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Abstract: When solving numerically approximations of the Vlasov-Maxwell equations, the
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Formulations généralisées des équations de Maxwell pour
les simulations numériques de Vlasov-Maxwell

Résumé : Lors de la résolution numérique des équations de Vlasov-Maxwell, les termes
sources des équations de Maxwell sont calculées & partir d’une solution approchée de I’équation
de Vlasov et ne vérifient donc pas en général I’équation de conservation de la charge néces-
saire pour que les équations de Maxwell soient bien posées. Il est donc nécessaire d’introduire
une formulation généralisée des équations de Maxwell pour garantir I’existence d’une solution
pour des termes sources indépendants. Différentes formulations de ce type ont été utilisées
dans la littérature. L’objectif de ce rapport est de les analyser et de montrer ’existence et
Punicité de la solution dans différents cas.

Mots-clés : Maxwell; Vlasov-Maxwell; existence; unicité.



Generalized formulations of Mazwell’s equations 3

1 Introduction

The numerical solution of the coupled Vlasov-Maxwell equations plays a major role in several
applications involving interacting charged particles like in plasma physics or in beam physics.
The non-relativistic Vlasov-Maxwell system reads

0
—f—i—V-me—i——&—i(E—i—va)-va = 0,
ot m
OE
— —PcurlB = —i,
ot €0
0B
E—i—curlE = 0,
divE = ﬁ,
€0
divB = 0,

with p = [ fdv and J = [ fvdv. The function f = f(x,v,t) represents the particle
density in phase space and E = E(x,t), B = B(x,t) are the electric and magnetic fields.
A fundamental property of Maxwell’s equations is that they are well-posed only for charge
and current densities p and J that satisfy the so-called continuity equation

% +divJ = 0. (1)

If this relation does not hold, one can verify easily that there is no solution to Maxwell’s
equations. When the sources of Maxwell’s equations are computed by numerically solving
the Vlasov equation, they do not in general verify a discrete equivalent to the continuity
equation compatible with the discrete form of Maxwell’s equations. To address this problem,
methods for deriving sources verifying a discrete continuity equation have been introduced,
see for example [T4]. Or, one can choose to perform a correction on the computed electric field
so that it remains physically correct. In practice, the latter approach is usually preferred.
All those correction methods have been cast into a generic framework [12, [[3]. The aim of
this paper is to develop a rigorous mathematical theory for these generalized formulations
of Maxwell’s equations.

The paper is organized as follows. First we recall the different correction types and in-
troduce the generalized Maxwell’s equations. After that, we successively prove the existence
in an adequate setting of a solution for each formulation.

2 The different corrections methods

2.1 Helmholtz decomposition of a field

Let us first recall the Helmholtz decomposition of a vector function in L?(2)3 into the sum
of a transverse (i.e. divergence free) and a longitudinal (i.e. curl free) part. Let Q be a
bounded open set of R3, with a Lipschitz continuous boundary T.

RR n° 5850



4 Régine Barthelmé , Patrick Ciarlet , Eric Sonnendriicker

For example, the following orthogonal decompositions in L?(£2)? can be found in [§]:

HQ(diV 0, Q)

L?(Q) = VHYQ) & Hi(Q) @ curl Hy(curl, §2),

H(curl0, )

H(div 0, )

L?(Q)3 = VH}Q) & Hx(Q) @ curl H(curl, ),

Hy(curl0, Q)

where

Hy(Q) = {uel?*(Q)?°|curlu=0, divu=0, u-n =0},
Ha(Q) = {ueL?(Q)?|curlu=0, divu=0, uxn, =0},

are finite dimensional vector spaces. The writing H(curl0, Q) (respectively H(div0,2))
means that curl-free (resp. div-free) elements are considered, whereas Hy(curl, ) (re-
spectively Hy(div,(2)) stand for elements with L? curl (resp. L? div), and such that the
tangential (resp. normal) trace on the boundary vanishes (see the next Section for details.)

To summarize, any function in L?(2)® can be decomposed into the sum of a transverse
(i.e. divergence free) and longitudinal (i.e. curl free) part. Maxwell’s equations can be
decomposed in the spaces VH}(2) and H(div 0, () as follows:

Er — Pcurl B = —Jr/eo

OE, =-J1 /€ 8FB +curlEr =0
diVEL:P/Eo leET:O
divB =0

where E=E + ET, J=J; +Jr with E;,Jp € VH(%(Q) and Er,Jr € H(leO,Q)

Assume that the continuity equation () does not hold. On the one hand, this equation
depends only on the longitudinal current density J;, (because divJr = 0)

ap

o +divd, =0.

On the other hand, we notice that the error on the electric field E that violates the electric

Gauss law is localized on the longitudinal part E;, of the field. Consequently, the correction
methods will act only on Ej,.

INRIA



Generalized formulations of Mazwell’s equations 5

2.2 The Boris correction

The Boris correction dates back to 1970 [3], [5]. It consists in correcting at each time step the
electric field computed with Ampere’s law by a longitudinal field deriving from a potential
with is computed so that the corrected field exactly satisfies Gauss’ law divE = p/eq. Hence,
the longitudinal part of E is modified as follows:

Ecorrected =E- grad ¢

where ¢ is defined by

p

div E¢orrected = — <= A¢ =divE — L
€0

€0

and ¢|. = 0, where I" is the boundary of the computational domain. The field Ecorrected sat-
isfies the same boundary conditions as E. This method is very efficient and very commonly
used in applications. However it requires to compute the solution to a Laplace problem at
each time step, which has two major drawbacks: it is non local and propagates information
at infinite velocity — which is unphysical — and it does not parallelize as well as the explicit
expression giving the fields from Ampere’s and Faraday’s laws, unless ad hoc algorithms are
used.

