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20 années A’ ECM

Résumé: Laméthode des courbes elliptiques (ECM) pour la factorisation d’entier fut inventée par H. W. Lens-
tra, Jr., en 1985 [I3]. Ces 20 derniéres années, de nombreuses améliorations furent proposées sur le plan ma-
thématique, algorithmique, ou c6té implantation. Cet article résume I’état de ’art du domaine, tel qu’implanté
dans le logiciel GMP-ECM.
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Introduction

Before ECM was invented by H. W. Lenstra, Jr., in 1985 [I3], Pollard’s p algorithm and some variants were
used, for example to factor the eighth Fermat number Fy [8]. As soon as ECM was discovered, many researchers
worked hard to improve the original algorithm or efficiently implement it. Most current improvements to ECM
were already invented by Brent and Montgomery in the end of 1985 [3] 17]@.

In [5], Brent describes the “second phase” in two flavours, the “P-1 two-phase” and the “birthday paradox two-
phase”. He already mentions Brent-Suyama’s extension, and the possible use of fast polynomial evaluation in
stage 2, but does not yet see how to use the FFT. At that time (1986), ECM could find factors of about 20 digits
only; however Brent predicted: “we can forsee that p around 10°° may be accessible in a few years time”. This
happened in September 1998, when Conrad Curry found a 53-digit factor of 2677 — 1 with Woltman’s MPRIME
program. According to Fig. [ which displays the evolution of the ECM record since 1991, and extrapolates it
using Brent’s formula v/D = (Y — 1932.3)/9.3, a 100-digit factor — which corresponds to the current GNFS
record (RSA-200) — could be found by ECM around 2025, i.e., in another 20 years.
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Figure 1: Graph of ecm records since 1991 (digits vs year), and extrapolation until 2025.

In [I7], Montgomery gives a unified description of P-1, P41 and ECM. He already mentions the “FFT
continuation” suggested by Pollard for P-1. A major improvement was proposed by Montgomery with the “FFT
extension” [I8], which enables one to speed up significantly stage 2.

Several efficient implementations have been made, in particular by Brent [6], Montgomery (ECMFFT), and
Woltman (PRIME95/MPRIME). This allowed Brent to find 21-digit and 22-digit factors of the eleventh Fermat
number F; in 1988.

Many large factors have been found by ECM. Among others we can cite the factorization of the tenth Fermat
number [7:

Fig = 45592577 - 6487031809 - 4659775785220018543264560743076778192897 - paso.

The smallest unfactored Fermat number, F5, being out of reach for NFS-based methods (Number Field Sieve),
the main hope to factor it rests on ECM.

The aim of this paper is to describe the state-of-the-art in the ECM domain, and in particular the algorithms
implemented in the GMP-ECM software. {Il recalls the ECM algorithm and defines the notation used in the
rest of the paper, while §2 describes the algorithms used in Stage 1 of ECM, and §8l those in Stage 2. Finally,
§4 exhibits nice factors found by ECM, and discusses further possible improvements.

1 The ECM method

1.0.1 Notations.

In the whole paper, n denotes the number to be factored, p a (possibly unknown) prime factor of n, and 7 a
prime; the function 7(z) denotes the number of primes less than or equal to x. All arithmetic operations are

! The first version of Brent’s paper is from September 24, 1985 — revised December 10, 1985 — and Montgomery’s paper was
received on December 16, 1985.
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implicitely performed modulo n. We assume n has [ words in the machine word base 3 — usually 3 = 232 or 264
—, i.e., f'71 < n < B'. Depending on the context, we write M (d) for the cost of multiplying two d-bit integers,
or two degree-d polynomials — where operations on the coefficients count O(1). The notation |z] stands for
|z +1/2].

This section is largely inspired by [7] and [I7]. Consider a field K of characteristic other than 2 or 3. An
elliptic curve E is the set of points (X,Y) € K such that

Y?= X34+ AX + B,

where A, B € K, 4A3 + 27B2 £ 0, plus a “point at infinity” denoted Or. E admits a group structure, where
the addition of two points can be effectively computed, and Op is the neutral element.
For a computer implementation, it is more efficient to use Montgomery’s form E, ;:

by? = 23 + az? +

which can obtained from Weierstrass form above by the change of variables X — (3z +a)/(3b),Y — y/b, A —
(3 —a?)/(3b?), B — (2/9a® — a)/(3b®). Moreover, one usually prefers an homogeneous form:

by’z = 23 + ax’z + 122, (1)

where the triple (z : y : z) represents the point (z/z : y/z) in affine coordinates.

The ECM method starts by choosing a random curve E,; and a random point (z : y : z) on it. All
computations are done modulo the number n to factor, as if Z/nZ was a field. The only operation which may
fail is when computing the inverse of a residue x modulo n, if ged(x, n) # 0. But then a factor of n was found,
the program outputs it and exits.

Here is a high-level description of the ECM algorithm (recall = denotes a prime):

Algorithm ECM.
Input: a number n, integer bounds B; < Bs.
Output: a factor of n, or FAIL.
Choose a random elliptic curve E, ; mod n and a point Py = (¢ : yo : 20) on it.
[Stage 1] Compute Q := [[, <, 718 B/ Ae™IP, on E,
[Stage 2] for each 7, By < 7 < By,
compute (T : Yr: 2z) = 7Q on Ey
g — ged(n, zx)
if g # 1, output g and exit
output FAIL.

