
HAL Id: inria-00070193
https://inria.hal.science/inria-00070193

Submitted on 19 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Separating Control and Data Flow: Methodology and
Automotive System Case Study

Ouassila Labbani, Jean-Luc Dekeyser, Eric Rutten

To cite this version:
Ouassila Labbani, Jean-Luc Dekeyser, Eric Rutten. Separating Control and Data Flow: Methodol-
ogy and Automotive System Case Study. [Research Report] RR-5832, INRIA. 2006, pp.32. �inria-
00070193�

https://inria.hal.science/inria-00070193
https://hal.archives-ouvertes.fr

IS
S

N
 0

24
9-

63
99

 IS
R

N
 IN

R
IA

/R
R

--
58

32
--

F
R

+
E

N
G

ap por t

de r ech er ch e

Thème COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Separating Control and Data Flow: Methodology
and Automotive System Case Study

Ouassila Labbani — Jean-Luc Dekeyser — Éric Rutten
Laboratoire d’Informatique Fondamentale de Lille
Université des Sciences et Technologies de Lille

Bâtiment M3, Cité Scientifique

59655 Villeneuve d’Ascq Cedex, France

N° 5832

February 2006

Unité de recherche INRIA Futurs
Parc Club Orsay Université, ZAC des Vignes,

4, rue Jacques Monod, 91893 ORSAY Cedex (France)
Téléphone : +33 1 72 92 59 00 — Télécopie : +33 1 72 92 59 ??

Separating Control and Data Flow: Methodology and
Automotive System Case Study

Ouassila Labbani , Jean-Luc Dekeyser , Éric Rutten
Laboratoire d’Informatique Fondamentale de Lille
Université des Sciences et Technologies de Lille

Bâtiment M3, Cité Scientifique
59655 Villeneuve d’Ascq Cedex, France

Thème COM — Systèmes communicants
Projet DaRT

Rapport de recherche n° 5832 — February 2006 — 32 pages

Abstract:
In this document we propose to study the control/data flow separation design methodology,

using Scade and Mode-Automata, and its application in the design of an automotive system.
This methodology allows to facilitate the specification of different kinds of systems and to have
a better readability. It also separates the study of the different parts by using the most appropriate
existing tools for each of them.

To do that, we study a cruise control system with GPS which makes possible the control of
a car speed depending on its position given by a GPS. This system combines both control and
data processing and can be specified using our methodology. The goal of this work consists
in presenting the application of our methodology on a real system and studing its advantages
notably for formal verification.

Key-words: Control/Data Flow Separation, Scade, Mode-Automata, Intelligent Cruise Con-
trol with GPS, Simulation, Verification.

Séparation des Flots de Données et des Flots du Contrôle:
Méthodologie et Étude de Cas d’un Système d’Automobile

Résumé :
Dans ce document nous proposons d’étudier une nouvelle méthodologie de conception, sé-

parant les flots de données et du contrôle, et son application dans le cas d’un système d’automobile.
Cette méthodologie est basée sur l’utilisation de Scade et le concept des automates de modes.
Elle permet de simplifier la spécification des différents types de systèmes et d’avoir une meilleure
lisibilité. Ainsi que l’étude séparée des différentes parties du système en utilisant les outils les
plus appropriés pour chacune d’entre elles.

Pour ce faire, nous étudions un système de limiteur et régulateur de vitesse intelligent avec
GPS. Ce système permet de contrôler la vitesse d’un véhicule en fonction de sa position donnée
par le GPS. Son application combine des traitements de données et du contrôle, et peut être
spécifiée en utilisant notre méthodologie de conception. Le but de ce travail consiste à présenter
l’application de notre méthodologie de séparation dans un le cas d’un système réel, et étudier
ses avantages, notamment pour la vérification formelle.

Mots-clés : Séparation flots de Contrôle/flots de Données, Scade, Automates de Modes, Limi-
teur et Régulateur de Vitesse Intelligent avec GPS, Simulation, Vérification.