2.3 The Marder/Langdon correction

As an alternative to the method introduced in the previous Section, Marder proposed another
type of correction in 1987 [I1]. His method consists in introducing a pseudo-current in
Ampere’s equation and amounts to computing;:

n

Ent E"! + At grad [d( div E" — 2]

corrected €0

where E"t! is the updated field, using Ampere’s law. In the case of a a finite difference
discretization on a uniform cartesian mesh the diffusion coefficient d must satisfy

1 Ax?Ay?
d< — (== =9
— 2At \ Az? + Ay?
for the method to be stable for a given time step.

Langdon [I0] proposed a variation of the method which takes into account the error on
Gauss’ law at time step ¢,,+1 instead of ¢,:

E"tl B 4 At grad [d( div EM - 2 ).

corrected €0

He also showed that his method is equivalent to performing just one iteration of a Jacobi
solver for the Laplace equation used in Boris’ method and consequently that his scheme

RR n° 5850



6 Régine Barthelmé , Patrick Ciarlet , Eric Sonnendriicker

can be iterated and converges asymptotically towards Boris’ when the iteration number is
increased.

More recently, Blaise et al [4] proposed to replace the Jacobi solver by a Gauss-Seidel
one. Indeed, it is well-known that the initial convergence rate (over the first iterations)
improves dramatically, when one uses a Gauss-Seidel solver. The apparent drawback is that
the Jacobi scheme is fully parallel, whereas Gauss-Seidel’s is not. Actually, this is not a
difficulty, since one recovers a completely parallel algorithm, by renumbering the nodes,
using for instance a Red/Black ordering on a structured mesh, as demonstrated in [4].

2.4 The generalized formulation of Maxwell’s equations

Instead of correcting the longitudinal electric field a posteriori like in the Boris method,
Assous et al [2] introduced a mixed formulation of Maxwell’s equations with a Lagrange
multiplier, that links the Ampere equation to Gauss’ law. This solution of Maxwell’s equa-
tions obtained with this mixed formulation is identical to what is obtained using the Boris
correction.

It was then noticed in [I2, [13] that Marder’s formulation could also be expressed in a
modified version of Maxwell’s equations, and that the modified Maxwell’s equations could
be further generalized to include a third kind of natural correction method: after the elliptic
correction of Boris, the parabolic correction of Marder a hyperbolic correction could also be
included.

Accordingly, the final generalized formulation of Maxwell’s equation reads

OE J
— —Pcurl B+ Pgradp = ——,
ot €0
0B
e +curlE = 0,
g(¢)+divE = L2,
€0
divB = 0,

where ¢ is a linear differential operator. It is straightforward to see that the corrector ¢ is

solution to: 89() L /8
9I\P) _ 2Ap— =~ (2P L g
5 A o <8t+dlv']>'

In particular ¢ vanishes as soon as the continuity equation is satisfied, assuming appropriate
boundary conditions have been chosen. Hence this generalized formulation of Maxwell’s
equations is equivalent to the original Maxwell’s equations in the physical cases but more
robust to (numerical) perturbation of the sources. We shall see indeed that this formulation
is well-posed independently of a relation between p and J.

When g(¢) = 0 and g(¢) = ¢/d, the generalized formulation corresponds respectively
to the Boris and the Marder/Langdon corrections. In these cases ¢ must satisfy vanishing
Dirichlet boundary conditions.

INRIA



Generalized formulations of Mazwell’s equations 7

In order to get a purely hyperbolic formulation we choose g(¢) = d;¢/x?. The corrector
¢ then verifies the following wave equation:

62¢ 2 _ X2 dp .

In order to allow the error transported by the corrector ¢ to leave the domain 2, absorbing
boundary conditions must be chosen for ¢. These can be for example at order 1:

op 9o
E‘FC%}F =0.

Remark 1 The numerical implementation of the latter correction method, called hyperbolic
correction, is delicate as a good absorption of the outgoing wave is necessary in order to
avoid long time amplification of the error. First order absorbing boundary conditions might
not be sufficient, and more precise methods like Perfectly Matched Layers (PML) should be
preferred.

3 Notations

Let Q be a bounded open polyhedral set of R? with a Lipschitz continuous boundary I'. We
denote by n the external unit normal defined at almost every point I" of €.

The scalar products in L?(2)3 and H'(Q) are respectively denoted by (-,-)o and (-, );.
Given a Banach space ), we shall denote the duality product in Q' x @ by (., .)g.

We recall the definition of the following spaces:

H(div,Q) ={ fe L*(Q)® | divf € L*(Q) },

H(curl,Q) = { f € L*(Q)? | curlf € L*(Q)3 },

which are Hilbert spaces respectively for the norms:

1/2
I€llo.are — ( [ 82 + ey dx) ,
Q

1/2
€locun = ( [+ eunsp) dx) .
Q

The mappings 7, (normal trace) and v, (tangential trace) are respectively defined and
continuous on the first and second of these spaces (see [9]):

Yo o H(div, Q) —>H_1/2(1")7f»—>f-n‘r,

vyt H(curl, Q) — H Y2(T)3 £ £ x n.

