the input files schema (see Figure 3).

To create the "foo" schema, the user can copy some trees or subtrees schemata and paste them in the main window.
In case of user errors, the schema editor provides some tree management commands : move (character, attribute,

son, father, brother), insert and delete (character, attribute, tree), copy, yank (from any window).

Some commands like renaming an attribute, setting a quantifier on a subtree (for selection query edition) are also
available. All these commands are activated with alphanumeric keys (no menu). The editor "knows" the current
operation and forbid all commands that would be irrelevant to it : as an example, if we want to define a projection, all
commands excepted the move and delete commands are inhibited because the resulting schema of a projection is a
sub-schema of the input one. To exit the schema editor and return to the query editor, a "quit” or an "abort" key can
be used.

Query 4 is the selection on the "foo" file of the movies with Robert de Niro showing later than 8pm and assign the
result in the "result” relation. Again, the query editor calls the schema editor so that one can specify the selection
predicates (see Figure 4) and eventually a projection "on the the fly". Two windows are created. Each of them
contains the "foo" schema. The upper window is used to define the selection predicates, the lower one to specify the

projected attributes.

Py

¥

movie |theater |time ||star|

T*l Mode = Jom Fﬂe—foo

movie ltheater |time I | movie I star I

T#1 File = showin

Figure 3 : Editing the "foo" schema as a join of "playing” and "starring";

movie

theater I timezapml I I star=De Niro

..

w#l T*l Mode_Select Fﬂe-result

...

movie l theater Itime II | st

W#2 T#1 Mode = Project File

Figure 4 : Defining the selection predicate in Window 1 and the "result” schema as a projection of "foo";

As an example of syntax control, under the "project” mode, all editing commands excepted the "delete attribute”
and "delete tree" are inhibited by Ever. On Figure 4, the user has decided to keep all the input attributes. Horizontal

scroll is provided if the schema is wider than the window.

Finally, query S displays the "result” file. The "edit" command activates the file editor. In addition of the tree

commands of the schema editor, the file editor offers next/previous, tuple/screen moves.

The relation editor has an automatic scroll. Unlike the schema editor where the scroll is character-oriented, the
relation editor scroll is trec-oriented. The display algorithm has two parameters which can be changed dynamically.
The first parameter is the maximum number TMAX of tuples per bucket. Let us assume that TMAX is 2. If
"Mission" (see Figure 5) is playing in more than 2 theaters, only 2 theaters will be displayed on screen, but scrolling

within the "theater” bucket is supported by the system.

The second parameter is the maximum number CMAX of characters per attribute. On Figure 5, CMAX is set to 11.
Therefore, the "New-York, New-York" value is truncated to its 11 first characters but the full value can be obtained in

the "mini-buffer" (see the bottom rectangle on Figure 5).

When running the display algorithm, some subtrees can disappear from the screen.
If the user wants to see one of these unvisible subtrees, he can ask explicitly to see this subtree. He can also decrease
the CMAX value. In this case, the number of different columns or attributes that can be displayed increases. In both

cases, the display algorithm is rerun.

3. Getting inside the sytem :

Before talking about the Ever software architecture, let's say a word on the Ever-Verso interface. Once the user has
fully specified his query, Ever compiles this query to an algebraic statement which is sent to Verso through a Unix
pipe. Traditionaly, the interfaces between application programs and DBMS are "one tuple at a time" and sequential
(no backward move). This is very unappropriate to build a browser, see [Stonebraker and Rowe 82] for extensive
discussions on this aspect. To speed up the data flow from Verso to Ever, the transmission unit is the physical data

page (6 Kbytes).

All the Verso relations are totally sorted : each file is stored as an ordered list of pages. Each page of a (nested)
relation can be identified by its range in the list. Two commands have been added to the Verso algebraic language :
"send page number N of file F" used to fetch next or previous page , and "send the F page that contains tuple T" used

" to implement the "search" command of the traditionnal text editors without an explicit selection query.

w

2]

Y

»

Of course, this is a ugly feature, because Ever has to know the physical structure of the data, and the Verso-Ever

interface is no longer purely algebraic. However, the performance aspect is critical.

Mission Forum |1opm I De Nirol
Irons

New-York Ne/ George V 8pm De Niro
10pm Minelli

Cinoches 8pm
10pm

W#*1 T*1 Mode = Data File = result]

¥

New-York New-York

Figure 5 : Editing the "result” file;

The Ever Sof hi

The Ever system consists of several modules which can be structured in three levels as shown on figure 6.
At the lowest level, three modules are in charge of the physical resources management : Memory Management
(allocation and desallocation), Screen Handler (clipping, display), Keyboard Driver (to get a key from keyboard). The
Screen Handler and the Keyboard driver were developped by Patrick Amar for the Winnie text editor [Amar 84].