1.0.2 Suyama’s parametrization.

Suyama’s parametrization is widely used, and therefore enables one to reproduce factorizations found by different
programs. Choose a random integer o > 5; usually a random 32-bit value is enough, but when running many
curves on the same number, one might want to use a larger range. Then compute v = o2 — 5, v = 4o,
zo = u® mod n, 29 = v3 mod n, a = (v —u)3(3u +v)/(4u3v) — 2 mod n. One can check that Eq. (I holds with
for example b = u/zy and yo = (02 — 1)(0? — 25)(c* — 25). In fact, the values of b and y are not needed; all the
arithmetic operations involve  and z only. Indeed, for a given pair (z, z), at most two values of y give a valid
point (x : y : z) on E, ; according to Eq. (). When two solutions, they are y and —y, ignoring the y-coordinate
identifies P and —P. As will be seen later, this is precisely what we want.

1.1 Why does ECM work?

Let p be a prime factor of n, and consider the elliptic curve E, ; mod p. Hasse’s theorem says that the order g
of E,, mod p satisfies

lg—(p+1)| <2p.

When a and b vary, g essentially behaves as a random integer in [p+1—2,/p, p+ 1+ 2,/p], with some additional
conditions imposed by the type of curve chosen. For example Suyama’s parametrization ensures g is divisible
by 12: Montgomery’s form (Il) ensures 4 divides g, Suyama gives the additional factor 3.
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ECM will find the factor p — which is not necessarily the smallest factor of n — when g is (B, B2)-smooth,
i.e., when the largest prime factor of g is less or equal to B, and its second largest prime factor less or equal
tdd B;. The factor p will be found in stage 1 when g is (B;, B1)-smooth, and in stage 2 otherwise.

1.1.1 Remark.

If two or more factors of n have a (Bj, By)-smooth group order for the chosen curve, they will be found
simultaneously, which means that ECM will output their product, which can even be n if all its prime factors
have a (Bi, Bz)-smooth group order. This should not be considered a failure: instead restart the same curve
with smaller By, Bs to split the different prime factors.

1.2 Complexity of ECM
The expected time used by ECM to find a factor p of a number n is

O(L(p)V***M M (logn)),

where L(p) = eVIeerloelosr and M(logn) representes the complexity of multiplication modulo n. The second
stage enables one to save a factor of logp — which is absorbed by the o(1) term above. Mathematical and
algorithmic improvements act on the L(p)\/i“’(l) factor, while arithmetic improvements act on the M (logn)
factor.

2 Stage One

Stage 1 computes Q := [], ., wl(ceB1)/(eemI P, on E, . That big product is not computed as such. Instead,
we use the following loop:

Q<5

for each prime 7w < B,
compute k such that 7% < B; < k1
for i := 1 to k do

Q—m- Q.
The multiplication 7 - @ on the elliptic curve is done using additions (P + Q@ — P + @) and duplications
(P — 2P).
To add two points (zp : : zp) and (z¢g : : 2g), one uses the following formula, where (xp_¢g : : 2p_Q)
corresponds to the difference P — Q:
2

IP+Q = 4ZP,Q . (:Z?pr — ZPZQ) ZerQ = 4IP,Q . (IPZQ — ZPZZ?Q)Q.

This can be computed using 6 multiplications (among which 2 are squares) as follows:

u— (zp +zp)(zqQ —2q) v (zp—2p)(zq + 2q)
w — (u+v)? t— (u—0v)?
TpP+Q < 2P-Q W ZP+Q <—IP,Q~t.

To duplicate a point (zp : : zp), one uses the following formula:
Top = (‘T% - 2123)2, Zop = (4.%‘13213)[(1'13 - Zp)2 + d(4l‘p2’p)], (2)

where d = (a + 2)/4, with a from Eq. (). This formula can be implemented using 5 multiplications (including
2 squares) as follows:

u— (xp+2p)? ve (vp—2p)? t—dlu—v)+v

Top — UV zop — (u —v)t.

Since the difference P — () is needed to compute P + @, this is a special case of additions chains, called
“Lucas chains” by Montgomery, who designed an heuristic algorithm “PRAC” to compute them [15] (see §22).

2The definition of (B1, B2)-smoothness used in Algorithm ECM above and by most software is slightly different: all primes
7 < Bj should appear to a power ¢¥ < By, and similarly for Ba; in practice this makes little difference.
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2.1 Residue Arithmetic

To obtain an efficient implementation of ECM, an efficient underlying arithmetic is important. The main
operations to be performed are additions, subtractions and multiplications modulo the number n to be factored.
Other operations (divisions, gcds) are rare, or can be replaced by modular multiplications. Since additions and
subtractions have cost O(logn), the main operation to be optimized is the modular multiplication: given
0 <a,b < n, compute ¢ = ab mod n.

We distinguish two cases: classical O(log2 n) arithmetic, and subquadratic arithmetic. On an Athlon XP
17004, GMP-4.1.4 switches to Karatsuba’s algorithm up from 26 words, i.e., about 240 decimal digits. Since
ECM is often used to factor numbers smaller than this, it is worth optimizing classical arithmetic.