RR n° 5850



8 Régine Barthelmé , Patrick Ciarlet , Eric Sonnendriicker

Hence we can define the following closed subspaces:
Ho(div,Q) ={ f e H(div,Q) [ f-n. =0},

Ho(curl,Q) = { f € H(curl,Q) | f xn. =0 }.

We shall denote by
X = H(curl,Q) N H(div, Q)

the Hilbert space endowed with the norm

1/2
If|lx = (/ (If]* + |curl f|? + ¢*(div £)? dx)
Q

and X its closed subspace
Xo = Hp(curl, Q) N H(div, Q).
For a linear space V C H(curl, ), we shall denote by
V(curl) = {f € V | curlcurl f € L*(Q)3}.

Let us also recall a couple of results we shall use later on. Let H and M be two Hilbert
spaces. We consider the continuous bilinear form

b:HxM-—R,
and the variational problem: Given x € M’, find uw € H such that
b(u, ) = (x, ) Vu € M.
The bilinear form b is continuous on H x M, hence it defines a bounded linear operator

Be L(H; M) by
(Buo,u) =blv,u) Yve H, Vue M.

We denote by B’ € L(M; H’) the dual operator of B, which is defined by
(v, B'u) = (Bv, ) = b(v,p) Vv € H, Ype€M.

The previous variational problem is then equivalent to
Find v € H such that

Bu =y in M.

Set V = Ker(B), which is a closed linear subspace of H, and consider its polar set
Ve={geH;<g,v>=0%Y eV}

Lemma 1 (Babuska-Brezzi) The following properties are equivalent:

INRIA



Generalized formulations of Mazwell’s equations 9

(i) there exists 5 > 0 such that

b
inf sup -2 H)
neM pepr ||vllxllulla

> 3

(i) the operator B’ is an isomorphism of M on V° and
1Bl = Bllpllar Vi € M;
(iii) the operator B is an isomorphism of V- on M' and

|Bv||ar > Bllv]|a Yo € v,

Proof. See the book by Girault and Raviart [9], chap.I, §4. [ |

Definition 1 Let H be a Hilbert space and A: D(A) C H — H a linear operator.

1) A is monotone if (Av,v), >0 Vv € D(A),

2) A is maximal monotone if moreover there exists A > 0 such that I+ A : D(A) — H
is onto.

Theorem 1 (Hille-Yosida) Let T > 0 and A a mazimal monotone operator in H. Then
for all ug € D(A) and all f € C1([0,T]; H), there exists a unique function u verifying

u € C°([0,T]; D(A)) N C*([0, T]; H),

d
—+ Au=f on [0,T), (2)
u(0) = up.

Proof. The proof is given for example in the book of Brézis [6], chap.VIIL [ |

Remark 2 Let A € R. The problem
d
d—zt‘ + Au+u=f on[0,T],
u(0) = up.

can be transformed into (@) with right hand side e f(t), by setting v(t) = e u(t). Therefore,
it is equivalent to prove that A or A+ M, for A € R, is mazimal monotone, in order to
apply the Hille-Yosida Theorem.

Remark 3 Let V be a dense Hilbert subspace of H, and let a(.,.) be a continuous bilinear
form on V- x V. Then the form a defines a bounded linear operator A € L(V,V'). In the
sequel, we shall also denote by A the linear operator associated to a and defined by

D(A) = {u e V;v alu,v) is continuous on V for the norm of H}

and, for all w € D(A), (Au,v) = a(u,v) Yv € V. By construction, Au can be extended,
thanks to the density of V in H, to a continuous linear form on H, still denoted by Au € H'.

RR n° 5850



10 Régine Barthelmé , Patrick Ciarlet , Eric Sonnendriicker

4  Well-posedness for the elliptic correction

We want to solve the following problem (E1): Find E, B, p defined on Q x [0, 7] with values
in R? for E and B, and R for p, verifying the equations

OE
— —FcwrlB+2Vp = —lJ,
ot 9B €0
— 4+ curlE =0, 3)
ot 1
divE = —p,
€0
with boundary conditions
Exn=0onT, p=0onT, 4)
and initial conditions
E(., 0) = Eo, B(, O) = BO and p(., 0) = 0, (5)

satisfying
divEg = p(.,0) on ©, divBy =0 on €,
Eogxn=0onl, Bprn=0onT.
4.1 The second order uncoupled equations

The equations for E and B can be decoupled by going to the second order in time.

Proposition 1 Problem (E1) is formally equivalent to the following problem (E2): Find E,
B, p solutions to:

’E 5 Op 107
2 +c curlcurlaE];+ c Va = _%E’
— 4+ curlE =0, (6)
ot 1
divE = —p,
€0
with boundary conditions {f)) and initial conditions {@) and
OE 1
—(., O) = El, with E1 = CuI‘lBO - —J(, O) (7)
ot €0

Proof. 1f (E,B,p) is a sufficiently smooth solution to problem (E1), then, taking the time
derivative of the first equation and replacing the term 0;B by —curl E, we obtain the first
equation of (@l). The initial condition (@) is obtained by considering the first equation of ()
at t = 0 and (@). The rest is identical.

INRIA



Generalized formulations of Mazwell’s equations 11

Reciprocally, let (E, B, p) be a solution to problem (E2). Consider

E 1
U= 8— —ceurlB+AVp + —J.
ot €0

Then:

ou  9’E 0B op 10J 0B

e 1= 2y 2 = —c?curl (curl E + =—) = 0.

o~ oE Ceml gtV oo - ¢ cwl(cwlBA o)
As U(.,0) = 0 according to ([ and @), if U is sufficiently smooth in time it implies that
U = 0, whence the first equation of ). [ ]

4.2 Variational formulation in E

From now on, we assume that J € H(div,Q), hence in particular divJ € L?(Q), and
p € L?(Q), for all t > 0. For the proof of the final Theorem, we need to introduce (S H} ()
the unique solution to Ay = divJ. Then J=J- V1 automatically verifies divJ = 0.

