N

N

On the distribution of statements in Pascal programs
A. Schroeder

» To cite this version:

A. Schroeder. On the distribution of statements in Pascal programs. RT-0039, INRIA. 1984, pp.14.
inria-00070119

HAL 1d: inria-00070119
https://inria.hal.science/inria-00070119
Submitted on 19 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00070119
https://hal.archives-ouvertes.fr

VA (IR ML H S b LA A R R PTa

n Z,

< S S |
o , HSW e .
o g T =

- = a

= REE =

% o2 MMO Q M

T e TEm 4 o

- o N » —

<+ Z IAL O g

= R < 2 =

Q wn O Q —

2 . MFS m

S| TOM

aZ m zZ, _

- Statement Distribution -

ON THE DISTRIBUTION OF STATEMENTS IN PASCAL PROGRAMS

.

| Anne SCHROEDER

INRIA - B.P. 105
78153 Le Chesnay (France)

L

Abstract . C L E

" This note presents a few expemmental results on ' both static and dynamic "use .of Pascal -
operators, and more specnflcally, of Pascal statements; these results are compared with':some other
publlshed ones. The main conclusion concerns the important devnatlon existing between the.static and
dyndmlc dlstrlbutlons of operators and statements. , o S S

:

This work bas partly been supported by the Agence de Informatique (Fraéce’) :

Résumé

Cette note preseme quelques resultats expérimentaux sur lutlllsanon tant statique que dynamlque
des opérateurs .dulangage Pascal, et, plus particuliérement des différentes instructions. Ces résultats
sont comparés. avec: d’autres publiés par ailleurs. La -principale obser\'auon que l'on puisse faire est
celle de P'écart existant entre les dlstrlbutxons statiques et dynaquues

Ce travail a été réalisé avec le concours de I'Agence de I'lnformatique -
watl ¢ Z : g ormatique

0

D PAPIER RECUPERE ET RECYCLE

- Statement Distribution -

ON THE DISTRIBUTION OF STATEMENTS IN PASCAL PROGRAMS

Anne SCHROEDER

INRIA - B.P. 105
78153 Le Chesnay (France)

1 — Introduction

This note is to present a few experimental results on the use of Pascal opérators, and more
specifically, of Pascal statements. Both static and dynamic measurements have been collected; the static
distribution of " Pascal operators in a given program is the set of the utilisation frequencies of all
operators in the source text of the program; the corresponding dynamic_distribution gives,ac:count of
the actual number of utilisations of the operators at run-time. While the static distribution of operators
is collected once for all, the dynamic distribution is collected during an execution and thus dependent
of the data set generating this execution; in order to reduce this dependence, the dynamic distributions
we consider in this paper are cumulative results on several executions.

There is not much literature on this subject. Concerning static statement distribution, there have
been papers giving experimental results for different languages: Cobol [Al-Jarrah79], Pascal [Brookes&2,
Shimasaki80], Pascal and Fortran compared [Perrott81]. Also, models have been proposed for operator
distribution [Zweben77 and 79]. In [De Prycker82], are presented tools to achieve such measurements
together with experimental results on both static and dynamic statement distribution in Pascal and

Algol.

The operator distribution of a given language is precious information for programming .language
designers and/or implementors. According to their purpose, they may be interested in the static
distribution rather than in the dynamic distribution or vice-versa. For instance, implementors of a
syntactic analyzer would organize their tables with respect to the operators frequencies in the texts’ of
the programs they will analyze, that is the static distribution; on an other hand, people interested in
an efficient implementation of the instruction set of a machine will primarily be concerned- with the
dynamic instruction distribution [McDaniel82, Sweet82, Wiecek82].- ' RS

In the next paragraph, we shall give experimental static and dynamic .distributions of the most
frequently used Pascal operators; dynamic measurements have been collected on two programs (respectively
211 and 56 Pascal blocks), the Ist one having been run 4 times, the 2nd one 3 timeés. Only the
bodies of the blocks have been measured, no headings nor declaration areas. In the two last paragraphs,

Y

- Statement Distribution -

N
only particular operators are considered, namely the statements; our results are compared with - otherr
published ones and an attempt is made to explain the discrepancy between static and dynamlch
behaviors through a number ‘of static complemty metrics.

