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Abstract:  As the size of distributed systems keeps growing, the peer to peer communica-
tion paradigm has been identified as the key to scalability. Peer to peer overlay networks are
characterized by their self-organizing capabilities, resilience to failure and fully decentralized
control. In a peer to peer overlay, no entity has a global knowledge of the system. As much
as this property is essential to ensure the scalability, monitoring the system under such
circumstances is a complex task. Yet, estimating the size of the system is a core functional-
ity for many distributed applications to parameter setting or monitoring purposes. In this
paper, we propose a comparative study between three algorithms that estimate in a fully
decentralized way the size of a peer to peer overlay. Candidate approaches are generally
applicable irrespective of the underlying structure of the peer to peer overlay. The paper
reports the head to head comparison of estimation system size algorithms. The simulations
have been conducted using the same simulation framework and inputs and highlight the
differences in cost and accuracy of the estimation between the algorithms both in static and
dynamic settings.
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Peer to peer size estimation in large and dynamic
networks: A comparative study

Résumé : Alors que la taille des systémes distribués ne cesse d’augmenter, le paradigme
du pair & pair est considéré comme la clé du passage & ’échelle. Les réseaux pair & pair
sont, caractérisés par leur capacités d’auto organisation, de résistance aux défaillances et
par leur aspect totalement décentralisé. Dans ce cadre d’une couche logique pair & pair,
aucune entité ne posséde de connaissance globale du systéme; alors que cette propriété est
essentielle pour assurer le passage & 1’échelle du systéme, la supervision de celui ci sous
certaines circonstances devient une tiche complexe. L’estimation de la taille du systéme
est pourtant une nécessité pour de nombreuses applications distribuées, pour ’ajustement
des paramétres ou pour des besoins de supervisions par exemple. Dans ce papier, nous
proposons une étude comparative entre trois algorithmes représentatifs de trois classes de
solutions préalablement proposées. Ceux ci estiment, d’une fagon totalement distribuée, le
nombre de pairs au sein d’une couche réseau pair & pair. Les approches candidates sont
applicables indépendamment de la couche sous-jacente. Ce papier fournit une comparaison
de ces trois algorithmes, au sein du méme simulateur comportant les mémes parameétres,
et ceci afin d’apporter une critique la plus objective possible. Les simulations soulignent
des différences notables de précision d’estimation et de colt de ces algorithmes, dans des
contextes de réseaux statiques et dynamiques.

Mots-clé : pair & pair, comptage, estimation de taille, comparaison
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1 Introduction

The past decade has been marked by a tremendous shift in the scale of distributed systems.
One of the most striking consequences is that most of traditional algorithms are no longer
relevant in such a context. To cope with an increasing number of participants, the peer to
peer communication paradigm has been imposed as a key to fill this gap and many algorithms
relies on such a model both in industry and academia.

Peer to peer systems are scalable, self-organizing and resilient to failures. They provide
an attractive support for many applications from file sharing systems (e.g. Kazaa, Gnutella)
to video over IP applications (e.g. CoolStreeming), or voice on IP applications (e.g. Skype).
A peer to peer overlay network connects peers in a logical manner on top of IP so that each
peer is aware of a small subset of the network. Yet, the sum of individual decisions based
on a restricted knowledge makes the system converging towards global properties.

As much as the fully decentralized nature of a peer to peer system is essential to the
scalability, it makes the system monitoring much more complex. Obtaining global statistics
on the system becomes a hard issue. However, such statistics might be crucial to adjust
the parameters of the system as the structure and characteristics change over time. System
size estimation is one of the most crucial statistic to be collected on a system since it can
be used for many purposes such as parameter value setting or network monitoring. For
example, some peer to peer protocols require this estimation as an input parameter: the
constant degree of the Viceroy network [10] requires this information to choose a level for
an incoming peer. Some gossip-based protocols use this information to compute the number
of gossip targets of a message to reach given propagation probabilities [5],[3].

Whereas the number of participants can easily be tracked by a set of servers in server-
based systems (e.g. Naspter), it is no longer obvious in a fully unstructured network where
each node is connected to a set of random neighbors (e.g. Gnutella, Freenet). In the context
of structured overlay networks, several algorithms relying on the actual structure of the
network have been proposed ([15, 9, 11, 12]). Such algorithms exploit the fact that node
identifiers are uniformly assigned at random. The size estimation may then be directly
inferred from the observation of the density of identifiers that fall into a given subset of the
global identifier space.