Proposition 2 Problem (E2) is equivalent to problem (E3), which consists in the mized

variational formulation in E and P = —013/eq — c2Op: Find (E,P) € Xo x L*(Q) such
that:

e

ot2’ )

(divE,q), = %(m q9), VqeL*Q),

18J

PR

F)y, + ¢ (culE, cwlF) + (P.divF) = VF € X,

Xo?

plus 0;B + curl E = 0, boundary conditions ) and initial conditions (@) and @).

Proof. Assume that problem (E2) has a smooth (see the next Remark) solution (E,p).
Then for all F € X, we have

(G, = G+ G,
_ <%2T]5’7F>X0+02<curlcurlE,F> <V% F)y, T (V%_f F),
_ <(?;T]237F>X +cXcurlewl B, F) o+ 02<V%,F>H<div,m
+(VEE),
. <%QT§,F>XO+02(cur1E,curlF)o (c %Jr%%—fd ).

Set P = —0;1)/eg — c20;p. We then get the mixed variational formulation ().

The reciprocal assertion is simple:

RR n° 5850



12 Régine Barthelmé , Patrick Ciarlet , Eric Sonnendriicker

e One derives the first equation of (@) in X/ provided the solution (E, P) is smooth
enough, if one sets

(1) = —c% (/OtP(~,s)ds + X - ¢(.,0))>

€0
e The second one is evidently true.

e The third equation holds in L2(f2) by construction.

Remark 4 In the previous proof, we evidently assumed that 9,J belongs to X}.
Now, since Xy is a subset of both Hy(curl, Q) and of H(div,<Q), the converse inclusions hold
for the dual spaces. Let us explain here in a few words, what we meant by a smooth solution

(E,p):
- For E, we assumed that curl E € L?(Q2)3, which implies curlcurl E € (Hy(curl, Q))’.

- For 0;p, we assumed that:

(i) V(9wp) € (H(div, Q)" ;
(ii) (VD) F) iy ) = — (i, divF) ., VF € H(div, Q).

Actually, (ii) corresponds to the boundary condition p = 0 in () in some sense... As soon
as O;p belongs to H'(Q), there holds for, F € H(div, (),

<v(8tp)’F>H(div)Q) = (v(atp)7F)0 = _(8tp7 leF)O + <F ' n7p>H1/2(F)a

s0 that pr vanishes.
The same considerations apply for (E, P).

Let b be the continuous bilinear form defined on X, x L?(Q2) by:
b(u, \) = (divu,N)g  V(u,\) € Xo x L*(Q).
Let A: Xo — X}, B: Xo — L*(Q)" and B’ : L?>(Q) — X, the linear operators defined by:
(AF,G) = *(cwrl F,curl G)g, (BF,q) = (divF,q)o, (B'q,F)= (q,BF)

for F,G € Xo and q € L%(2). In the sequel, we identify L2(Q2)’ with L?(Q). It is easy to
see that A, B and B’ are continuous.

The mixed variational formuation (§) can be written equivalently: Find (E, P) € X, x
L?(Q) such that:

9%E , 193 .,
BE = —p in L*(Q)".
€0

INRIA



Generalized formulations of Mazwell’s equations 13

We shall adapt the proof of Girault and Raviart [9] to show that this time dependent
mixed problem has a unique solution. Set

V =Ker B ={v € Xy | divv =0},
V, ={veXo|divv=p/eo},
Ve={g€Xy|(g.v)=0 YveV}
VE={ue Xo|(u,v)x =0 Yo € V}.

We note, that given any element ¢ of H}(Q) such that Ap € L?(Q), one has Vi € Xj.
In addition, there holds by integration by parts

(Vo,v)x = (V,v)o =0, Yo € Hy(Q) s.t. Ap € L*(Q), ve V. (10)
In other words, V¢ belongs to V+. This property will be used hereafter.

Lemma 2 The bilinear form b verifies the inf-sup condition in the space Xo x L*(9):

inf  sup BLICTVE >0

AL (@) vex, [V x][Alo —

Proof. We need to prove that there exists 5 > 0 such that:
b(v, A)

YA € L3(Q),
vexo vllx

= BlIAlo

Let A € L?(Q2). There exists £ € H(Q2) such that A¢ = X in Q. Moreover, |¢]|; < C|[A]|o
with C' > 0 independent of A. Then u = V¢ verifies:

u € L*(Q)3,

divu = X € L*(Q),

curlu = 0 € L*(Q)3,

uxmny, =VExn, =0as e Hy(Q).

Hence u belongs to X,. On the other hand, b(u, \) = (divu, \)o = ||\||Z, and

lalk = lul+ [dive]?