For special numbers, like factors of 3* + 1, one may use ad-hoc routines. Assume for example dn = 3* — 1.
The product ¢ = ab of two residues can be reduced as follows: write ¢ = ¢y + ¢1 3", where 0 < ¢g, 1 < 5%; then
¢ = ¢o + ¢1 mod n. Instead of reducing ¢, a 2l-words integer (recall n has [ words), we reduce ¢q + ¢1, which has
k words only (plus possibly one carry bit). Alternatively, if the cofactor d is small, one can reduce ¢ modulo
% — 1 only, and perform multiplications on k& words instead of | words. (Indeed, a canonical representation
is not needed.) GMP-ECM implements such a special reduction for large divisors of 2¥ 4+ 1, using the latter

method. It also uses special code for Fermat numbers 22" 4 1 indeed, GMP fast multiplication code precisely
uses Schonhage-Strassen algorithm, i.e., multiplication modulo 2™ + 1 [20].

2.1.1 Efficient Assembly Code.

While using clever high-level algorithms may give a speedup of 10% or 20%, at the expense of several months
to invent and implement those algorithms, a twofold speedup may be obtained in one day, just rewriting one of
the assembly routines for integer arithmetidd.

GMP-ECM is based on the GNU MP library (GMP for short) [I0], thus benefits from the portability of
GMP, and from the efficiency of its assembly routines (the mpn layer). A library dedicated to modular arithmetic
— or even better to computations on elliptic curves — might yet be faster. Since all operations are done on
numbers of the same size, we might use a library with special assembly code for each word size, up to the
Karatsuba, threshold.

2.1.2 Quadratic Arithmetic.

In the quadratic domain, up to 200 — 300 digits depending on the processor, the best solution is to use Mont-
gomery representation [I6]: The number n to be factored having [ words in base 3, each residue a is replaced
by @’ = 3'a mod n. Additions and subtractions are unchanged, and multiplications are replaced by the REDC
operation: REDC(a,b) := abB~! mod n. This operation can be efficiently implemented on modern computers,
and does not require any correction unlike the classical division.

There are two ways to implement REDC: (i) either interleave the multiplication and the reduction as in
algorithm MODMULN from [I7], (ii) or perform them separately. GMP-ECM uses the latter way, which enables
it to use the efficient GMP assembly code for base-case multiplication. One first computes ¢ = ab, having at
most 2! words in base 5. The reduction r := ¢ mod n is performed with the following GMP code (which is
exactly that of version 6.0.1 of GMP-ECM, with variable names changed to match the above notations):

static void
ecm_redc_basecase (mpz_ptr r, mpz_ptr c, mpmod_t modulus)
{

mp_ptr rp = PTR(r), cp = PTR(c);

mp_srcptr np = PTR(modulus->orig_modulus);

mp_limb_t cy;

mp_size_t j, 1 = modulus->bits / __GMP_BITS_PER_MP_LIMB;

for (j = ABSIZ(c); j < 2 * 1; j++)
cpljl = 0;
for (j = 0; j < 1; j++, cpt++)
cpl0] = mpn_addmul_1 (cp, np, 1, cpl0] * modulus->Nprim);
cy = mpn_add_n (rp, cp, cp - 1, 1);
if (cy !'= 0)

3 The author indeed noticed a speedup of more than 2 with GMP-ECM, when Torbjérn Granlund rewrote the UltraSparc
assembly code for GMP.
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mpn_sub_n (rp, rp, np, 1);
MPN_NORMALIZE (I‘p, 1;
SIZ(r) = SIZ(c) <0 7 -1 : 1;
}

The main idea — independently discovered by Kevin Ryde, another GMP developer — is to store the carry
words from mpn_addmul_1 in the low [ words of ¢, just after they are set to zero by REDC. In such a way, one
replaces [ expensive carry propagations by one call to mpn_add_n.

2.1.3 Subquadratic Arithmetic.

For large numbers, a subquadratic arithmetic is needed. Again, one can use either the classical representation,
or Montgomery representation. In both cases, the best known algorithms require 2.5M (1) for a I-word modular
multiplication: M (I) for the multiplication ¢ := ab, and 1.5M (n) for the reduction ¢ mod n using Barrett’s
algorithm [I], or its least-significant-bit variant for ¢3~! mod n. LSB-Barrett is exactly REDC, with a big word
B |19]: after the precomputation of m = —n~! mod 3!, compute d = cm mod 3!, and (¢ + dn)3~". Since all
reductions are done modulo the same n, the precomputation of m is amortized and does not impact the average
cost. The 1.5M (n) reduction cost is obtained using the “wrap-around” trick for the last multiply dn (see §8.2),
since the low part is known to be equal to —c mod f3.

2.2 Evaluation of Lucas Chains

A Lucas chain is an addition chain in which the sum i + j of two terms can appear only if |i — j| also appears.
(This condition is needed for the point addition in homogeneous coordinates, see §) For example 1 — 2 —
3—5—7—9— 16 — 23 is a Lucas chain for 23.

The basic idea of Montgomery’s PRAC algorithm [15] is to find a Lucas chain using some heuristics. Assume
for example we want to generate 1009 - P. To generate a sequence close to optimal, a natural idea is to use as
previous term 1009/¢ ~ 624, where ¢ = (1++/5)/2 is the golden ratio, but this implies to have 1009 — 624 = 385
in the sequence. We then get 1009 — 624 — 385 — 239 — 146 — 93 — 53 — 40 — 13. At this point we cannot
continue using the same transform (d,e) — (e,d — e).