While those methods provide good approximation of the system size, their applicability is
strictly limited to those identifier-based overlay networks. Instead, in this paper, we consider
generally applicable solutions irrespective of the underlying network topology. The main
motivation of this paper is to compare several generally applicable algorithms to estimate the
system size in both static and dynamic contexts in an attempt to help application developers
to choose the best strategy for a given setting/cost/accuracy. To this end, we have carefully
chosen three candidate algorithms, each representative of a class of approaches, for the head
to head comparison. The first algorithm relies on random walks, using the inverted birthday
paradox, the second candidate is based on probabilistic polling while the last one relies on
epidemic-based information aggregation. To the best of our knowledge such a comparison
is the first of its kind. The only paper we are aware of comparing different fully distributed
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4 Le Merrer, Kermarrec & Massoulié

algorithms is [15] comparing the Hops Sampling method, discussed in this paper, with an
interval density based approach.

We implemented the three candidates algorithms and simulated their behavior against
the same inputs for a fair comparison. In this paper, we report the simulation results
and compare the methods along their accuracy, overhead and reactivity to changes in the
environment.

The rest of the paper is structured as follow. In the next section, we provide some
background of generic solution to estimate in a decentralized way the size of a large system.
In Section 3, we successively describe the three candidate algorithms. These methods are
then evaluated and compared and the results are reported in Section 4. We discuss the
pros and cons of the compared candidates based on the simulation results in Section 5 and
conclude in Section 6.

2 Background on generic counting algorithms

In this section, we provide some background on the three main generic distributed counting
approaches we have identified.

The algorithms belonging to the first class rely on called probaebilistic polling or ran-
domized report techniques. In such approach, the basic idea is to probe the network in a
probabilistic way and to infer the size of the system based on the set of replies. To this end,
the initiator node broadcasts a message to all nodes in the overlay, and waits for responses.
Upon receipt of a broadcast message, the nodes send back a response with a probability
depending on the probability parameter set in the broadcast message [1, 4], or based on
their distance to the initiator node [9] for example. In this paper, we chose the last one as a
candidate for comparison; the fact of using node’s distance to the initiator node could lower
message overhead compared to simple probabilistic response, as fewer "far nodes" should
reply with messages that will cross an important part of the overlay. This algorithm has
also been evaluated in [9] and will permit us by results comparison to validate our simulator
approach.

The second class of approaches relies on epidemic algorithms to permanently gather
information on the system by constantly exchanging information between peers, mostly in a
random manner [7, 6, 17]. Epidemic algorithms have recently received a lot of attention due
to their great resilience to failure; they also have been used for aggregation applications [16].
The algorithm presented in [7] is based on a push-pull anti-entropy epidemic protocol. In this
protocol, each peer periodically selects another peer at random to exchange information with.
During this epidemic propagation, an aggregation of values will gradually take place, hosted
by each cooperating overlay node, thus leading to a global value aggregate representing the
targeted system size. This method has proven to be accurate and to converge pretty quickly.
We chose this algorithim as a candidate.

Finally, the last class gathers the approaches relying on random walks. For example, [1]
proposes a random increasing walk on the topology, in an overlay were each node owns an
identifier. Starting from the node with the smallest id, the message is forwarded toward
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higher id nodes. This method however suffers from the same drawbacks as density-based
approaches since it relies on identifier assignment. [13] first introduces the Random Tour
method, based on an emulation of the return time of a random walk to the initiating node.
The second method proposes [13], the SampleésCollide algorithm, uses random walks to
produce an unbiased sampling (uniformly at random) of overlay nodes. Those samples are
then used to compute the system size according to the inverted birthday paradoz introduced
in [1]. Given the results provided in [13], the overhead of the SampleéCollide algorithm
is much lower than the one of Random Tour. Therefore, we chose the Sample€é4Collide
algorithm as the candidate of this class.