Separating Control and Data Flow: Methodology and Automotive System Case Study 3

Contents

1 Introduction 4

2 Control/Data Flow Separation Methodology using Scade 5
2.1 Context . 5

2.1.1 Reactive Systems and Synchronous Approach 5
2.1.2 Scade . 6
2.1.3 Control/Data Flow Combination in Scade 7

2.2 Control/Data Flow Separation Concept . 9
2.2.1 Mode-Automata . 9
2.2.2 Mode-Automata based Control/Data Flow Separation in Scade 10
2.2.3 Benefits of the Control/Data Flow Separation Methodology 12

3 Automotive System Case Study 12
3.1 Context . 13
3.2 Optimization Technique for the Representation of the Roadmap 14
3.3 ICCG System Description . 16

3.3.1
���������

Mode . 18
3.3.2 	�
 �

� Mode . 18
3.3.3 � ���
���� Mode . 18
3.3.4 	�
 �

������� mode . 19
3.3.5 � ���
���������� mode . 19

3.4 System Design without Control/Data Flow Separation Methodology 19
3.5 System Design using Control/Data Flow Separation Methodology 22

4 Experimentation of the System 23
4.1 Simulation of ICCG System . 23
4.2 Formal Verification of the ICCG System . 24
4.3 Prototype . 27
4.4 Field Test . 29

5 Conclusion 29

RR n° 5832

4 Separating Control and Data Flow: Methodology and Automotive System Case Study

1 Introduction

Complex and critical reactive embedded systems often need reliable and efficient tools and
methods for their design. Failures and crashes of these systems can lead to data or time
losses, incidents that can potentially be catastrophic. For this reason, several studies have been
launched in the reactive systems domain to propose reliable techniques allowing to ensure a
good functioning of these systems.

In this field, we often hear about synchronous approach and languages like Lustre [5, 6],
Signal [7, 8] and Esterel [9, 10, 11]. These languages use formal techniques having a rigorous
semantic allowing to define efficiently a set of tools for simulation, verification and automatic
code generation. Synchronous languages are based on different models and can be classified
into two main families: declarative (data oriented) and imperative (control oriented) languages.

However, the most realistic embedded systems combine control and data processing. To
specify these systems, several approaches have been proposed like the multi-languages ap-
proach which combines imperative and declarative languages, and the transformational ap-
proach which allows the use of both types of languages but, before code generation, the imper-
ative specifications must be translated into declarative specifications, or vice-versa.

In [13], we have studied the transformational approach using Scade (Lustre + Esterel) [14],
where Esterel code is transformed into Lustre. We have shown that the currently available
syntax of Scade does not follow any clear separation methodology and leads to a mixture of
control and data flow representation. This mixture can make difficult the understanding of the
system and the re-use of existing applications. To fill this gap, we have proposed to introduce
the concept of running modes into Scade specifications to combine the advantages of the two
approaches, and to develop a new design methodology separating control and data flows parts.

In this paper, we review the basic concepts of our control/data flow separation methodology,
and illustrate its application on a real case of an automotive system. To do that, we propose to
study the design of an Intelligent Cruise Control with GPS1 system (ICCG) which represents a
significant automatic contribution in the automotive field.

According to several statistics, high-speed and the no respect of speed limit cause 40% of
fatal accidents and increase their severity. In spite of this, more than 60% of drivers do not
comply with speed limits on urban roads or trunk roads. The worst situation is when a trunk
road passes through a village. There, almost 80% of drivers break the speed limit.

In order to give to drivers the means for controlling the speed of their cars, several con-
structors have developed various systems such as the speed limiter or regulator already present
in some cars. In this field, research continues to give more effective systems, and recently, we
often hear about speed regulator systems with GPS which allows to adapt the speed of the car
to that authorized in its zone of localization.

The goal of this work consists in presenting the advantages of our methodology in the case
of a real system such as the modular development, the readability and in particular, benefits in
time and memory capacity in the case of formal verification.

The paper is organized like this: in the second section, we present the main concepts used
in our control/data flow separation methodology. In this section, we outline the area of syn-
chronous reactive systems, the Scade environment and the control/data flow combination which
represents the basic context of our study. We also present our control/data flow separation
methodology based on the Mode-Automata concept and its introduction in Scade. The third
section is devoted to the automotive system case study. In this section, we introduce the In-

1Global Positioning System

INRIA

Separating Control and Data Flow: Methodology and Automotive System Case Study 5

telligent Cruise Control system with GPS and the application of our design methodology for
this system. The last section gives some experimental results for this system and shows the
advantages of the application of our methodology, in particular for formal varification.

2 Control/Data Flow Separation Methodology using Scade

2.1 Context

2.1.1 Reactive Systems and Synchronous Approach

Reactive Systems are computer systems that react continuously to their environment, by produc-
ing results at each invocation [1]. These results depend on data provided by the environment,
and on the internal state of the system. In [1], D. Harel and A. Pnueli have given to reactive
systems the image of a black box that react to its environment at a speed determined by the
latter (figure1).