To generate 7 - P, Montgomery starts with (d,e) = (7, [7/«a]), with a = ¢, and iteratively uses 9 different
transforms to reduce the pair (d,e), each transform using from 1 to 4 point additions or duplicates, to finally
reach d = 1.

Montgomery improved PRAC as follows: instead of using a = ¢ only, try several values of a, and keep the
one giving the smallest cost in terms of modular multiplications. The a’s are chosen so that after a few steps,
the remaining values (d, ) have a ratio near ¢, i.e., & = (ap +b)/(c¢ + d) with small a,b,c,d. If r = |7/a], the
idea is to share the partial quotients different from 1 among the first and last terms from the continued fraction
of 7/r, hoping to have small trailing quotients.

Fig. A gives 10 such values of «, the first partial quotients of their continued fraction, and the total cost —
in terms of curve additions or duplicates — of PRAC for all primes up to By, for B; = 10% and 108. For a given
row, all values of a above and including this row are assumed to be used. The gain using those 10 values instead
of a = ¢ only is 3.72% for By = 10°, 3.74% for B; = 10%, and the excess with respect to the lower bounds given
by Theorem 8 of [T5] — 2114698 for B; = 10° and 210717774 for 10® — is 3.7% and 5.1% respectively.

3 Stage Two

All of P-1, P+1 and ECM work in an Abelian group G. For P-1, G is the multiplicative group of nonzero
elements of GF(p) where p is the factor to be found; for P+1, G is a multiplicative subgroup of GF(p?); for
ECM, G is an elliptic curve E,; mod p. In all cases, the calculations in G reduce to arithmetic operations
— additions, subtractions, multiplications, divisions — in Z/nZ. The only computation that may fail is the
inversion 1/a mod n, but then a non-trivial factor of n is found, unless a = 0 mod n. A unified description of
stage 2 is possible [I7]; for sake of clarity, we prefer here to focus on ECM.

3.1 Overall description

Stage 1 of ECM computes a point ) on an elliptic curve E. In case it fails, i.e., gcd(n, z2g) = 1, we hope there
exists a prime 7 in the stage 2 range [Bi, Ba| such that 7Q) = Og mod p. In such a case, while computing
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« cont. frac. B;=10°] By =108

¢ ~ 1.61803398875 1,1,1,... 2278430 | 230143294

(6 +7)/5 ~ 172360679775 1,1,2,1,... 9240333 | 226235929

(6 +2311)/1429 ~ 1618347119656 | 1,1,1,1,1,1,1,1,2,1,... | 2226042 | 224761495
(6051 — ¢)/3739 ~ 1.617914406529 | 1,1,1,1,1,1,1,1,1,2,1,... | 2217267 | 223859686
(129 — ¢)/79 ~ 1.612429949509 1,1,1,1,1,2,1,. .. 2210706 | 223226409
(6 +49)/31 ~ 1.632839806089 1,1,1,1,2,1, ... 2205612 | 222731604
(¢ +337)/209 ~ 1.620181980807 1,1,1,1,1,1,2,1,... 2201615 | 222335307
(19 — ¢)/11 =~ 1.580178728295 1,1,1,2,1,... 2198400 | 222013974
(883 — ¢)/545 ~ 1.617214616534 1,1,1,1,1,1,1,2,1,... 2195552 | 221729046
3 — ¢~ 1.38196601125 1,2,1, 2193683 | 221533297

Figure 2: Total cost of PRAC with several o’s, for all 7 < By (using the best double-precision approximation
of a).

7Q = (z : y) in Weierstrass coordinatesE, a non-trivial gcd will yield the prime factor p of n. A continuation of
ECM — also called stage two, phase two, or step two — tries to find those matches. The first main idea is to
avoid computing every 7@, using a “meet-in-the-middle” — or baby-step, giant step — strategy: one computes
c@Q and 7Q such that r = o £ 7. If 0Q = (2, : y,) and 7Q = (z, : y,), then 0Q + 7Q = Og mod p implies
e = xr mod p. It thus suffices to compute ged(x, — -, n) to obtainfl the factor p.

Two classes of continuations differ in the way they choose o and 7. The birthday paradox continuation takes
o€ S and 7 €T, with S and T two large sets, which are either random or geometric progressions, hoping that
S + T covers most primes in [By, Bs|, and usually other larger primes. Brent suggest to take T = S.

We focus here on the standard continuation, which takes S and T in arithmetic progressions, and guarantees
that all primes 7 in [Bj, Bs] are hit. Assume for simplicity that B; = 1. Choose an integer d < Bs, then all
primes up to Bs can be written

T=1-d+j, (3)

with S ={i-d,0<i-d < Bs},and T = {j,0 < j < d,ged(j,d) =1}, i.e.,, 0 =i-d and 7 = j. Computing S
and T costs O(Bz/d + d) elliptic curve operations, which is O(y/Bz) for d ~ \/B,. Choosing d with many small
factors also reduces the cost. The main problem is how to evaluate all z, — z, for 0 € S, 7 € T, and take their
ged with n.