3 Candidate algorithms overviews

3.1 Sample&Collide

The Sample and collide method [13] is inspired from the “Inverted Birthday Paradox” intro-
duced in [1]. The “birthday paradox” states that the probability of having two people in a
room that have the same birthday is at least 1/2, for a group of 23 peoples. Sample&Collide
builds upon this technique to estimate the system size. The estimation relies on drawing
a peer sample uniformly at random and to use the sample to approximate the system size.
This is based on the number of samples observed between two identical samples.

The algorithm works as follows: the initiator samples nodes uniformly at random until a
sample returns a node that already has been selected. X, the expected number of samples
is v/2n; the system size is thus estimated to N = X?/2.

This algorithm heavily relies on the correctness of the sampling method used. Sam-
pleé4Collide approach improves upon the approach presented in [1] in two ways: first the
sample method provides some unbiased results by emulating a continuous random walk (as
opposed to discrete time random walks) and second, the way the sample is used is refined.

The uniform peer sampling technique which produces unbiased samples is implemented
as follows: the initiator node sets a predefined value 7" > 0. This value is then sent to a
neighbor chosen uniformly at random. Each node receiving the message first picks a random
number U, uniformly distributed on [0, 1]; it then simply decrements T' by log(U)/d; (d; is
the degree of the current node), and forwards the message to a neighbor, if T > 0. Otherwise
the current node is the sample node, and it returns its id to the initiator.

The accuracy/overhead tradeoff of this algorithm relies on the control parameter [ which
determines the number of newly sampled nodes that have already been observed. The
greater [, the more precise is the estimation, but the higher is the generated overhead.

The details of the algorithm, the analysis and simulation results are available in [13] as
well as a comparison with the Random tour approach. Results show that the SampleédCollide
approach improves upon the Random Tour and justify the choice of the former in this
comparative study.

RR n~ 5842



6 Le Merrer, Kermarrec & Massoulié

3.2 HopsSampling

The second candidate approach we chose is called the HopsSampling and represents in this
comparative study the class of probabilistic polling approaches. Two versions of the Hops
Sampling algorithm are presented in [15] and [9]: the gossipSample and minHopsReporting
heuristics.

As a first step to choose the candidate approach for the comparison, we tried to reproduce
the results obtained in [15] and [9]. We were able to reproduce the results obtained using
the minHopsReporting heuristic. The results we obtained by implementing the pseudo-code
in [15] (gossipSample heuristic) somehow led to less accurate results. Therefore for the sake
of fairness, and after discussions with the authors [14], we decided to choose the system size
estimation algorithm relying on the minHopsReporting heuristic.

This algorithm is based on the probabilistic polling technique where an initiator spreads
messages in the network and estimates the system size based on the replies it gets back.
These messages are send back in a probabilistic manner. The HopsSampling algorithm,
evaluated in this paper works as follows: an initiator node spreads by gossip a message across
the network. Initially this message contains hopCount set to 0. At each traversed node,
this value is incremented; the lowest hopCount value received by a node is remembered and
represents its distance from the count initiator. Then, depending on each node’s distance (in
order to avoid massive flood towards the initiator), there is a probabilistic response message
sent to the initiator node: (i) if hopCount < minHopsReporting, a response is set with
probability 1, else (ii) the response is sent with probability OssipTohoprmlmmHops Ferorrg -
For each message count received from nodes at a certain gistance, the initiator needs to
multiply it by the percentage of peers in the network they represents. For example, if
minHopsReporting = 2, only 25% of nodes with distance 4 will report back. The number
of collected responses will thus be multiplied by rl%, i.e. 4. The system size is then
extrapolated from theses collected returns.

This algorithm works with a priori fixed parameters values discussed in [15, 9]. We have
also talked about those parameters value in [14] to ensure a fair comparison.

3.3 Gossip-based Aggregation

The last chosen approach for comparison is representative of the class of epidemic-based
approaches. Epidemic-based protocols have recently received a lot of attention given their
scalability properties. In an epidemic protocol, each peer periodically exchanges information
with one of its neighbor picked at random. In [7], a gossip-based aggregation protocol is
presented and the results, that we were able to reproduce, show that this approach provides
accurate results.