Figure 1: Reactive System

Specification of software or hardware reactive systems behavior is complex. It can lead to
difficult and important errors. Indeed, such systems are not only described by transformational
relationships, specifying outputs from inputs, but also by the links between outputs and inputs
via their possible combinations in one step [2]. Modeling reactive systems is therefore a difficult
activity.

In the beginning of the 80’s, the family of synchronous languages and formalisms has been a
very important contribution to the reactive systems area [3]. Synchronous languages have been
introduced to make programming reactive systems easier [4]. They are based on the synchrony
hypothesis that does not take reaction time in consideration. Each activity can then be dated on
the discrete time scale. This hypothesis considers that each reaction is instantanous and atomic.

Synchronous languages are devoted to the design, programming and validation of reactive
systems. They have a formal semantics and can be efficiently compiled, for instance, to C code.
These languages can be classified into two main families: declarative languages and imperative
languages.

Declarative or data flow languages like Lustre ([5, 6]) or Signal ([7, 8]) are used when the
behavior of the system to be described has some regularity like in signal-processing. Their main
task consists in consuming data, performing calculations and producing results.

Imperative or control flow languages like Esterel ([9, 10, 11]) or Argos [12] are more ap-
propriate for programming systems with discrete changes and whose control is dominant: for
instance coffee machines. Their purpose is to manage the processing of data by imposing an
execution order to operations and by choosing one operation among several exclusive ones.

However, these systems rarely have an exclusively regular or discrete behavior. The most
realistic and used embedded systems combine control and data processing. Such global systems
may be totally specified with imperative languages, but data dependences between operations

RR n° 5832

6 Separating Control and Data Flow: Methodology and Automotive System Case Study

can not be clearly specified and furthermore problems may occur due to shared variables. Sim-
ilarly, they may be totally specified with declarative languages, but the control is hidden in
data dependencies making it difficult to specify tests and branchings necessary for verification
or optimization purposes. For these reasons, we need efficient tools and methods taking in
consideration this kind of systems.

Several approaches have been proposed in this domain. We can find the multi-languages ap-
proach which combines imperative and declarative languages, like using Lustre and Argos [16].
It is based on a linking mechanism and allows the re-use of existing code. However, when using
several languages it is very difficult to ensure that the set of corresponding generated codes will
satisfy the global specification. Another design method consists in using a transformational
approach which allows the use of both types of languages for specification but, before code
generation, the imperative specifications must be translated into declarative specifications, or
vice-versa, allowing to generate a unique code instead of multiple ones. N. Pernet and Y. Sorel
give in [17] an example of this approch which translates SyncCharts, a control flow language,
into SynDEx, a data flow language which allows automatic distributed code generation.

The transformational approach is efficient for describing reactive systems combining con-
trol and data processing. However, there are systems whose behavior is mainly regular but can
switch instantaneously from a behavior to another. They are the systems with running modes.
The most adapted method to describe this kind of system consists in using a multi-styles ap-
proach which makes it possible to describe with only one language the various behaviors of the
system. The Mode-Automata [15] represent a significant contribution in this field. Their goal
consists in adding an automaton structure to Lustre programs.

In the following, we choose to study the transformational approach using Scade, where Es-
terel code is transformed into Lustre before any processing of the system, and the introduction of
Mode-Automata concepts into Scade models. The goal this work consists in proposing a mixed
approach which can facilitate the specification of a variety of synchronous reactive systems.

2.1.2 Scade

Scade (Safety Critical Application Development Environment) [14] is a graphical development
environment commercialized by Esterel Technologies2. The Scade environment was defined to
help and assist the development of critical embedded systems. This environment is composed
of several tools such as a graphical editor, a simulator, a model checker and a code generator
that automatically translates graphical specifications into C code.

The Scade language is a graphical data flow specification language that can be translated into
Lustre. Scade is built on formal foundations. It is deterministic and provides efficient solutions
for the development of reactive systems. It has been used in important European avionic projects
(Airbus A340-600, A380, Eurocopter) and is also becoming a de-facto standard in this field.

Scade uses two specification formalisms: block diagrams for continuous control and state
machines for discrete control [18]. It adds a rigorous view of these formalisms which includes a
precise definition of concurrency and a proof that all Scade programs behave deterministically.

By continuous control we mean sampling sensors at regular time intervals, performing
signal-processing computations on their values, and outputting values often using complex
mathematical formulas. Data is continuously subject to the same transformation. In Scade,
continuous control is graphically specified using block diagrams and is based on Lustre Lan-

2www.esterel-technologies.com

INRIA

Separating Control and Data Flow: Methodology and Automotive System Case Study 7

guage. Scade blocks are fully hierarchical: blocks at a description level can themselves be
composed of smaller blocks interconnected by local flows.