= Ve + AL

< €2+ AL

< 1+

Therefore,

b(u, A A _
2w d) oAl s x4 2172,
Tulx Tulx

RR n° 5850



14 Régine Barthelmé , Patrick Ciarlet , Eric Sonnendriicker

and so b0 A) bl \)
U7 u7
sup > > Bl Allo
vexo lvllx — flullx
with 8 = (1 4+ C?)~'/2 independent of ). [ ]

Theorem 2 Assume that the initial data verify
(Eo, El) € Xo(CuI‘I) X Xy, (11)

and that the sources p and J satisfy

J € C%([0,T); H(div,Q)), peC*([0,T];L*(Q)), (% +divJ)(.,0) = 0. (12)

Then the mized variational formulation {8) has a unique solution (E, P), verifying
E € C°([0, TT; Xo(curl)) N C*([0,T]; Xo) N C*([0, T); H(div, ),
P eCo([0,T); L*()).

Proof. 1. On the one hand, the bilinear form b verifies the inf-sup condition in the space
Xo x L*(Q). Then, according to Lemma [[ B is an isomorphism from V-+ onto L2(2)’.
Hence there exists a unique E+ € V* such that

BE* = p/eo.
Moreover, due to inequality (iii) in Lemma [l and as p € C%([0, T]; L*(2)),
EL e C?([0,T); V7).

On the other hand, let ¢ € HZ(Q) be a solution to Ay = p/e. According to ([[), Vo € V4.
By uniqueness (B is an isomorphism on V+), ELX = V. This implies that

AE* =0, and (E",F) = (E"F),=0forall FeV.
2. Denote by Ay the linear operator defined by Ay : Xog — V', F — Ay F, such that
(AyF,G) = *(curl F, curl G)g, Y(F,G) € Xy x V.

If (E, P) is a solution to the mixed problem (@), it implies that E is a solution to the following
problem restricted to V: Find E € V, such that:

O’E 103

el E=—-—-" inV".

g TAVE= oG

According to (), this problem is equivalent to: Find W = E — E+ € V such that:
PW 193

W + .AVW = —ag in VI. (13)

INRIA



Generalized formulations of Mazwell’s equations 15

Setting

“ ( 6:§V ) A < /?v _OI > /= < —3:3]/60 ) o < E]?O__af}];(.("%) )

this problem becomes

d
T + Au = f, u(0) = uo. (14)

Introduce
H = VxH(div0,Q)
D(A) = {ueH|Aue H} =V(curl) x V.
Let us admit for the moment the following Lemma.
Lemma 3 The operator I + A : D(A) — H is mazimal monotone on H.

According to Remark B, we can apply the Hille-Yosida Theorem: assuming that ug €
D(A) and f € C'([0,T], H), problem () has a unique solution u € C°([0,T], D(A)) N
c([o,T), H).

The hypotheses of the Hille-Yosida Theorem correspond to

e f€C([0,T),H) < 9, € C([0,T], H(div0,Q)).
The right side holds when J € C%([0, T]; H(div,Q)) and p € C2([0, T]; L*(2)).

e ug € D(A) <= E¢—E*(,,0) € V(curl) and E; — ,E*(.,0) € V.
Because of the hypotheses and as curl E+ = 0, one has Eq — E*(.,0) € X¢(curl ). Moreover,
div (Eg — E1(.,0)) = divEg — p(.,0)/eo = 0,

hence Eg—E*(.,0) belongs to V(curl ). In the same way, E; —9;E*(.,0) € X, and because
of [@):

. OE+ . 1 9p
div (El — W(,O)) = leEl — %E(,O)
. 1 0p
_ 2 _ _ "
= div(ccurlBg — J(.,0)/€0) - 8t(.,0)
B 1 .. dp _
= —;(leJ—!—a)(.,O)—O.

Hence E; — O;E*(.,0) belongs to V.

Therefore, the hypotheses of the Hille-Yosida Theorem are all verified, and we get exis-
tence and uniqueness of

u € C°([0,T], D(A))nc*([0,T], H),
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16 Régine Barthelmé , Patrick Ciarlet , Eric Sonnendriicker

which is equivalent to
W € ¢Y([0,T], V(curl)) nC*([0,T], V) N C3([0, T], H(div 0, Q2)),

unique solution to ([[F). Since Xy = V @ V*, we have existence and uniqueness of the
solution E to (@), according to the splitting

E =W +E* € %[0, 7], Xo(curl ) N C*([0, T], Xo) N C2([0, T], H(div, Q).

3. It remains to find P. Because of the inf-sup condition (lemmalfll), B’ is an isomorphism
from L%(Q) on V°. But

193 0°E 193 0°W O°EL
e | Y (A | | 7 - — AE* °,
oot o A ( oo oz A )“L( oz A >€V
Hence there exists a unique P in L2(f2) such that
190 O°E
'‘p—_ %0 Y2 AR o
5 war o AEEV
Using now inequality (ii) of Lemma[ll and the fact that
dJ  O’E 0 53
_E - W -AE€eC ([O,TLL (Q) )7

we obtain that
P e c°([0,T]; L*()).

To complete the proof, we need to prove Lemma
Proof. [Proof of Lemma Bl| Let us show that I + A is maximal monotone on H.
Consider u € D(A).

(I +ADu,u)y = (w1 —wug,ur)y + (u2 + Avur, u2)o.divo
= / (|ul|2 + Alcurlug |2 — ug - ug — Eeurlug - curlug
Q
+ |ua|? + cFeurluy - curlug) dx
= / (Pleurlug |? + |ut|?® + |ua|?> — us - ur) dx > 0.
Q

Hence the operator I + A is monotone.
Consider now f € H. We look for u € D(A) such that (21 + A)u = f, that is, we look for
up € V(curl) and uy € V such that

2ur —us = f1r eV,
2ug + Avu1 = f2 S I{(diVO7 Q)

INRIA



Generalized formulations of Mazwell’s equations 17

This system is equivalent to

Uy = 2u1 — fi1
dug + Ayur = fo +2f1.