A crucial observation is that for ECM, if jQ = (z : y), then —jQ = (x : —y). Thus jQ and —;Q share the
same z-coordinate. In other words, if one computes z; — z; corresponding to the prime 7 =i - d + j, one will
also hit ¢ - d — j — which may be prime or not — for free. This can be exploited in two ways: Either restrict
to j < d/2, as proposed by Montgomery [I7]; or restrict j to the “positive” residues prime to d, for example if
d is divisible by 6, one can restrict to j = 1 mod 6. This is what is used in GMP-ECM.

3.2 Fast Polynomial Arithmetic

Classical implementations of the standard continuation cover primes in [By, Ba], and therefore require © (7 (Bz))
operations, assuming B; < B3. The main idea of the “FFT continuation” is to use fast polynomial arithmetic
to compute all z, — z,, — or their product mod n — in less than 7(Bs) operations. It would be better to call
it “fast polynomial arithmetic continuation”, since any subquadratic algorithm works, not only the FFT.

Here again, two variants exist. They share the idea that what one really wants is:

h = H H (zo — x;) mod n, (4)

ceSTteT

since if any ged(z, — -, n) is non-trivial, so will be ged(h,n). Eq. @) computes many z, — z, that do not
correspond to prime values of 7 4 o, but the gain of using fast polynomial arithmetic largely compensates this
fact.

Let F(X) (respectively G(X)) be the polynomial whose roots are the z, (respectively x,). Both F and G
can be computed in O(M (d)log d) operations over Z/nZ with the “product tree” algorithm and fast polynomial

41t is simpler to describe stage 2 in Weierstrass coordinates.
5Unless » = =+ mod n too, but if we assume =, and =, to be random, this happens with probability p/n only.
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multiplication [B, 2I]. The “POLYGCD” variant interprets h as Res(F, G), which reduces to a polynomial ged.
It is known that the ged of two degree-d polynomials can be computed in O(M (d) log d), too. The “POLYEVAL”
variant interprets h as
h=%+ H G(z,) mod n,
TeT

thus it suffices to evaluate G at all roots of F. This problem is known as “multipoint polynomial evaluation”,
and can be solved in O(M(d) log d) with a “remainder tree” algorithm [3], 2T].

Algorithm POLYEVAL is faster, since it admits a smaller multiplicative constant in front of the M (d)logd
asymptotic complexity. However, it needs — with the current state of art — to store ©(dlogd) coefficients in
Z/nZ, instead of O(d) only for POLYGCD.

3.2.1 Fast Polynomial Multiplication.

Several algorithms are available to multiply polynomials over (Z/nZ)[x]. Previous versions of GMP-ECM
used Karatsuba, Toom-Cook 3-way and 4-way for polynomial multiplication, and division was performed using
the Borodin-Moenck-Jebelean-Burnikel-Ziegler algorithm [9]. To multiply degree-d polynomials with the Fast
Fourier Transform, we need to find w € Z/nZ such that w%? = —1 mod n, which is not easy, if possible at all.

Montgomery [18] suggests to perform several FFTs modulo small primes — chosen so that finding a primitive
d-root of unity is easy — and to recover the coefficients by the Chinese Remainder Theorem. This approach
was recently implemented by Dave Newman in GMP-ECM. On some processors, it is faster than the second
approach described below; however, it requires to implement a polynomial arithmetic over Z/pZ, for p a small
prime (typically fitting in a machine word).

The second approach uses the “Kronecker-Schénhage trickl. Assume we want to multiply two polynomials
p(r) and g(z) of degree < d, with coefficients 0 < p;, ¢; < n. Choose 3' > dn?, and create the integers P = p(/3')
and Q = ¢(3'). Now multiply P and @ using fast integer arithmetic (integer FFT for example). Let R = PQ.
The coefficients of r(z) = p(x)q(x) are simply obtained by reading R as r(3'). Indeed, the condition 3' > dn?
ensures that consecutive coefficients of () do not “overlap” in R. It just remains to reduce the coefficients
modulo n.

The advantage of Kronecker-Schénhage trick is that no algorithm has to be implemented for polynomial
multiplication, since one directly relies on fast integer multiplication. Division is performed in a similar way,
with Barrett’s algorithm: first multiply by the pseudo-inverse of the divisor — which is invariant here, namely
F(X) when using k& > 2 blocks, see below —, then multiply the resulting quotient by the divisor. A factor of
two can be saved in the latter multiplication, by using the “wrap-around” or “z? 4 1” trick, assuming the integer
FFT code works modulo 2™ + 1 [2].

3.3 Stage 2 blocks

For a given stage 2 bound B,, computing the product and remainder trees may be relatively quite expensive.
A workaround is to split stage 2 into k& > 1 blocks [I8]. Let By = kb, and choose d ~ /by as in §801 The
set S ={i-d,0<i-d< b} of @1 is replaced by Si,..., Sk that cover all multiples of d up to Bs, which
correspond to polynomials Gy, ..., Gg. The set T remains unchanged, and still corresponds to the polynomial
F. Instead of evaluating GG at all roots of F', one evaluates H = G1Gs - - - G, at all roots of F'. Indeed, if one of
the G vanishes at a root of F', the same holds for H. Moreover, it suffices to compute H mod F', which can be
done by k — 1 polynomial multiplications and divisions modulo F'.