By discrete control we mean changing the behavior according to external events originating
either from discrete sensors and user inputs or from internal program events. Discrete control
is generally represented by state machines. A richer concept of hierarchical state machines
has been introduced in Scade to avoid the state explosion problems. The Esterel Technologies
hierarchical state machines are called Safe State Machines (SSMs). These evolved from the
Esterel programming language and the SyncCharts state machine [19].

Scade does not give any design methodology. It does not impose a well defined technique or
rules to follow for the construction of the system, which gives more freedom to users. However,
users can specify their system in a not very organized way which makes it difficult to understand
and to re-use existing specifications.

2.1.3 Control/Data Flow Combination in Scade

Large applications contain a mixture of continuous and discrete control parts. To make the
specification of such systems easier, Scade makes it possible to seamlessly couple both data
flow and state machine styles. Most often, one includes SSMs into block-diagram design to
compute and propagate functioning modes. Then, the discrete signals to which a SSM reacts
and which it sends back are simply transformed into boolean data flows in the block diagram.

To illustrate this concept, we will study the example of a generic task pattern proposed
in [20]. In this example and when the task is active, it can be in three different states: � , � and
	 . Transitions between states are labelled by conditions ck, managed by the controller. Figure 2
gives the automaton structure relating to the task specification. These states are differentiated

Figure 2: Simple example of task functioning

by some characteristics such as for example time cost, i.e. the duration taken by one cycle
of computation (e.g., each state has a WCET in the reaction) and quality (e.g., precision of
numerical computation). For this example, we can think of applications such that we have:
� (highest quality and time), � (medium) and 	 (low). These three modes can be switched
between according to the transitions and their conditions ck. An example is a task computing
at each cycle an expression summing three terms: E = E1 + E2 + E3, where E3 and E2 can be
approximated by 0. Each of the modes corresponds to: � : the full sum, � : an approximation
E1 +E2, 	 : a degraded version E1.

This example contains both pure control logic and data processing and it can be specified
using Scade tool. A possible solution for this system is given by figure3. This specification is
mainly inspired by that proposed by Esterel Technologies to specify the � �
 � � ��� example [13].

In this example, the system possesses three inputs relative to conditions: c0, c1 and c2, and
three inputs relative to parameters E1, E2 and E3. As output, it provides the result E. Input
values c0, c1 and c2 pass through a control part represented by the SSM ����� � � � � of figure4.

RR n° 5832

8 Separating Control and Data Flow: Methodology and Automotive System Case Study

Figure 3: ���������
	 state specification in Scade

This SSM allows to activate the calculation part �
� � ���
� � ��� �
 ��� by two different signals: high

Figure 4: ���������
��� SSM example

and medium which correspond to the activation of state functions H and M respectively. If the
two signals high and medium are false, the system is in 	 state.

By descending to a lower level of the hierarchy, the design model corresponding to the
��� � ���
�
� � � �
 ��� model is indicated by figure5.

Figure 5: �
���������������
������� model example

In this model, we notice that the calculation part ����� ���
�
����� �
 � � contains a mixture of
calculation (operator +) and control (�!
�#"�$����%�#� � ���). This mixture can make difficult the
understanding of the system, as well as the use of already existing tools, dedicated exclusively
to processing the calculation part or the control part. Furthermore, independently of the values

INRIA

Separating Control and Data Flow: Methodology and Automotive System Case Study 9

of high and medium signals, the three calculation parts are always activated and the output
value will be chosen depending on signal’s values. This corresponds to the strict and compound
nature of the conditional structure �! ��#"�$������#� � ��� in Lustre. In this case, the two branches of
the conditional structure are always evaluated which can introduce side-effect problems.

In [13], we have proposed a new conceptual model that allows to have a clear separation
between control and data flow parts. This will allow us, on the one hand, to avoid the use of the
Lustre conditional structure and to have a better readability, and on the other hand, to facilitate
the separated study of the different parts by using the most appropriate tools for each category,
notably concerning the application of the formal verification techniques.

2.2 Control/Data Flow Separation Concept

The studied example represents a simple case of systems whose behavior is mainly regular but
can switch instantaneously from a behavior to another. In this case, the global system is usually
composed of a high level control oriented sub-system which executes different data processing
for each state of the system. For these systems, it can be important to study separately control
and data parts which gives a more structural view of the model and facilitates the modification
and the re-use of different parts.