2 - Static and Dynamic Operator Distributions

In this paper, the definition of the set of Pascal:operators is that in use in the programming.
environment Mentor [Donzeau80 and 83], in which our measurement -tools have been developed; in:

Mentor, programs are represented as syntactic operator/operand trees, and, in our tools, opérators are

counted as the non-terminal nodes of such trees (for further detail on the definition and the
implementation of the measurement tools, see [Schroeder84]).

Our program sample is divided into different clases, which are the following: .

- CR.: set of programs coming from a same research group, including as its main part, the above-
Mentor system;

- AS : statistical programs, some of them adapted from Fortran;
- VE : programs that are part of a relational data base system;

- FL : a program that generates structured "flips", or transparents, described as embedded boxes
containing text or drawings; |

- LP : a grammar analyser, part of a meta-compiler.
' \

In Table 1, the static counts of Pascal operators observed on a total sample of 766 Pascal
blocks is presented. Only the most frequent operators have been kept. In Table 2, both static and
dynamic distributions (percentages) of the operators of two programs among the 16 initial programs are
given. The two programs FL and LP have been chosen for the dynamic. experiments, because”of their -
large size and of the facility of generating different executions for each of them, and ‘the four
measured runs of LP coirespond to the analysis of four different languages. At first sight, it can be
noted that static and dynamic distributions may differ 51gn1f1cantly, which emphasizes the necessity to

perform run-time experiments to get serious information on the hse of operators. We shall come back

to this point in the 4th paragraph when studying statement distributions.

3" — Static Statement Distribution

Several experiments on the particular case of statement distribution have been presented in the
literature, - most” often concerning static counts. In Table 3, the results obtained on our sample are
compared with several static statement counts given in [he tollowing references:’

- In [BrookesSZ], results are given on 11 programs: Pl to P6 and S1 to S5, which the authors
identify as scientific (Si’s) and non-scientific (Pi’s) programs, P6 bemg a compiler; in our tables Si
corresponds to the mean value of the Si’s, Pi to that of the Pi’s except P6, and P6 to itself.

- In [Shimasaki80], 5 Pascal compilers have been studied; the two first ones (Sp and St:.in the
quoted reference) seem to be an original compiler and a modified version of it, and the results given
for them actually are very close; in our tables, their mean value appears, identified as "12". The two

LN

- Statement Distribution -

following ones (S8I and S8L) are two parts of the same compiler, and again, their results being very
close, we consider only their mean value ("23"). The last one (Sq in the reference, and "5" in our
tables) is a sequential 7-pass compiler.

- In [Perrott81], the measured program is a simulation program adapted from a Fortran version and
the results are used to compare the Fortran and Pascal implementations.

Table 4 approximately contains the same information as Table 3, augmented with a fourth
comparison [De Prycker82], on a smaller set of statements in order to make this last comparison
possible. In [De Prycker82], two Pascal programs are studied: one that generates the syntax tree of a
program (Tree or "Tr") and one that is part of syntax analyser generator (Split or "Sp"); let us note
that programs with the same kind of functionalities belong to the "CR" class of programs in our
sample. : ’

A few comments can be made on these tables:
- the two most frequents statements in source texts are assignments and procedure or function
calls; . .

~ - the FOR loop is the most frequent, though WHILE loops are as frequent in two programs; also,

tour programs present a specially big number of FOR loops, and knowing the origin of three of them,
we may assume they all have been written by ex-Fortran programmers;

- the frequencies of the IF test vary from a program to another, but the IF construct is, in all
cases, far more used than the CASE. .