Assume a product tree costs pM(d)logd, and a remainder tree M (d)logd. With a single block (k = 1),
we compute two product trees — for F' and G —, and one remainder tree, all of size d, with a total cost of
(2p + r)M(d)log d. With k blocks, we compute k + 1 product trees — for F, Gy, ..., Gr —, and one remainder
tree, all of degree about d/v/k. Assuming M (d) is quasi-linear, and neglecting all other costs in O(M(d)), the
total cost is %M (d)logd. The optimal value of k then depends on the ratio r/p. Without caching Fourier

transforms, the best known ratio is r/p = 2 using Bernstein’s “scaled remainder trees” [3]. Each node of the
product tree corresponds to one product of degree [ polynomials, while the corresponding node of the remainder
tree corresponds to two “middle products” [4, [T1]. For r/p = 2, the theoretical optimal value is k = 3, with a
cost of 3.46pM (d) logd, instead of 4pM (d)logd for k = 1.

Note: In some cases, one may want to use a larger number k of blocks for a given stage 2 range, in order to
decrease the memory usage.

6 The idea of using this trick is due to Dave Newman; a similar algorithm is attributed to Robbins in [I8, §3.4].
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3.4 Brent-Suyama’s Extension

Brent-Suyama’s extension increases the probability of success of stage 2, with a small additional cost. Recall
stage 2 succeeds when the largest factor 7 of the group order can be written as m# = ¢ £+ 7, where points c@Q
and 7Q have been computed in sets S and T respectively. The idea of Brent and Suyama [5] is to compute
Q@ and 7°Q instead, or more generally f(0)Q and f(7)Q for some integer polynomial f(z), as suggested by
Montgomery [I7]. If # = o + 7, then 7 divides one of f(o) £ f(7). Thus all primes 7 up to By will still be hit,
but other larger primes may be hit too, especially if f(x) + f(y) has many algebraic factors. This is the case
for f(x) = x°, but also for Dickson polynomials as suggested by Montgomery in [I8]. GMP-ECM uses Dickson
polynomials of parameter o = —1 with the notation from [I8]: D; = 2, Dy = 2% + 2, and D42 = #Dey1 + De
for e > 1, which gives D3(z) = 2 + 3z, Dy(z) = 2* + 422 + 2.

To efficiently compute the values of f(0)Q, we use the “table of differences” algorithm [I7, §5.9]. For example,
to evaluate 23 we form the following table:

1 8 27 64 125 216
7 19 37 61 91
12 18 24 30
6 6 6

Once the entries in boldface have been computeﬂ, one deduces the corresponding points over the elliptic curve,
for example here 1Q, 7Q, 12Q and 6Q. Then each new value of z°Q is obtained with e point additions:
1Q+7Q =8Q, TQ +12Q = 19Q, . .. One has to switch to Weierstrass coordinates, since if :@Q) and j@ are in the
difference table, |¢ — j|Q is not necessarily, for example 5Q = 12Q — 7Q) is not here. As mentioned in [I8], the e
point additions in the downward diagonals are performed in parallel, using Montgomery’s trick to perform one
modular inverse only, at the cost of O(e) extra multiplications. Efficient ways to implement Brent-Suyama’s
trick for P-1 and P+1 are described in [I7].

Note that since Brent-Suyama’s extension depends on the choice of the stage 2 parameters (k, d, . ..), extra-
factors found may not be reproducible with other software, or even different versions of the same software.

3.5 Montgomery’s d;d,; Improvement

A further improvement is proposed by Montgomery in [I7]. Instead of sieving primes of the form = = id 4 j as
in §871 use a double sieve with d; coprime to ds:

™= Zd1 +]d2

(The description in §81] corresponds to d; = d and do = 1.) Each 0 < 7 < Bs can be written uniquely as
™ = idl +_jd2 with 0 Sj < d1: take ] = —7T/d2 mod dl, then i = (7‘( —jdg)/dl.

To sieve all primes up to Ba, take S = {idy, —d1ds < id; < Ba,ged(i,d2) = 1} and T = {jd2,0 < j <
dy,ged(j,d1) = 1}. In comparison to §8It (i) the lower bound for idy is now —dyds instead of 0, but this has
little effect if d1dy < Ba; (ii) the additional condition ged(i,d2) = 1 reduces the size of S by a relative factor
1/ds.

When using several blocks, the extra values of ¢ mentioned in (i) occur for the first block only, whereas the
speedup in (ii) holds for all blocks. In fact, since the size of T yields the degree of the polynomial arithmetic —
i.e., #(dy)/2 with the remark at end of §811— and we want S to have the same size, this means we can enlarge
the block size bs by a relative factor 1/ds for free.

This improvement was implemented in GMP-ECM by Alexander Kruppa, up from version 6.0, with ds
being a small prime. The following table gives for several factor sizes, the recommended stage 1 bound Bj, the
corresponding effective stage 2 bound Bj, the ratio B}/Bj, the number k of blocks, the parameters d; and da,
the degree ¢(d1)/2 of polynomial arithmetic, the polynomial used for Brent-Suyama’s extension, and finally the
expected number of curves. All values are the default ones used by GMP-ECM 6.0.1 for the given Bj.

digits B B By/B1 k dy dy ¢(d1)/2 poly. | curves
40 3-10° 4592487916 1531 150150 17 14400 Dg(x) 2440
45 11-10° 30114149530 2738 371280 11 36864  Dia(x) | 4590
50 43106 198654756318 4620 1021020 19 92160  Dip(x) | 7771
55 | 110-105 729484405666 6632 1891890 17 181440 Dso(x) | 17899
(z)
(z)

60 260 - 105 2433583302168 9360 3573570 19 322560 Dsp(x) | 43670
65 850-10% 15716618487586 18490 8978970 17 823680 D3sp(z) | 69351

2
2
2
2
2
2

7 Over the integers, and not over the elliptic curve as the author did in a first implementation!
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As an example, with B; = 3-106, the default By value used for ECM ifi By = 4592487916 — about 1531-B; —,
with k = 2 blocks, di = 150150, do = 17. This corresponds to polynomial arithmetic of degree ¢(150150)/2 =
14400.