The bilinear form (u1,v1) — (4u1,v1)o + ¢*(curluy, curlvy)o is continuous and coercive on
the closed subspace V of Xg. fa + 2f1 € H(div0, Q) defines a linear continuous form on V.
Due to the Lax-Milgram Theorem, there exists a unique u; € V such that

<4u1 + Ay uy, v1>v = (f2 +2f1, 1)1) for all v, € V.

We prove now that c?curlcurlu; = fo + 2f; — 4u; in the sense of distributions.
Let ¢ be any function in D(Q2). There exists a unique A € Hg (2) such that A\ = div . Set
¥ = ¢ — VA: we verify easily that (VA1) € Hy(curl,Q) x V. One has, by definition of u1,

(Ceurleurluy, ¥)v = (Avur, )y = (f2 + 2f1 — dut, ¥)o.

Moreover
(c*curl curluy, V) Hy (curl ,0) = 0.

Therefore, c2curl curlu; = fa + 2f; — 4u; follows in D(Q2)’ and so u; € V(curl).

We deduce the existence of us = 2u; — f; € V. The operator 21 + A is onto on H,
whence I + A is maximal monotone on H. [

The initial problem can finally be solved.
Theorem 3 Under hypotheses (), (I2) and
By € Hy(div 0,$) N H(curl, Q),
problem (E2) has a unique solution (E, B, p) verifying

E € C°([0,T], Xo(curl)) NnC*([0,T], Xo) N C([0, T], L*(Q)?),
B € C([0,T], Hy(div 0,Q) N H(curl, Q) N C*([0, T], Hy(div 0,Q)),
pe Cl([O,TLH(}(Q)).

Proof. Starting from the weak solution (E, P) obtained from Theorem B we build B and
p, then we prove that (E, B, p) is a strong solution to problem (E2).
Due to @), divE = p/eg in L?() for all ¢. The boundary condition E x n|,. = 0 follows
from the fact that E is in the space X,. For all ¢ € D(Q)3, we have
O°E

(W + *curlcurlE — VP, ¢)g = _;(a
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18 Régine Barthelmé , Patrick Ciarlet , Eric Sonnendriicker

hence - )
190  O°E
VP = s + e + c*curlcurl E in L?(9).

We deduce that P € C°([0,7], H'(2)). Thus, P has a meaning in L*(I). To prove that it
is equal to zero, let us take sufficiently many test functions... Recall that Q is a polyhedron,
so that its boundary is composed of faces (I'y),. The union U,D(T) is dense in L?(T'). So,
for a given face I'y,, let A € D(T'y,). According to Proposition 3.2 of [I], there exists v € X
such that v - n|. = A. Using this v as a test function in (8), we find that

O:/Pv-ndf‘:/ P XdlL.
r r

ko

In other words, P, =0 and P € C°([0,T], Hj(%)).
On the other hand J € C?([0, 7], H(div,2)), whence ¢ € C%([0,T], H}(£2)). From the

equality

dp 1 10y
+r _ T _p
ot 02( €0 ot )

and from p(.,0) = 0, we finally get p € C1([0,T], H}(£2)). Let now B be a solution to

0B
i —curlE, B(.,0) = By.

We know that curl E € C°([0, T], Ho(div 0,Q) N H(curl,Q)) N CL([0,T], Ho(div 0, 2)), since
curl E - njp = curl (E x n)|p = 0.

As By € Hy(div0,Q) N H(curl, Q), we finally get B € C*([0, 7], Ho(div 0, Q) N H(curl ,2)) N

C2((0,T], Ho(div 0, 2)). n

5 Well-posedness for the parabolic correction

Problem (P1) consists in finding E,B : Q x [0,7] — R? and p: Q x [0,7] — R such that

OE 1
— —ewlB+AVp=——17J
€0

b
E + CurlE = 0 (15)
p+divE="2

€0

along with the initial conditions (B and the boundary conditions (H).

The main difference with the previous Section (elliptic correction) is that, since one can
replace p by p/eg —div E, there is no need for a mixed (or saddle-point) formulation involving
both E and p. Proofs will then be technically simpler here...

INRIA



Generalized formulations of Mazwell’s equations 19

To simplify the setting further, we can consider that p = 0. Indeed if p € C¥([0,T], L3()),
there exists ¢ € C*([0,T], Hj (2)) such that Ap = p/eq, i. e. Vi roughly plays the role of
E! of Subsection Setting W = E — Vp and J = J + ¢90:(Vy), the previous problem
can be written with a vanishing source term in the last equation. We thus consider that
p = 0 in the sequel.

5.1 The second order uncoupled equations

Proposition 3 Problem (P1) is equivalent to problem (P2): Find E,B,p solutions to

’E E 107
29? + Peurl curl E — 2Vdiv (?9_t = —5% 1
o = —curlE (16)
p=—divE

with boundary conditions [)) and initial conditions [@) and [@).

The proof is omitted, since it is very similar to the proof of Proposition [T

5.2 Variational formulation in E

To build a variational formulation, let us assume that there exists a smooth solution (E, B, p)
to problem (P2). As to the required smoothness, we refer the reader to Remark B, with p
replaced by 0,p = —0,div E. Given F in X, we have

1,0J O’E . OE
Gy, = (G Flx, +C(eulewl B F) = (Vdiv 52 F)
O’E . OE
= <—8t2 ,F>X0 + c2<cur1 curlE,F>H0(Cur17g)), - 02<Vd1" ot F>H(div,£2)
0’E . OE |
= <W’ F>X0 + cz(curlEmurlF)O + c*(div a0 dlvF)O.