A global view on the different use of statements in the different groups of programs is given,
via Correspondence Analysis, on Figure 1. Very shortly speaking, Correspondence Analysis is a
multidimensional data analysis method, that gives a good approximate low-dimension representation of a
set of points originally situated in a high-dimension space; here, the data in Table 4 can be considered
as the data of 8 points, representing 8 types of Pascal statements, in a 14-dimension space, the
coordinates axes of which represent the 14 different origins the measured progams may come from.
‘Thus,. if two origins are close to each other on the representation, it means that they use statements
in a similar way. Read in the other way, Table 4 can also be considered as the data of 14 points,
representing different origins, in a 8-dimension space (8 kinds of statements). Correspondence Analysis
allows a simultaneous representation of the two sets put into correspondence by a rectangular data
array, such as that given in Figure 1; a measure of the quality of this representation is given by the
sum of the percentages attached to the considered axes, which is the proportion of initial information
given by the graph; thus, Figure 1, which gives a 3-dimension representation of Table 4, displays
90.6% (61.3 + 16.0 + 13.3) of the total information. (Further detail on Correspondence Analysis may
be found in [Hill74, Schroeder78]) '

The main results derived from Figure 1 are the following :

- the use of FOR loops is the first discriminating feature between programs; the programs in which
FOR loops are used more frequently correspond to scientific or Fortran-like applications (AS,Pe,Si); _

- there is a group of programs (VE,LP,FLPi34,5) in which CALL statements are more frequent;
they are highly modular programs;

- Statement Distribution -

-

- the use of test statements (IF and CASE) is more frequent in three of the origins (CR,12,P6),
which REPEAT loops also more are frequent.

These results: indicate dlfferent programming -styles, related to the apphcatlon and to the
programmer, at the same time. :

4 — Dynamic Statement Distribution

In Table 5, static and dynamic statement distributions in four different programs can be
compared. As in Section 2, it can be noted that these distributions may considerably differ, without
any systematic pattern-appearing. In the case of the two programs from our sample, we know they are
rather complex programs, in terms of commonly accepted complexltv indices:

f .

- the maximum nesting depth of control statement is 7 in FL and 6 in LP,

- the cyclomatic numbers (equivalent to the number of control statements) [McCabe76, Schroeder84]
of the Pascal blocks in the programs may be’ as large as 33 and 47 in FL, and as 25 t0.30 in LP,
whlle their normalised value (i.e. divided by the block size expressed in terms of the total ‘number of
operators and operands used in that block) may get to 13% in FL and to 20% in LP,

In ordel to precise the influence of such static complexity metrics on both static and dynamic
behaviors, we analysed the corresponding data on the two programs LP and FL. An other Correspondence
Analysis has thus been performed on the 223x8 array, each line of which corresponds to a Pascal
block (176 'in LP, 47 in FL, that have actually been executed), while the 8 columns correspond ‘to 8
static complexity metrics, namely: ‘

- Nin, the number of statements in the body of the block;v

- TT, the size of the body of the block, expressed as the total numbcr of tokens (operators and
operands) needed to write it;

- Otd, the number of distinct operators used in the body of the block;
- Ond, the number of distinct operands (variables and constants) used in the body of the block;
- Voc, the vocabulary used, that is Oﬁd + Otd;

- Prf, the depth of the syntax tree of the body of the block, Wthh measures the logical Lomplemty
" -of a program in terms of statement and expression nesting;

- cmd, the cyclomatic number of the block (see above);
- Imx, the maximum ﬂesting depth of statements in the block.

(For precise definition and properties of these metrics, cf. [Schroeder84])

- Statement Distribution -

Also, for each block, both static and dynamic statement distributions are known, which may add
16 columns to the data array (static and dynamic frequencies of 8 different kinds of statements). On
Figure 2, is displayed the approximate representation of the 223x8 array (the 223 Pascal blocks are
represented by dots, the static complexity metrics are written in straight characters); the static and
dynamic statement distributions have not been taken into account in the computation of the projection
axes, but they have been projected afterwards on these axes, being themselves points in the 223-space
indexed by the blocks (each one is written in italics, with a postfix s or d according to whether it
represents a static or a dynamic frequency). Thus, what can be interpreted in the display of Figure 2
is, on one hand, the general complexity structure of the blocks, and, on the other, the relationships
between complexity and static versus dynamic use of statements.