4 Results and Open Questions

4.0.1 Largest ECM factor.

Records given in this section are as of January 2006. The largest prime factor found by ECM is a 66-digit factor
of 3%%6 + 1 found by Bruce Dodson on April 6, 2005:

p66 = 709601635082267320966424084955776789770864725643996885415676682297.

This factor was found using GMP-ECM, with B; = 110 - 10% and ¢ = 1875377824; the corresponding group
order, computed with the Magma system [I4], is:

g =2%-3-11243 - 336181 - 844957 - 1866679 - 6062029 - 7600843 - 8046121 - 8154571 - 13153633 - 249436823.

The largest group order factor is only about 2.3B;, and much smaller than the default B = 729484405666 (see
above table).

We can reproduce this lucky curve with GMP-ECM 6.0.1, here on an Opteron 250 at 2.4Ghz, with improved
GMP assembly code from Torbjorn Granlundd:

GMP-ECM 6.0.1 [powered by GMP 4.1] [ECM]

Input number is 18024139710394077207815977929780156040177086533038137501450821699069902044203667289289127\
48144027605313041315900678619513985483829311951906153713242484788070992898795855091601038513 (180 digits)
Using MODMULN

Using B1=110000000, B2=680270182898, polynomial Dickson(30), sigma=1875377824

Step 1 took 748990ms

B2’=729484405666 k=2 b2=364718554200 d=1891890 d2=17 dF=181440, i0=42

Expected number of curves to find a factor of n digits:

20 25 30 35 40 45 50 56 60 65

2 4 10 34 135 617 3155 17899 111395 753110

Initializing tables of differences for F took 501ms

Computing roots of F took 29646ms

Building F from its roots took 27847ms

Computing 1/F took 13902ms

Initializing table of differences for G took 656ms

Computing roots of G took 25054ms

Building G from its roots took 27276ms

Computing roots of G took 24723ms

Building G from its roots took 27184ms

Computing G * H took 8041ims

Reducing G * H mod F took 12035ms

Computing polyeval(F,G) took 64452ms

Step 2 took 262345ms

Expected time to find a factor of n digits:

20 25 30 35 40 45 50 55 60 65

29.45m 1.06h 2.88h 9.63h 1.58d 7.23d 36.93d 209.51d 3.57y 24.1b5y

*kkkkkkkkk Factor found in step 2: 709601635082267320966424084955776789770864725643996885415676682297
Found probable prime factor of 66 digits: 709601635082267320966424084955776789770864725643996885415676682297
Probable prime cofactor 25400363836963900630494626058015503341642741484107646018942363356485896097052304\
4852717009521400767374773786652729 has 114 digits

Report your potential champion to Richard Brent <rpb@comlab.ox.ac.uk>

(see ftp://ftp.comlab.ox.ac.uk/pub/Documents/techpapers/Richard.Brent/champs.txt)

Several comments can be made about this verbose output. First we see that the effective stage 2 bound
Bl = 729484405666 is indeed larger than the “requested” one By = 680270182898. The stage 2 parameters

8 The printed value is 4016636513, but the effective value is slightly larger, since “good” values of Bs are sparse.
9 Almost the same speed is obtained with Gaudry’s assembly code at http://www.loria.fr/~gaudry/mpn_AMD64/
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k, d(= dy), d2 and the Dickson polynomial Dso(z) are those of the 55-digit row in the above table (dF is the
polynomial degree, and i( the starting index in id; + jds). Initializing the table of differences — i.e., computing
the first downward diagonal for Brent-Suyama’s extension — is clearly cheap with respect to “Computing the
roots of F/G”, which corresponds to the computation of the sets S and T, together with the whole table
of differences. “Building F/G from its roots” corresponds to the product tree algorithm; “Computing 1/F”
is the precomputation of the inverse of F' for Barrett’s algorithm. “Computing G * H” corresponds to the
multiplication G1G2, and “Reducing G * H mod F” to the reduction of G1G2 modulo F: we clearly see the 1.5
factor announced in §82 “Computing polyeval(F,G)” stands for the remainder tree algorithm: the ratio with
respect to the product tree is slightly larger than the announced value of 2. Finally the total stage 2 time is
only 35% of the stage 1 time, for a stage 2 bound 6632 times larger!

4.0.2 Largest P-1 and P-+1 factors.

The largest prime factor found by P-1 is a 58-digit factor of 22°9% 4 1, found by the author on September 28,
2005 with B; = 10'° and B, = 13789712387045:

pd58 = 1372098406910139347411473978297737029649599583843164650153,
p58 —1 = 23.32.1049- 1627139999 - 1284223 - 7475317 - 341342347 - 2456044907 - 9909876848747.