Above, we are looking for E € X. This variational formulation can be written equivalently:
find E € X such that

O°E OE 103 .
W‘FAE“FBE——QE mn XO’ (17)

where the linear forms are now defined by
(AF,G) = ¢*(curlF,curlG) ,, (BF,G) =c*(divF,divG), ,

for F,G € Xy. From problem ([7), one can simply rebuild the first equation of ([H) in X,
provided again E is smooth enough.
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20 Régine Barthelmé , Patrick Ciarlet , Eric Sonnendriicker

The boundary condition on E follows from the definition of the space Xo = Ho(curl, ) N
H(div, ). Finally, the one on p = —div E is contained in the variational formulation.

[ E (0 -I B 0 ([ E
Setu_((?tE)’A_(A B)’f_<—8tJ/eo>anduo_<E1>' The
problem () with initial conditions (H) and (@) then reads

d
d_? +Au=f in X}?, u(.,0)=up. (18)

Set H = Xo x L*(Q)? and D(A) = {u € Xo x Xo; Auy + Buy € L*(Q)3}.
Lemma 4 The operator I + A : D(A) — H is mazimal monotone.
Proof. Let u € D(A). Then
((I+A)u,u)y = (ur —uz,u1)x, + (uz + Aui + Bug, uz)o
- / (Ju1)? + leurlug | + 2(divu)? — ug - us — c2eurluy - curlug
l — Adivuydivug + |us|? + c2eurlug - curlug + ¢*(divug)?) dz
= /Q(c2|curlu1|2 + A (divug)? + A(divug)? — ?divuy divuy

+ |u1|2 + |u2|2 —ug - uy) dr
> 0.

Hence I + A is monotone. Let f € H. We look for u € D(A) such that (2] + A)u = f, that

1S
2u; —ug = f1 € Xo,
2us + Aui + Bug = fQ S L2(Q)3.

This system is equivalent to

uy = 3 (uz + f1),
dus + Aus + 2Bugs = 2f5 — Afy.

As f1 € Xo and fo € L?(Q)3, 2f> — Af; is a continuous linear form on Xy. The bilinear
form (ug,vs) —< 4us + Aug + 2Bus, v3 >x, is continuous and coercive on Xg. Due to the
Lax-Milgram Theorem, there exists us € X such that (47 + A+ 2B)us = 2f2 — Af1 in X|.
Then u1 = $(uz + f1) € Xo and Auy + Bug = fo — 2us € L*(Q)3. Hence 2 + A is onto and
the operator I + A is maximal monotone. [ ]

Theorem 4 If the source satisfy

J eC*([0,7],L%(Q)%) (and p € C'([0,T],L*(9)) ),
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Generalized formulations of Mazwell’s equations 21

and if the initial data verify
(Eo,Bo) € Xo x Ho(div0,), E; € Xo, AE( + BE; € L*(Q)?,
then problem (P1) has a unique solution verifying

E € C1([0,T], Xo) N C2([0, T], LA(Q)*),
B € C2([0,T), Ho(div 0, 2)),
peCH([0,T], L*(2)).

Proof. According to Lemma B we can apply the Hille-Yosida Theorem to the equivalent
problem ([I¥). The hypotheses on the source terms and on the data mean that ug € D(A)
and f € C([0,T], H). Then problem (I¥) has a unique solution u verifying

u € C°([0,T], D(A))nC([0,T], H).

The regularity results on E, p and B follow readily. [ ]

6  Well-posedness for the hyperbolic correction

Problem (H1) consists in finding E, B : Q x [0,7] — R? and p: Q x [0,T] — R such that

OE 1
— —ecwlB+AVp=——17J
€0

5b

B +curlE=0 (19)
D gvE~ L

5 +divE = o

along with the initial conditions (f) and the boundary conditions

op , Op
E = r, — — = T.
xn=0onl, 8t+can 0 on

Then if p is a sufficiently smooth solution, it satisfies the following system

>p 2 1 (dp .
52 ¢ Ap = P (E —i—dle) on Q x [0,7T],
@—l—c@:Ooan[O,TL (20)
ot on

9p

p(.,0) =0, a(.,()) =0on Q.
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Proposition 4 The variational formulation of problem (1) is: Find p(t) € H*(Q) such
that for all ¢ € H*(Q) we have

d2

d 1.0 .
@(p, Q)o + (Vp,Vq)o +c— [ pg dl = 6—(—[) +divJ, q)o. (21)

dt T 0 at

We set, for p,q € H'(Q),
(Ap,q) = A(Vp,Vq)o, (Cp,q) = 0/pq dr.
N

We thus define bounded linear operators A,C € L(H*(2), H'(2)"). The variational problem
E&1) can be rewritten: Find p(t) € H*(Q)) such that
02 op 1

@p—kAp—kC

op . 1 ’
T E0(815 +divJ) on H'(Q2)'.

This is finally equivalent to finding u = (p, d;p) € H such that

where we set

I= ( <atp+§ivJ>/eo >

S
Il
T~
n o
oL
~——

H = HYQ) xL*Q),
D(A) = {ve HY(Q)x H Q) | Avi + Cvy € L*(Q)}.

Lemma 5 The operator I + A : D(A) — H is mazimal monotone.