The main results derived from Figure 2 are the following:

- the complexity of the blocks lays in three aspects: the dominant one is the size of the block; next
come, at the same level of importance, the complexity due to the vocabulary and the variables used,
and that due to statement and expression nesting;

- the only information about GOTO statements is that, in the 223 measured blocks, though there
were a few GOTO’s in the programs, none of them was actually executed at run-time (GOd placed at
the origin on the graph); it is expected that GOTO’s appear in particular sections such as error
handling; also, GOTO’s appear more frequently in those blocks in which the nesting is deeper;

- as for the other statements, REPEAT’s and CASEs are the only ones the static and dynamic
frequencies of which apreciably differ; all the others have similar frequencies in program texts and at
run-time;

- programs with a high vocabulary complexity are more likely to execute CASEs and REPEAT’s
more often that expected in the program text;)

- programs with a high nesting complexity are more likely to present WHILEs. IF’s and FOR’s, in
similar proportions statically and at run-time.

These results indicate the possibility of some kind of prediction of the dynamic use of statements
from both their static use and the complexity structure of the block.

Conclusion

The main result that can be derived from this experimental study is the important deviation
existing between the static and dynamic distributions of operators and statements. It shows ‘that they
are not equivalent when used in an implementation purpose and that one must clearly identify which
one is to be considered.

Also, further analyses of the relationships between statement distribution and complexity, indicate
a possible prediction of run-time behavior and some typical programming styles. ’

-- Statement Distribution -

References

[Al-Jarrah79]

M. M. Al-Jarrah and I. S. Torsun

An Empirical Analysis of Cobol Programs

Software—Practice and Experience, Vol. 9, No. 5, 1979. pp. 341-359

[Brookes82]

G. R. Brookes, I. 'R. Wilson and A. M. Addyman

A Static Analysis of Pascal Program Structures

Software=Practice and Experience, Vol. 12, 1982. pp. 959-963 a

[De Prycker82]
M, De Prycker

On the Development of a Measurement System for ngh Level Language Program Statistics
1EEE Transactions on Software Engineering, Vol. C-31, No. 9, September 1982. pp. 883-891

[Donzeau80]

V. Donzeau-Gouge, G. Huet, G. Kahn and B. Lang

Programming Environments Based on Structured Editors: the MENTOR Experience
Rapport de Recherche INRIA, No. 26, 1980 :

[Donzeau83]

V. Donzeau—-Gouge, G. Kahn, B. Lang, B. Melese and E Morcos

Outline of a Tool for Document Manipulation

IFIP'83, Paris , 1983.

[Hill74]

M. O. Hill _

Correspondence Analysis: a neglected multivariate method,
Applied Statistics, Vol. 23, No. 3, 1974.'pp. 340-354

[McCabe76]

T. J. McCabe

A Complexity Measure

IEEE Transactions on Software Engmeermg, Vol. SE—Z No. 4,Deember 1976. pp. 308-320

[McDaniel82)
G. McDaniel

An Analysis of a Mesa Instrucuon Set Using Dynamic Instructlon Frequenaes
SIGPLAN Notices, Vol. 17, No. 4, April 82. pp. 167-176

[Perrott81]}

R. H. Perrott and P. S. Dhillon

An Experiment with Fortran and Pascal

Software—Practice and Experience, Vol. 11,.1981. pp. 491-496

[Schroeder78]
A. Schroeder
Proceedings of the CPEUG Meeting, Boston October 1978.

[Schroeder84]

A. Schroeder

Integrated Program Measurement and Documentation Tools

7t/3 International Conference on Software Engmcﬂrmg, Orlando, Florida (USA) March 1984.