The second level is a set of libraries devoted to specific tasks : communication with the DBMS (to compile and to
send the query, to receive and to parse the answer), edition of the different objects of the interface (query buffer,

schema, data, and window). Finally, the top level is the loop that reads, parses and interpretes each query.

10

(Interpreter)

\
/ y | \
(Verso) [Windows] (Schema] (Data](Querg buffer)
Interface Library Library Library Library
N - | /=

Memory Screen Keyboard
Management Handler Driver
Figure 6 : The Ever software architecture;
A few words about d resentation ispl rithm :

Schema and data have several levels of representation in Ever (see Figure 7). The "read” and "write" operations
belongs to the Verso Interface module : they transform a sequence of bytes stored on disk in a tree structure which
remains in main memory. The schema and data libraries contains a set of functions to handle this pointer structure :
moves, updates. Ever has an asynchronous display algorithm : once a command has been executed on the pointer
structure, the whole structure is projected on a byte matrix that represents the display area allocated to the current

window.

Ever has two images of the screen : OLD_SCREEN and NEW_SCREEN. The update of the window is propagated in
NEW_SCREEN using a clipping algorithm. The optimization of screen refreshment is made by comparing
NEW_SCREEN and OLD_SCREEN. OLD_SCREEN and the screen are then updated.

This algorithm is said to be asynchronous because the update of the internal structure and the refreshment of the
screen are not simultaneous. The function in charge of the internal structure update is not concerned with the screen.
Instead, the system has a general refresh algorithm which ignores what specific transformation has been computed on
the tree structure. An asynchronous display technique was a good solution for Ever because it is implemented on
alphanumeric screen but would be impossible in bitmap environment. The cost to compare the two matrices

NEW_SCREEN and OLD_SCREEN would be too high (the size of the matrices grows from 24*80 to 1000*1000).

c*

i

)

e

-«

11

Database a list of bytes, where some flags
Representation separate the attributes
Read ' ‘ Write
Internal Ever's a pointer structure chosen for
Representation management performance
purpose
Unparse

Byte Matrix Matrix of alphanumeric byte to
Representation be projected on the screen

Figure 7 : the three levels of data representation;

Current state of the prototype :

Ever is fully operational. It is written in C, on top of the Unix system : it is Unix dependant because it uses the
“termcap” file that defines the caracteristics of each terminal, and a "pipe" to communicate with the DBMS. The
current prototype is running on an SM-90 (a 68020 based microprocessor) with any Unix known terminal.
Nevertheless, video characters provides prettier display. The code size is approximatively 160 Kbytes. This is to be

compared with the 300 Kbytes of the Verso DBMS. Ever represents 30% of the total system code, and the proportion
was about the same for the development time.

4. Conclusion :

The Ever system provides a high level graphic language to query and browse a nested relations database. The
language has the full power of the Verso algebra. On these aspects, we believe Ever is a success : it is easy to learn,
quick to use; through the bucket structure, it provides a natural, uniform and nice representation of the Verso
6bjects. On one hand, buckets are fully satisfactory; on the other hand, it is probably the best you can do to display

tree structures on an alphanumeric screen. In terms of product, we claim that Ever is a friendly interface, except for

~ the few bugs which still remain in the prototype!

12

One might argue that Ever is not fully graphical because the query editor that pilotes the whole system is
line-oriented. However, this query language is very simple : a keyword to define the operation, and the name of the
input and output files. Further, Ever provides buffer edition facilities and not only a line editor. On this aspect, it is
very similar to the kshell of Unix. The line interface might have been avoided by using menus but menus are not
such a good feature without a mouse.

The weakness of the system is the unability to nest queries. The user has to decompose his transaction into a

sequence of elementary queries. Ever could have gone further in that direction.

Let us analyse what we learned from the Ever experience. A good interface is an indispensable complement of any
system. However, the problem of interface development time as well as the facility to maintain and extent it are
crucial : it took us three man (and woman)-years to build our prototype. On the other hand, Ever is tightly tied to the
Verso model, and to the Unix system. It is also hard to extent and to maintain. Thus, the development time is very
heavy for something completely dedicated to a single application. The new challenge will be to set up interface
dcvelopmém environments to reduce the programmer work.

In other words, if we had to redo Ever, we would not change what we did but how we did it.

In terms of concepts, the objet oriented approach provides a good framework to build evolutive, easy to maintain
software package. We would choose an object oriented language.