This approach [7] relies on the following statement: if exactly one node of the system
holds a value equal to 1, and all the other values are equal to 0, the average is 1/N. The
system size could thus be directly computed. To run this algorithm, an initiator should take
the value equal to 1, and start gossiping; the reached nodes participate to the process by
setting their value to 0. At each predefined cycle, each node in the network chooses one of
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its neighbor at random and swaps its estimation parameter. The contacted node does the
same (push/pull heuristic of [7]). Both nodes then recompute their estimation as follows:

EstimationJrNeighbor’ s__Estimation
2

FEstimation «—

To provide correct estimations, this algorithm needs to wait a certain number of rounds
to elapse before computing the size estimation; this period is the required time for the gossip
to propagates in the whole overlay and for the values to converge.

This method converges toward exact system size in a stable system. More details may
be found in [7].

3.4 Summary

We have chosen three candidate algorithms, that we believe are representative of three
classes of generic solutions to estimate the size of a large-scale peer to peer system in a fully
decentralized way. They are applicable to any peer to peer overlay in which each node is
connected to a set of random neighbors. Most of structured overlays, such as e.g. Pastry,
fall into this category.

The goal of the comparative study is then to run simulations in the same framework in
order to compare those methods not only in terms of accuracy but overhead and resilience
to dynamic changes.

4 Evaluation

4.1 Experimental Setup

One of the main metrics along which we compare the different algorithms is their scalability
in terms of overhead, as well as their accuracy as the system size varies. Given the considered
scale, which could not realistically be reached in a lab testing environment, we evaluated
them using a discrete event simulator, able to simulate static and dynamic network con-
figurations. The simulator counts the messages over the network. It does not model the
physical network topology nor the queuing delays and packet losses.

The first step of the simulation, as mentioned in the previous section, was to reproduce
the results obtained by the authors of each algorithm. This step has been successfully
reached for the three considered algorithms and we now compare them in the same simulation
environment.

The simulations were run on unstructured peer to peer networks. To this end, we built
the peer to peer overlay as a random graph, where each node was provided with a set of k
neighbors, chosen uniformly at random among the whole set of peers. We do not consider in
this paper the actual construction of such graphs but several approaches exist to build such
peer to peer overlay in practice [8]. In order to be as close as possible from real world imple-
mentations, the graphs we used in the evaluation where not fully homogeneous graphs where
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8 Le Merrer, Kermarrec & Massoulié

each node had the same number of neighbors. Instead, each node owns a random number of
neighbors, below a given threshold. This reflects for instance heterogeneity between nodes
in terms of number of incoming and outgoing links capacities. We also run some tests in
the context of homogeneous graphs. This parameter consistently improved all algorithms.
Therefore, we chose the worst case setting and present the results of experiments conducted
on heterogeneous networks.

In all test configurations, each node has a number of neighbors varying between log(N)
and 2xlog(N), N being the actual size of the system. This value ensures graph connectivity.
This represents 10 neighbors max for a 100,000 node overlay, and 8 max for 1,000,000".

The links between nodes are assumed to be bidirectional (whenever a node contacts
another one, the reached node also has knowledge of communication initiator’s existence
and keeps a link back to the contact node), leading to an undirected graph. We ensured
that overlays used in our experiments are always connected. We verified this property by first
initiating a tree-based count technique [1]: if each node is reachable by the count initiator,
then the final count is equal to the targeted size.

We scaled up to 1,000,000 node graphs, but dynamic environment was created on 100,000
node graphs for practical considerations. Node removals may introduce a loss of connectivity
for the remaining nodes; in this simulation, the nodes that have lost one or several neighbors
do not create new links with other nodes.

The rest of the section is organized as follows: We first describe the evaluation criteria.
In Section 4.3, we report the results obtained in static contexts and in Section 4.4, we
introduce some dynamics in the system to evaluate the various algorithms capabilities to
provide reactive estimations. Section 4.5 provides some overhead results.

4.2 FEvaluation criteria

We used several metrics to evaluate the different approaches to estimate in a distributed
fashion the size of a large-scale dynamic system.

Accuracy One of the most important criterion is the quality of the estimate and the speed
to which this accuracy is reached. This is an important parameter for the use of the system
size information. For some applications, a quick approximation might be more appropriate
than a more accurate one which would take much longer to compute.