- Statement Distribution -

[Shimasaki80]

M. Shimasaki, S. Fukaya, K. Ikeda and T. Kiyono

An Analysis of Pascal Programs in Compiler Writing
Software—Practice and Experience, Vol. 10,, 1980. pp. 149157

[Sweet82]

R. E. Sweet and J. G. Sandman Jr.

Empirical Analysis of the Mesa Instruction Set
SIGPLAN Notices, Vol. 17, No. 4, April 82. pp. 167—-176

[Wiecek82]

C. A. Wiecek :

A Case Study of VAX-11 Thstruction Set Usage for Compiler Execution
SIGPLAN Notices, Vol. 17, No. 4, April 82. pp. 177184

[Zweben77]

S. H. Zweben

A Study of the Physical Structure of Algorithms]

IEEE Transactions on Software Engineering, Vol. SE-3, No. 3, May 1977. pp. 250-258

[Zweben79b])

S. H. Zweben and K. C. Fung _

Exploring Software Science Relations in Cobol and APL

Proceedings of the COMPSAC 79, IEEE Cat. No. CHI1515, 1979. pp. 702~

[€a)

. - Statement Distribution - ‘

N R

Total CR. AS+ VE FL LP

blocks 766 354 144 57 211
PROGRAMME 16 4. 10 1 .) 1
PROCEDURE 520 234 97 35 164
FUNCTION 230 . -126 37, 21 46
LEXP 8034 2999 3390 408 1238
CALL 5336 2331, 1595 - 393 1017

ASS 4975 2539 1221 365 850
INDEX 3100 968 1713 86 . 333
LSTAT ‘2700 1184 867 174 475

DOT 2081 812 605° 95 569

IF- 1911 1175 425 90 - 221

EQL 957 561 243 30 - 123
COLON 857 514 173 ' 84 87
LesT 852 508 173 84 87
PLUS -~ 648 124 339 74 . 111
FOR 513 116 323- 1 61
NEQ - 470 295 - 97 26 52 . -
UPSTEP 457 97T 290 13- 57
MINUS 287 131 93 29 34
SETOF 244 189 . . 6 34 15

AND 202 120 52 6 24
LELEM 172 120 5 34 13
WHILE 159 60 25 19 55
FORMAT 150 23 108 2 7

OR . 132 89 24 3 16

LSS - 128 62 40 15 11

NOT 125 74 17 6° 28
GOTO 125 99 24 2 0
'GTR 123 4 46 14 19
CASE 106 66 7 17 16
N 106 . 61 5 .25 15
WITH 103 66 8 0 29

L VARBL 102 66 8 0 28
LCOLON ~ 101 63 7 17 14
LDEFID 98 .0 98 0. 0
MULT 92 . 2 M 18 °

LEQ 90 74 8 1. 7 \
UMINUS 78 70 3 0 5
LABSTAT - 76 63 11 2 0
REPEAT . 72 30 21 6 15
LPARAM 53 0 53 0 0

GEQ _ 45 28 13 1 3

Table 1

- Statement Distribution -

FL LP
static dynamic static dynamic

blocks 57 211
PROGRAMME 1 1

PROCEDURE 35 164
FUNCTION 21 46

I\
o .

x
S
o hOoOMMOO

LEXP 18.
CALL 17.
ASS 16.
INDEX
LSTAT
DOT

IF
VIDE
EQL
COLON
LCST
PLUS
* FOR
NEQ 1.
UPSTEP
MINUS 1.
SETOF 1.
AND
LELEM 1.
WHILE
FORMAT
OR

LSS
NOT
GOTO
GTR
CASE
IN 1.
WITH
L VARBL
LCOLON
LDEFID
MULT
LEQ
LABSTAT
REPEAT
LPARAM
GEQ

—
o]

—
»
—
)]
S

—
s}
—
[N
-
© o v

9N O ©
—
N

L NN B |
O N 3 © N &
o N O oM
LA BN B N G |
N O N »m

o
-3

[¢)]

W\
—
(]