The largest prime factor found by P+1 is a 48-digit factor of the Lucas number L(1849), found by Alexander
Kruppa on March 29, 2003 with B; = 10® and By = 52337612087:

p48
pd8+1

884764954216571039925598516362554326397028807829,
2-5-19-2141 - 30983 - 32443 - 35963 - 117833 - 3063121 - 80105797 - 2080952771.

4.0.3 Other P-1 or P-+1 factors.

The author performed complete runs on the about 1000 composite numbers from the regular Cunningham
table with P-1 and P+1 [22]. The largest run used B; = 10'°, By ~ 1.3 - 10'3, polynomial z'%° for P-1, and
By =4-10% By ~ 1.0-10*3, polynomial Ds3q(x) for P+1.

A total of 9 factors were found by P-1 during these runs, but strangely no factor was found by P+1.
Nevertheless, the author believes that the P-1 and (especially) P+1 methods are not used enough. In-
deed, if one compares the current records for ECM, P-1 and P+1, of respectively 66, 58 and 48 digits
(http://www.loria.fr/~zimmerma/records/Pminusi.html), there is no theoretical reason why the P + 1
records would be smaller, especially if one takes into account that the P + 1 arithmetic is faster.

4.0.4 Largest ECM group order factor.

The largest group order factor of a lucky elliptic curve is 81325590104999, for a 47-digit factor of 53° + 1 found
by Bruce Dodson on December 27, 2005:

p47 = 29523508733582324644807542345334789774261776361,
with B; = 260 - 10 and o = 610553462; the corresponding group order is:
g=12%-3-13-347-659 - 163481 - 260753 - 9520793 - 25074457 - 81325590104999.

This factor is a success for Brent-Suyama’s extension, since the largest factor of ¢ is much larger than Bs (about
33.4B5).

From January 1st, 2000 to January 19th, 2006, a total of 619 prime factors of regular Cunningham numbers
were found by ECM, P+1 or P-1 (http://www.loria.fr/"zimmerma/ecmnet/). Among those 619 factors, 594
were found by ECM with known B; and o values. If we denote by g; the largest group order factor of each
lucky curve, Fig. Bl shows an histogram of the ratio log(g;/B1). Most ECM programs use By = 100B;. Since
log 100 == 4.6, we see that they miss about half the factors that could be found using the FFT continuation.

4.0.5 Save and Resume Interface.

George Woltman’s PRIME95 implementation of ECM uses the same parametrization than GMP-ECM (see
§I). PRIME95 runs on x86 architectures, and factors base-2 Cunningham numbers only so far, but Stage 1 of
PRIME9Y5 is much faster than GMP-ECM, thanks to some highly-tuned assembly code. Since PRIME95 does not
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Figure 3: Histogram of log(g1/B1) for 594 Cunningham factors found by ECM.

implement the “FFT continuation” yet, a public interface was designed to perform stage 1 with PRIME95, and
stage 2 with GMP-ECM. The first factor found by this collaboration between PRIME95 and GMP-ECM was
obtained by Patrik Johansson, who found a 48-digit factor of 27! — 1 on March 30th, 2003, with B; = 11000000
and o = 7706350556508580:

p48 = 223192283824457474300157944531480362369858813007.

This save/resume interface may have other applications:

e after a stage 1 run, we may split a huge stage 2 on several computers. Indeed, GMP-ECM can be given
a range [[, h] as stage 2 range, meaning that all primes [ < 7w < h are covered. The total cpu time will
be slightly larger than with a single run, due to the fact that several product/remainder trees will be
computed, but the real time may be drastically decreased;

e when using P + 1, previous stage 1 runs with smaller By values can be reused. If one increases B; by a
factor of 2 after each run, a factor of 2 will be saved on each stage 1 run.

4.0.6 Library Interface

Since version 6, GMP-ECM also includes a library, distributed under the GNU Lesser General Public License
(LGPL). This library enables other applications to call ECM, P+1 or P-1 directly at the C-language level. For
example, the Magma system uses the ecm library since version V2.12, released in July 2005 [14].

4.0.7 Open Questions.

The implementation of the “FFT continuation” described here is fine for moderate-size numbers (say up to 1000
digits) but may be too expensive for large inputs, for example Fermat numbers. In that case, one might want
to go back to the classical standard continuation. Montgomery proposes in [I7] the PAIR algorithm to hit
all primes in the stage 2 range with small sets S and 7. This algorithm was recently improved by Alexander
Kruppa in [12], by choosing nodes in a partial cover of a bipartite graph.

Although many improvements have been made to stage 2 in the last years, the real bottleneck remains stage
1. The main question is whether it is possible to break the sequentiality of stage 1, i.e., to get a o(B1) cost.
Any speedup to stage 1 is welcome: Alexander Kruppa suggested (personal communication) to design a sliding
window variant in affine coordinates. Another idea is to save one multiply per duplicate by forcing b to be small
in Eq. (@); this does not work for Suyama’s parametrization, since it reduces to solving a polynomial equation
in o modulo n, but maybe we can find another class of good elliptic curves parametrized by b instead of o.

Finally, is it possible to design a “stage 3”, i.e., hit two large primes in stage 2?7 How much would it increase
the probability of finding a factor?
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