This category of systems is generally known as systems with running modes. In [21], F.
Maraninchi and Y. Rémond show through a production-cell case study that real industrial ap-
plications can be better specified by using a mode-structure if their behavior is mainly regular.
These systems can be more easily specified using Mode-Automata.

Several other approaches exist for the specification of regular systems, we quote for ex-
ample Lucide Synchrone language [22] which is a functional language based on Lustre and
OCaml [23]. This language allows to introduce higher order programming concepts in the
specification of the reactive systems. An other example is the Ptolemy project [24] which stud-
ies heterogeneous modeling, simulation and design of concurrent systems. It allows also to
integrate the FSM semantics with concurrently synchronous data flow models [25].

In our work we choose to study Mode-Automata which represent a significant contribution
in this field. Based on the example given in section2.1.3, we will try to introduce the concept
of running modes in Scade models to define a new design methodology in Scade which can
clearly separate control and data parts.

2.2.1 Mode-Automata

Mode-Automata have been proposed in [15]. They introduce, in the domain-specific data-flow
language Lustre for reactive systems, a new construct devoted to the expression of running
modes. It corresponds to the fact that several definitions (equations) may exist for the same
output, that should be used at distinct periods of time. This concept allows to decompose the
specification of the system into several tasks called modes by assigning data operations directly
to discrete states.

A Mode-Automaton is an input/output automaton. It has a finite number of states, that are
called modes. At each moment, it is in one (and only one) mode. It may change its mode when
an event occurs. In each mode, a transfer function determines the values of output flows from the
values of input flows. Mode automata can be combined in order to design hierarchical models.
They generalize both bounded Petri nets and block diagrams. The structure of Mode-Automta
allows to clearly specify where the modes differ and the conditions for changing modes wich
makes it possible to better understand the behavior of the system.

RR n° 5832

10 Separating Control and Data Flow: Methodology and Automotive System Case Study

Figure 6 represents a simple example of Mode-Automaton. It has two states, and equations
attached to them. The transitions are labeled by conditions on X. The important point is that
X and its memory are global to all states. The only thing that changes when the automaton
changes states is the transition function; the memory is preserved.

A B

X = 10

X = 0

X = pre(X) + 1 X = pre(X) - 1

X : 0

Figure 6: Mode-Automaton: simple example.

2.2.2 Mode-Automata based Control/Data Flow Separation in Scade

As indicated in section 2.1.3, the control/data flow combination in Scade can lead to several
problems notably for readability and re-use of existing applications. In [20], the generic task
pattern example, introduced in section 2.1.3, has been easily specified using multi-mode con-
cept. For these reasons, we think that it becomes necessary to introduce a design methodology
and the concept of running modes in Scade models to facilitate the specification, the verification
and the re-use of various applications.

First, we have tried to apply the concept of separated Control/Data Flow by using Scade. To
make this, we have studied the task example by separating control and data parts. The diagram
corresponding to our approach is shown on figure 7. In this example, we have divided the

Figure 7: Trying the separation control/data flow with Scade

problem into three sub-problems that correspond to the functionality of the different modes of�
� ��
���� state: H, M and L. The activation of each part is made by the SSM ������� � � � depending
on the input values of conditions c0, c1 and c2.

INRIA

Separating Control and Data Flow: Methodology and Automotive System Case Study 11

In this approach, we can clearly distinguish inputs and outputs of the system, control parts,
and data parts. Contrary to what its name indicates, the data part does not only designate an
exclusive data processing. It can also contain a SSM followed by a data part, or only the control
part. The lowest level in the hierarchy represents an homogeneous part that can exclusively
contain the control or the elementary calculation.

The application of this approach in Scade raises some issues. For example, the value of � can
be modified by the three different calculation parts. However, in Scade it is impossible to link
the same output to two different operators. In Scade, each data must have a unique definition
at a given time, which makes the connection of the same output to several different operators
impossible. This requires the introduction of the If_Then_Else operators, which complicate the
model and break the control/data flow separation concept. To fill this gap, we have proposed
to add special operators that play the role of

� � ��� and � ��
 � which allow the division of data
between several operators. We have also added a selector operator that receives as input a value
provided by a SSM, according to which it can choose the state to activate (figure8).

Figure 8: Control/data flow separation model using Scade and Fork/Join operators

The function of the Fork operator consists in diffusing the input value on all its output points,
while the role of the Join operator consists in giving an output value among those received as
inputs and according to the value provided by the SSM.