Reactivity to changes A second characteristic we want to compare the approaches
against is their ability to react to changes in the environment. To this end, we compute the
time to react to a growth or increase of the number of peers in the system.

Overhead The third important criterion is the overhead of each approach. In this pa-
per, we compute the overhead as the number of messages required to compute the system

1We used 8 neighbors per node for 1,000,000 node graph due to limitations of our computing capacities
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size. This information could be extrapolated by forthcoming designers to approximate the
bandwidth and the computational resources that will be needed by the application.

4.3 Simulation results in static contexts

In the following set of experiments, the algorithms run on an already constructed overlay
where peers are connected to a random graph, which size remains static throughout the
experiments. On the following figures, the system size is normalized to 100 to enable us to
express the quality of the estimation in terms of percentage.

Sample&collide The quality of SampleédCollide’s estimations depends upon the value
of the T" and | parameters. In the rest of the experiments we set 7' to 10; this value is
sufficient for an accurate sampling [13]. Figures 1 and 2 depict the quality (on the y axis)
of an estimation respectively in a 100,000 and 1,000,000 node configuration depending on
the number of estimations computed over time (x axis). The dashed curve represents a
oneShot estimation which is a single non averaged estimation while the continuous curve,
Last10runs, is the average of the 10 last estimations. In these experiments we set [ to 200,
we will consider other values later in the evaluation.

Our first observation is that the results show that the oneShot curve remains most of
the time in a 10% precision window, with some peaks at 20%. The last10runs one remains
within 3 or 4% of the exact value. Obviously oneShot has a very low overhead as compared
to the last10run one. Therefore, in the rest of the paper, the Sample€Collide approach will
be related to the oneShot configuration.

140

120 1

80 [ 1

Quality %

60 [ q

40 —

20 | 1

Last 10 runs
 one shot‘

0 L L L L L L L
0 10 20 30 40 50 60 70 80 90 100

Number of estimations

Figure 1: Sample@collide: Oneshot and last10runs heuristic with 1=200, 100,000 node network, static
environment

Hops Sampling We evaluated this algorithm first in small size networks in order to repro-
duce the results presented in [9], and observed similar results. We used in our implementation
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140

120 q

100 [~ T2 - —

80 [ q

Quality %

40 | B

Last 10 runs
One shot

0 1 1
0 5 10 15 20
Number of estimations

Figure 2: Sampleédcollide: Oneshot and last10runs heuristic with 1=200, 1,000,000 node network

the following values for the parameters: gossipTo = 2, gossipFor = 1, gossipUntil = 1,
minHopsReporting = 5.

Figures 3 and 4 depict the quality of the estimation (y axis), depending on the number
of runs (x axis), respectively in a 100,000 and 1,000,000 node configuration. As in Sam-
ple€dCollide, we report the one shot and average over the last 10 runs results. We observe
that the algorithm scales well. We also observe not surprisingly that the last10runs heuristic
provides a less noisy curve. All observed results for last10runs remain in a 20% precision
range, while oneShot has some peaks over 50% of error. Both have a consistent tendency
for under estimation.

140

120 E
100
80 ‘ ] - e —

60 1

Quality %

40 7

20 1
Last 10 runs
o ‘ ‘ ‘ one shot

0 20 40 60 80 100
Number of estimations

Figure 3: HopsSampling: Oneshot and last10runs heuristics, 100,000 node network

Aggregation Finally, we implemented the epidemic-based aggregation protocol [7] and
conducted the same set of experiments. The results match the ones presented in the original
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L Last 10 runs
160 one shot

140 - 1
120 - 1

100 - 1

Quality %

80 | —
60 | g
40 b ]
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0 2 4 6 8 10 12 14 16 18 20
Number of estimations

Figure 4: HopsSampling: Oneshot and last10runs heuristics, 1,000,000 node network

paper. One initiator node was chosen at random and initiated a gossip-based algorithm by
exchanging information with a neighbor picked up at random and averaging the new value.

The results are reported on Figures 5 and 6 for respectively a 100,000 and 1,000,000 node
network and give the quality of the estimation given the number of rounds. Experiments
show that the size estimation naturally converges towards 100% precision around 40 rounds
for 100,000 nodes and around 55 for 1,000,000 node network. The results confirm the
accuracy of the algorithm, the quality and scalability of the convergence speed in static
settings.