We would probably develop in a graphic environment. At the time we specified Ever, bitmap and mouse were too
expensive, our own competence about graphic techniques too poor to choose this option. However, the choice of
alphanumeric terminal is very constraining : the man-machine interaction suffers from this choice.

Another important feature is the portability of the program. Once the choice of graphic is made, it is important to be
device independant. The Unix community is trying to set up a standard "virtual terminal” interface. Such an interface
provides windows, menus, graphic primitives together with an input events queue file management. Among the
candidates for the standard are X-windows, Sun-news, or ASH. The Macintosh Toolbox is another example.

In addition of the device independance, these interfaces relieve the programmer from the developpement of low level

primitives to manage a multiwindowed screen.

Acknoledgment:

We want to thank F. Bancilhon and M. Scholl for their leading advices in the Ever development, P. Amar for his
software contribution and his Unix competence, and, at last, F. Bancilhon and S. Gamerman for their careful reading

of parts of this paper.

-

-

13
References :
[Abiteboul, Bidoit 84] S. Abiteboul, N. Bidoit : "Non First Normal Form Relations to Represent Hierarchically
Organized Data", Proc. of ACM-SIGMOD Conf. on Principles of Database Systems, Atlanta, 1984, PP. 191-200

[Amar 84] P. Amar, I. Filotti : "Winnie, Reference Manual-First Edition", LRI, Université Paris XI Orsay, France,
Octobre 84

[Biggerstaff et al 84] T.J. Biggerstaff, D.M. Endres, I.R. Forman : "Table, Object Oriented Editing of Complex
Structures”, IEEE 84, pp. 96-104

[Beaudouin-Lafon 85] M. Beaudouin-Lafon : "Vers des interfaces graphiques évoluées : UFO, un méta-modele
d'interaction”, Thesis, LRI, Université Paris-Sud, Orsay, France
[Brice, Hull 85] D. Brice, R. Hull : "Snap, A Graphic-based Schema Manager”, Preliminary Report, February 1985,

University of Southern California

[Cauvet et al] C.Cauvet, J.Y. Lingat, P. Nobécourt, C. Rolland : "Une Interface d'Aide a la Gestion des Aspects

Dynamiques d'une Base de Données Relationnelle”, Université de Paris I, France, projet PRC BD3
[Coutaz 86] J. Coutaz : "The Construction of User Interface”, Proc. of The IFIP conf., Pise 86

[Heiler, Rosenthal 85] S. Heiler, A. Rosenthal : "G_Whiz, a Visual Interface for the Functionnal Model with
Recursion”, VLDB 1985, Stockholm, pp. 209-218

[Hullot 86] J.M. Hullot : "SOS Interface, un générateur d'Interfaces Homme-Machine", Journées AFCET Languages

Orientés Objets, Janvier 86, Beaubourg, Paris, France

[Kanellakis et al 85] K.J. Goldman, S.A. Goldman, P.C. Kanellakis, S.B. Zdonik : "Isis , Interface for a Semantic
Information System", SIGMOD 85, Austin, PP. 328-343

[Karsenty 86] S. Karsenty : "Object Oriented Tolls for the design of high level interfaces : the key for adaptability",
Proc. of the IFIP Conf, Pise 86

14

[Stonebraker, Rowe 82] M. Stonebraker, L.A. Rowe : "Database Portals : a New Application Program Interface",
Memo N° UCB:ERL M82/80 November 82, University of California, Berkeley

[Stonebraker, Kalash 82] M. Stonebraker, J. Kalash : "Timber, a Sophisticated Relation Browser", 8th VLDRB,
Mexico, Septembre 1982, pp. 1-10

[Thomson et al 83] C.W. Thomson, K.M. Ross, H.R. Tennant, RM. Saenz : "Building Usable Menu-Based Natural
Language Interfaces to Databases”, VLDB 1983, Florence, pp.43-55

[Verso 86] Jules Verso : "Verso, a Database Machine Based on Non First Normal Form Relations", Rapport de
Recherche N°523, Mai 1986, INRIA, Rocquencourt, France

[Wong, Kuo 82] H.K.T Wong, I. Kuo : "Guide , Graphical Interface for Database Exploration", VLDB 1982,
Mexico, pp. 22-32

[Zloof 771 M.M. Zloof : "Query By Example : a Database Language", IBM Systems Journal Vol.16, N°4, pp.

324-343

[Zloof 82] M.M. Zloof : "Office By Example, a Business Language that Unifies Data and Word Processing and
Electronic Mail", IBM Systems Journal, Fall 1982, pp. 272-304

Imprimé en France
par
I’ Institut National de Recherche en Informatique et en Automatique