Proof. We consider the scaled scalar product on H!(Q):
(u, )1, = /Q(CQVu Vv +uv) de for u,v€ HY(RQ).
Let u = (u1,u2) € D(A).
(I 4+ Au,u)y = /Q(C2|VU1|2 +ud 4+ u) dr+ (—uz,u1)1 4 + (Aug + Cus,uz)o dr

:/(C2|Vu1|2+u%+ug—u2u1) dx—i—c/u% dar
Q r

> 0.
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Hence I 4+ A is monotone. Let f € H. We look for u € D(A) such that (21 + A)u = f, that

1S
2u1 — ug = f1 S Hl(Q),
2uo + Aug + Cug = fQ S L2(Q),

which is equivalent to

uy = 3(uz + f1),
4us + Ausg + 2Cus = 2f2 — Afl S Hl(Q)/.

The bilinear form defined from the operator 4us+.Aug +2Cus € H' ()’ is clearly continuous
and coercive on H'(Q)2. The linear form 2f; — Af; is continuous on H'(Q). Applying the
Lax-Milgram Theorem, there exists a unique us € H'(Q2) such that dus + Aug + 2Cus =
2fs — Afi.

Let u; = % (uz + f1), then uy € H*(2) and Auy + Cup = fo — 2up € L?(12), hence u € D(A).
The operator 21 + A : D(A) — H is onto, hence I + A is maximal monotone. [ |

Define the functional set
E(AHY Q) ={qe H'(Q) | Ag e L*(Q)}.

Proposition 5 If p(.,0) = 0, d;p(.,0) = 0 and (O¢p + div]) € C([0,T],L*(Q)), then
problem (Z1) admits a unique solution p such that

. 22
Eandc@+@:OonF. (22)

{ p € C([0,T], E(A, H'())) nC'([0,T], H'(2)) N C*([0,T7], L*(Q)),
on Ot

Proof. Applying the Hille-Yosida Theorem, the problem has a unique weak solution
p € CH([0,T], H'(€2)) N C*([0,T], L*(2)).
For any test function ¢ € D(2), the variational formulation reads

821’ 2 1 dp .
(Wa (p)O +c (vpa V‘P)O - g(a + leJa()Q)Ov

whence 52 L
p 14 .
TP Ap=—-(2 1 divy 23
00— ap= (P i), 23)
and so Ap € C°([0,7T], L*(R2)). In other words, p € C°([0,T], E(A, H*(Q2))). In particular,
there holds, according to the above, d;p|r in H'/2(T'), and 9,p|r in H~Y/*(T).
For any test function ¢ € C*°(f2), the variational formulation yields

82]) 2 8]) 8}) 1 8/) .
(m —C Ap7 SO)O + C<Ca_n + 57 SD>H1/2(F) - 5(5 + leJ7g0)0'
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According to equality [3) which is valid in L?(Q2), we have

dp  Op %o (@
<Can+57(p>H1/2(p) =0, Vpecl (Q)
In other words,
op  Op _ . —1/2
can—i—at—OmH (T).

Since O;p|r belongs to C°([0,T], H'/*(I")), the above equality holds in the classical sense. B
This result can be improved, when the domain (2 is convex.
Corollary 1 Assume the domain $Q is convex, then
p € CO([0,T), H*(2)).

Proof. This is a straightforward consequence of the fact that, since J,pr belongs to
CO([0,T], HY/*(I")), Vp is a continuous function of ¢ in the space

{f € H(curl,Q) N H(div,Q) | £-n,, € H/*I)}.

According to [7][Chapter IX, pp. 247-248], this functional space is actually imbedded in
H'(Q)? when Q is convex. ]

We then conclude by solving the hyperbolically corrected problem (H1).
Corollary 2 Assume that the sources verify
p€C*([0,T),L*(R)), JecC'([0,T],H(div,Q)),
and that the initial conditions verify

p(.,O) =0, %(,O) =0, (EQ,BQ) € Xo x X.

Then problem (H1) has a unigque solution with p as in (Z4) and
E € C°([0,T], Xo) NC'([0,T], H(div,Q)), B e C’([0,T],X)NC([0,T), Ho(div,)).

Proof. As (0;p+divJ) € C1(]0,T], L%(92)), we can apply the previous Proposition whence
the existence and uniqueness of

pe CO([O,T]7E(A7H1(Q))) ﬂcl([O7T],H1(Q)) 062([0ﬂT]7L2(Q))7

solution to (). This implies in turn

(i +2Vp) € C°([0,T), H(div,Q)), Band (£ — %) € CH([0,T], L*(9)).
€0 €0
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Moreover, p being solution to 1), we have

o,p Op J 9 1 0p Pp
O div (= Vp) = — (== +divd) — — Ap =0.
gt o) TG eV = DGy HdivD) - G A

As expected, p accounts for the targeted hyperbolic correction on the continuity equation ().
We can then apply Theorem [ to conclude. Indeed, use the classical setting

([ E _ 0 —ccurl _( J/eo+AVp [ Eg
u_<cB)’A_<ccurl 0 )’f_( 0 » U0 = cBy )’

with H = L?(Q)3x L?(Q)3, and D(A) = Hy(curl, Q) x H(curl, ). The assumptions of The-
orem [I] are easily checked. The additional regularity on the divergence of the electromagnetic
field, and the vanishing normal trace of the magnetic field, stem from the relationships

Ip

WwE=L2 _ % q9B__
divE = TS and ET curl E.
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