100 - _
80 i
X
z oor 1
® i
3 I
||
40 + /Hf |
| Wi
Wi
|4
|
20 - | f ]
Estimation #1 ——
\/ Estimation #2
0 LY ) ) ) Estimation‘#S
0 20 40 60 80 100
#Round

Figure 5: Aggregation: 100,000 node network

Static setting, summary Our primary conclusion is that the Aggregation algorithm
provides accurate, and eventually exact, results in a reasonable number of cycles. This
algorithm may leverage the gossip-based underlying protocol if any. In this paper, we do
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Figure 6: Aggregation: 1,000,000 node network

not take into account this underlying protocol. Aggregation is a sound approach for static
settings, although no formal analysis is provided along with the algorithm.

HopsSampling and SampleéCollide produce more noisy curves although the accuracy
window remains reasonable. We observed a tendency for HopsSampling to produce little
underestimated results; this matches experiments in [15, 9]. The fact that the algorithm
should not be biased makes us think that this surprising result is due to the fact that not
all nodes are reached during the process message spread, or because the distances from the
node initiator are not precise enough, probably due to non optimal parameter setting.

4.4 Simulation results in dynamic context

Peer to peer overlay systems are subject to dramatic size variations over time given the
versatility of the participating entities. A distributed estimation size algorithm should be
able to react to such dramatic changes.

In order to simulate a changing environment, we applied constant nodes arrivals and
departures (+/-50%) as well as catastrophic failures (-25%) and evaluated the accuracy of
the size estimation in such contexts.

As the number of nodes in the system now keeps varying, the value on the y-axis of the
figures is no longer normalized but represents the actual network size.

Sample&Collide The algorithm has to be executed perpetually in order to track size
variations; the monitoring process should sample continuously the system in order to provide
periodical estimations. Figures 7, 8 and 9 report the evolution of the estimation in a 100,000
node network in three scenarii: a catastrophic failure scenario, a growing scenario and a
shrinking one.

All results show that the algorithm reacts very well to changes, even brutal, of sizes in
the network and is therefore able to handle effectively network dynamics.
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Figure 7 Sample@’collide: oneShot heuristic, 100,000 node network, catastrophic failures
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Figure 8: Sampleécollide: oneShot, 100,000 node network, growing network

Real network size
Estimation #1
Estimation #2 - 4
Estimation #3

20

40 60 80 100
Number of estimations

Figure 9: Sample€collide: oneShot, 100,000 node network, shrinking network
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HopsSampling To cope with changing scenario, the algorithm needs to be restarted pe-
riodically, there is no gradual adaptation of the estimation as new polls must be gossiped
for each estimation.

Figures 10, 12 and 11 report the evolution of the estimation in a 100,000 node network,
implementing the lastl0runs heuristic in the three considered scenarii. The results show
a good algorithm behavior facing dynamic network, without any impact due to the over-
lay degradation or increase. However, we can observe that results remain slightly under
estimated and show a higher variation around the real size than in SampleésCollide.

120000 .
Real size  +
. Estimat!on #1
100000 Estimation #2 - |

Estimation #3
80000

60000

Size

40000

20000

0 . . . .
0 200 400 600 800 1000

Time

Figure 10: HopsSampling: Last10runs heuristic, 100,000 node network, catastrophic failures
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80000 Real Network Size
Estimation #1 -
Estimation #2 -
' Estimation #3
60000 L L L L
0 200 400 600 800 1000
Time

Figure 11: HopsSampling: Last10runs heuristic, 100,000 node network, growing network

Aggregation In adynamic context, the aggregation algorithm is unable, and this is intrin-
sic to the way the algorithm works due to the value setting, to take node’s arrivals/departures
into account once an evaluation process is launched. This is due to the fact that during the
aggregation process, a node sends its information to a random alive neighbor. Thus, there
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Figure 12: HopsSampling: Last10runs heuristic, 100,000 node network, shrinking network

is a conservative effect, as removed nodes no longer participate and as new nodes do not get
synchronized information. The overlay size estimated is only accurate at the time where the
process was started.