- o - N
M Ot
0 d DO

[S 7 I VTN

L7 I 7 R 7 e
A»—;r—-w

R e B T T B T S S S
X
[

bOHuMOHNOO(ﬂHNHNhANCﬂMMO'

W AR U OO D OO0 MO WM NG O o A

OCOo W~ O ®Oo
'OOD-‘H‘Oi\)O&H

OO}\JOD—'MO&N

Table2

0

Y]

4

v

--Statement:Distribution -

Yy .
-*&*¥~*i«-«&***&i6*'f'&{-'i&**&'*i-*****G*&b**i_&*iiifﬁii.t-iii!@iﬁlfi&lliii&ll.l

8ot

* o o : : ¥ ‘Brookes * Shimasaki ":Perrot;
* ‘Total *CR °FL VE -AS LP * P6 Pi Si* 12 |34 5+

. N .
. ‘**ﬂ"l**"’**'******l’***’***‘*i!*-***l&*l—****i*l‘*I'**ﬁ:'*’***%%*i“**&'“‘ﬁQﬁ"ﬂﬁlh’ﬂr&"‘ﬁi-“-.l'rﬁ&&

blocks 766 354 57 119 25 .211 * 192 90 173 251 .414 484 - 37

‘PROGRAM 16 5 1 7 3 1* 1 5 5% 32 @ qa
PROCEDURE 520 224 '35 78 19 .64 * 182 75 137 * 242 ° 398 465 * 36
hFQN?TION 230 126 21 ‘34 3 46 * 9 10 31* 7T 14 *ié-f 0
’ . . o . : co . ’) \ '

CALL 5336 2331 393 1379 1216 1017 * 1176 975 906 *.2773 3836 2518 * 77
std. pr. 1119 363 175 1254 .147 180°* 242 782 401 % 205 311 .216 ¢ .
user pr. 4217 1968 218 1125 69 857 * ©34 193 ‘505 *.2478 3525 2302 * —

= 4975 2539 ‘365 :860 3361 850 * 1887 ' 760 1784 * 3122 3198 -1333 -+ .:357

IF 1911 1176 90 354 71 221 % 729 173 .501 * 1628 1875 .567 * -85

‘CASE 106 : 66 - 17 7 0" 16+ 35 16 g .55 .58 56°'* 6

“FOR '513 116 - I3 157 166 61 * 57 75 358 * 56 81 61 * 99 o
WHILE 159 60 19 11 14 :B5°* 59 36 38+ .99 139 27+ 23 .7
~REPEAT 72 30.: 6 20 1 .15 31 16 4% 94 79 49+ .4

:GOTO 125 99 2 11. I3 0% 25 7 106 * 26 .46 0* 0

w;TH' 103 66 0. 8 0 20* 177 62 .17 * 286 368 .193'%* 33

lab. st. 76 63 2 -2 9 0 * .23 3 70* 20 28 0 ©

i*‘ll-*%i****i’*********‘*****Q‘***'**********************‘****l'i**-*"-*GI}&&G*‘&!***&&

LN?) std. pr. =.standard procedures
user pr. =-user.procedures

lab. st. =.labelled statement

Table-3

******'l‘******************‘l‘****‘*******&*********‘l*{*&lii«*‘-**v’il"l'*‘.l*l-*‘&il*'*%&l

* _ ' * Brockes . Shimasaki - *Perrott* 'Prycker
* CR.FL VE AS LP* P6 Pi Si* 12 34 5% S Tr osp
-&«*ﬁg**y%********4***********4*****»*****¥*********i****4*«‘*«*¢&*4«*;**ni4wr§1¢¢»¢qn«*4;n
pres. 51 7 3 1w 1 s 5% 2 32 qs 1w i .
‘ . _ ' N
CALL . .36.3 43.4 49.3 25.7 45.5 *.29.4.47.4.24.3 *.35.3 41.2 54.6* 1].8 -* 33.1 256
i= 9.6 40.3 30.7 42.9.38.0 * 47.2 36.9-47.9°%.39.8 34.3.28.9 * 54.8 * 51.2 47.4
IF '18.3 '9.9 12.6 ‘8.4 9.9 ¥ 182 8.4 13.4 * 207 9.4 12.3* 13.1 * 8.7 9.6
CASE 1.0 1.9 3 0 .7* 9 .8 5 * 7 6 .12* 9 * ‘0..0 _
FOR 1.8 1.4 56197 27 % 1.4 .36 9:6* .7 .9 1.3+ 152 - 4.6 8.8
WHILE. © 21 .4 17 25+ 15 1.7 10+ 1.3 1.5 .6+ 3.5 .6 8.0
‘REPEAT ST 7T 1 T+ 8 8 4% 12 .8 1.1 g * 1.2 .8
GOTO - 1.5 2 4 155 .0* 6 .3 28* 3 .5 0+ 0+ & .0