To track size variations, the solution is to reinitialize an aggregation process at regular
time intervals. By using tags (unique identifiers) on each new counting process, the algorithm
can be reinitialized on demand: a node which is reached by a counting message with a new
tag will create a 0 initial value and will starts to participate to the active process. In our
simulations, we set this time interval as the number of rounds needed by the gossip process
to provide an accurate result. We observed on 5 and 6 that this value is approximately 40
for 100,000 nodes overlay, and 55 for 1,000,000, for a 99% convergence. In order not to make
any hypothesis on the targeted system size, we took 50 in the following simulations. This
value represents the best possible algorithm’s reactivity, in terms of latency, for an accurate
estimation.

Figure 13, 14 and 15 report the estimation results in the three considered scenario.
We observe that the algorithm does not cope well with the decrease of the network size as
observed in the shrinking scenario and the catastrophic scenario. Actually, Figures 15 and 13
show a reasonable algorithm behavior until a certain threshold of nodes departures (around
30% for 100,000 nodes, with 50 rounds per estimation) is reached. We believe that this is due
to the loss of connectivity of the overlay. This prevents the propagation of the estimation
information across the network. The solution to correct this point is to let a larger number
of gossip rounds to elapse before each estimation; this will permit the information to spread
better despite low graph connectivity, but will introduce more overhead.

However, we observe that the algorithm provides a fairly good adaptation to a growing
network.

Dynamic settings, summary We observe that Sampleé§Collide and HopsSampling pro-
vide fairly good results when facing brutal as well as gradual changes in the size of the
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Figure 13: Aggregation: Reaction under failures, 100,000 nodes at beginning, -25% of nodes at 100 and
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Figure 14: Aggregation: Growing network, 100,000 node network
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Figure 15: Aggregation: Shrinking network, 100,000 node network
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system. However, HopsSampling as well as Aggregation would require an estimation process
to be launched periodically.

Sample€ésCollide provides really reactive results; this could be explained by the one shot
heuristic as the algorithm does not keep any memory, while for HopsSampling with its last 10
runs average, there is a little convergence time to elapse to produce an accurate estimation
facing a brutal topology changes.

Given that some parameters are well tuned, each of those algorithms would be able to
provide accurate results. this is then a matter of acceptable overhead as discussed in the
next section.

4.5 Algorithms overheads

Besides the accuracy of the estimation, an important parameter is the overhead induced by
each method. We measure the overhead of the different algorithms as the total number of
messages sent to produce the estimation. This includes spreading messages for Aggregation
and for HopsSampling, return messages for HopsSampling, the message associated to the
random walk for SampleéCollide as well as each sampled node’s return. For space reason
we do not provide the graphs related to the overhead.

e Sample&Collide: Analysis of costs incurred in the same simulator are provided in
[13]. More specifically, we observe good scalability properties as the algorithm with
I = 100 incurs a cost which is only 3.27 times the one incured for | = 10. In order
to have a more accurate result, and to compute the associated overhead, we ran some
experiments with [ = 200. The measured overhead of an estimation is around 480,000
messages, which represents 1.40 times the one incurred for [ = 100.

e Hops Sampling: With current parameters, a single shot estimation consumes O(2N);
last10runs thus uses O(10 x 2N) messages for an estimation.

e Aggregation: The overhead of an estimation for Aggregation algorithm is fairly simple
to compute: Overhead = number _of nodes x number _of rounds x 2. 2 is due to
the push/pull heuristic?.

The overhead associated to each algorithm is fairly simple to compute based on the al-
gorithm characteristics. Table 1 summarizes these results and gives a overhead comparison
between the three algorithms, considering the average precision of the estimation. We ob-
serve that Aggregation provides a nearly perfect estimation with a high overhead compared
to the other algorithms. This is the good candidate for really stringent application needs.
Note that SampleéCollide results, when averaged with the last 10 runs heuristic and with
[ = 200, are at only few percents of the exact system size for a half overhead compared to
Aggregation. SampleéCollide outperforms HopsSampling both in terms of the quality of the
estimations and the overhead.

2the push /pull heuristic means that when two nodes communicates, they both receive the information of
the other and re-compute the current estimation
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Algorithm | Sample&Collide (1=200) | HopsSampling | Sample&Collide (1=200) | Aggregation
Parameters One shot last 10 runs last 10 runs 50 rounds
Accuracy +/- 10% - 20% +/- 4% - 1%
Overhead 0,5M 2,6M 5M 10M

Table 1: Example of algorithm’s overhead for an estimation (in millions of messages) on a 100,000 node
overlay

One advantage of SampleédCollide and HopsSampling is that they provide an opportunity
to limit the overhead at the price of a less accurate estimation. On the contrary, the
Aggregation method does not provide this flexibility and trying to obtain a rough idea of
the system while keeping the overhead low could lead to really bad results.

5 Comparisons and tradeoffs

With respect to tradeoffs, we observed that SampleéCollide provides the most flexible al-
gorithm and offers a wide range of possible configurations depending on the accuracy of the
estimate and associated overhead. For example, a really accurate result might not always
be important and could furthermore uselessly waste resources. In this case, Sample&Collide
with a smaller [ parameter (I = 10 for example) could be a cheap solution for a relatively
good result, as depicted on Figure 16 where on average only 100,000 messages are used for an
estimation. Qur experiments show that for HopsSampling, using a lower min HopsReporting
parameter does not significantly reduce the overhead, while degrading accuracy. HopsSam-
pling, to a lower extent also provides some flexibility. However Aggregation does not, the
only option is a high precision associated to a fairly large overhead. As detailed in [13],
Sample&Collide could as well produced really precise results by increasing [ parameter, and
hence could compete with aggregation. A strength of this algorithm is thus to adapt to the
application performance needs by simply modifying one parameter.

With respect to dynamic networks, we observed that SampleédCollide provides reliable
results despite the degradation of the overlay connectivity. On the other hand, gossip-
based algorithms need more time to complete a run due to the increase of the epidemic
propagation time. The HopsSampling algorithm does not suffer from the same problem as
it sends more messages each round, hence increasing the propagation efficiency. Aggregation
and HopsSampling imply that each node in the overlay participates to the current counting
process, which systematically entails resources consumption on each node at each process
round.

In terms of accuracy, Aggregation outperforms the other algorithms and provides in
a reasonable number of rounds an almost exact estimate. This approach should be used
for applications with the most stringent needs. Another interesting characteristic of the
Aggregation is that eventually the size estimation is available at each node of the network,
as every overlay node possesses the local information to compute the estimation. There is
no need for a broadcast of the size estimation as in the two other algorithms where only the
initiator gets to compute the size estimation.
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HopsSampling has the drawback of creating a message flood towards the initiator during
the HopCount collection process; this produces a sensitive point in the network, and may
overload the initiator’s neighbors. SampleédCollide, which provides less overhead and more
accurate results, might be preferred by the user. However, HopsSampling probably outper-
forms the other algorithms in terms of delay, which we haven’t measured in this comparison
due to the fact that physical network topology was not modelled in our simulator. A gossip
based broadcast and an immediate ACK response from the nodes that succeeds the proba-
bilistic test is very likely to be much shorter than the 50 rounds of Aggregation or the 200
equivalent samples of SampleéCollide.
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Figure 16: Sample&Collide with 1=10, 100,000 node network

6 Conclusion

Monitoring a peer to peer system is a core functionality of distributed system and might be
used in many applicative contexts. More specifically, the system size is very often needed
to set the parameter values or monitor a system behaviour and this can be used for a wide
spectrum of applications ranging from sensor networks to Grid computing.

In this paper, we provide the first comparison of some solutions computing the size of
a large-scale system in a fully decentralized manner, in peer to peer unstructured overlays
where peers have only a restricted knowledge of the system. We evaluated three different
algorithms, representative of the probabilistic polling, random walk-based and gossip-based
approaches and compared them along their accuracy, convergence, capability to handle
network size changes and the associated overhead.

We observe that all three algorithms have passed the scalability and dynamicity tests
but significant differences arised. Not surprisingly, as in many areas of computer science,
there is a natural tradeoff between the quality of the estimate and the associated overhead,
here bandwidth and computational resources. With respect to this tradeoff, SampleéCollide
seems to be the most flexible algorithm.
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As part of future work, the physical network modelling would be an interesting goal and
might provide new insights on the comparison.
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