'l'**************‘**%*i*&#**i&*&ﬁ**&*iﬁi**%************'ﬁ‘i’*v*’*i-&*{{*i**i*ii*l‘%%'***’l?*l“vvﬁ‘

Table 4

- Statement Distribution -

DePrycker
FL LP SPLIT TREE °
executions 3 .4 : 3 2
executed
statements 66852 4273877 162018 204372

static dynamic static dynamic static dynamic static dynamic

CALL 43.4 34.8 45.5 13.9 25.6 15.5 33.1 23.9
= 40.3 43.4 38.0 55.8 47.4 747 51.2 50.1
IF 9.9 19.3 9.9 24.7 9.6 7.4 . 8.7 21.7°
CASE 1.9 .6 7 1.0 .0 .0 .0 .0
FOR 1.4 .4 2.7 7 8.8 ° 1.4 4.6 3.7
WHILE 2.1 1.1 2.5 3.2 8.0 .9 .6 .Q
REPEAT 73 7 6 .8 .0 1.2 .8
GOTO 2 .0 .0 0 .0 0 - 6 .0
Table 5

«

[

_- Statement Distribution -

L - ia% Axis ; 61.3%
Corr'espondence Analysis . ,;_,aj Aete: 180X
' ~d Axis : 13.3% !
;(8‘»§tai;’e,ment t._y_pes. i4 or‘igins) o w ’m, x,:, 4.2%
. . ‘ I :
FOR
AS
VE . -
PY g 5
LP
w34
b " FL
T - ST :
g ~ CR CAS
b S
i IF 12
~ i PB
(18t. Bxis: horizontal and axis: vartical)
WA |
o
|
1
1
1
1
$p
1
1
1
|
AEA £ LP
25348
I i - T T
Ifep | - AS
“dy '
i
1
i
o1
!
|.
6ar

.. {2nd axis: ‘horizontal, 3rd axis: vertical)

Figure 1

- 13 -

- - Statement Distribution -

“% rCorrespondence Analysis (ist Axis : 59.5%
i P 2nd Axis : 19.2%
s L 3rd Axis : 8.5%
(Egggﬁgspalnblocks. 8 variables, 16i1lustrative variables): "4:h Ah:;g': © 7.0%
i ! REd ' '
i .
1
.
i
£sd. ;" ond
. .}. - s
i .
. -
.4 Voo . :
L TP - .
___________ \ ...m) ._ ERAT R .._&_ ——— ——
.4.;-] cﬁn'.} -:' -.: . N ;. .o)
I T 1 - I
‘amd .- REe ' cl@.d
. . - Prf’
. Fos Fod .
Imx
| ”{iﬁ%d :
I N
WHs
G0s
- . (st axis: horizontal, 2nd-axis: vertical)
| ?
L
I
) i
1
|
i
i
e
|
!
i
I
L
B
I
1.
|
i
- L, -
|
I
|
I
1
I
|
FOs 3 A89
cSsd o WH:) l}?'-‘.f

FF

,~(3r?'d axis: “horizontal, 4th axis: :vertical)

Figure 2

- 14 -

Céds

-

Imprimé en France

. par o
I’Institnt National de Recherche en Informatique et en Automatique