Selector and Fork operators represent only an optimization of notations used in Scade be-
cause, in this tool, it is possible to connect the same value to several operator’s inputs. How-
ever, the Join operator replace the conditional structures If_Then_Else and Switch_Case used
in Scade. In this context, one Join operator with n inputs can be used to replace a structure of
n−1 If_Then_Else operators or one Switch_Case operator with n inputs.

In the case of the If_Then_Else operators, it is obvious that the complexity of the model
increases according to the number of inputs which makes difficult the comprehension of the
model. Thus, if we use the Switch_Case operator, calculation blocks are not conditioned and
then all inputs must be computed before the operator chooses the selected one. This behavior
leads to difficult problems and can be very expensive regarding time and memory. Moreover,
the default value used in Switch_Case operator does not have any interest because we suppose

RR n° 5832

12 Separating Control and Data Flow: Methodology and Automotive System Case Study

that one and only one component must be activated at a given time3. For these reasons, we
prefer introducing a Join operator which allows an implicite use of conditional structures and
facilitates the comprehension of the model. In figure9, we give an example of Join operator
and its equivalent in Scade.

Figure 9: Example of the Join operator and its equivalent in Scade.

We notice that our approach of control/data flow separation is similar to that of the Mode-
Automata. The idea consists in introducing the concept of running modes into Scade models
to facilitate the specification of the mainly regular systems and to give a more readable design
methodology based on the separation between control and calculation parts.

2.2.3 Benefits of the Control/Data Flow Separation Methodology

The introduction of a design methodology separating clearly control and data flow parts allows
to have a more readable model. The different parts of this model can be studied separately by
using the most appropriate existing tools for each part.

Morever, a modular specification of the different parts of the system allows to benefit from
the modular development. It facilitates the re-use of existing applications, the modification, the
introduction and the deletion of modes.

This technique allows to simulate and verify separately the different parts of the system,
and consequently have a considerable gain in verification time and memory capacities since the
number of states of the verified module is much smaller than that of the complete system. The
automaton structure is also exclusive, and to each state of the automaton is associated only one
activity. The different activities are then exclusive and can be studied separately. This method-
ology facilitates also the localisation of the different errors while avoding the modification of
the whole application which can be time and resource consuming.

3 Automotive System Case Study

In the following section, we study the application and the advantages of our design methodology
in the case of a real automotive system.

3This concept enable us to avoid the introduction of the default value.

INRIA

Separating Control and Data Flow: Methodology and Automotive System Case Study 13

3.1 Context

To illustrate our methodology on a real case, we propose to study the design of an Intelligent
Cruise Control with GPS system (ICCG) which represents a significant automatic contribution
in the automotive field.

Experts on the roads safety field agreed on the fact that one of the principal causes of the
serious road accidents is the high-speed and the no respect of speed limit. For example and ac-
cording to the french road security4, each year in France, the number of road accidents exceeds
the 120 000 accidents, making more than 7500 dead (7720 in 2001), and more than 40% of
these accidents come from the high-speed.

The excess speed is generally due to the lack of responsibility for the drivers and precise
informations on the speed limits. For these reasons and in order to give to drivers the means for
controlling the speed of their cars, several constructors have developed various systems such
as the speed limiter or regulator already present in some cars. In this field, research continues
to give more effective systems, and recently, we often hear about speed regulator systems with
GPS which allows to adapt the speed of the car to that authorized in its zone of localization.

Many European countries have launched differents projects and experiments on speed reg-
ulation systems (denominated for the majority ISA5 or EVSC6). The obtained results are gen-
erally diversified and the comparisons remain nevertheless difficult since each experiment has
specific objectives and protocols. Thus, technologies used and the nature of systems vary from
one country to another. However, some common conclusions indicate the possible benefit of
such systems to reduce the number of accidents and their dangerosity.

Among these projects, we can find the french project LAVIA7 launched in September
2001 [26]. The LAVIA system is an intelligent regulator which automatically adapts the car
speed to the speed limit according to the car position. This position is determinated using a
navigation device which combines dead reckoning data with the GPS ones to assess the car
position and then matches them with a digital map in order to obtain accurate car localisation
coordinates.

During the period 1999-2002, the Swedish National Road Administration conducted a com-
prehensive road information project which included a large-scale trial involving Intelligent
Speed Adaptation (ISA)8 in urban areas [29]. The aim of the trial was to learn more about
drivers attitudes and how they use the system, the impact on road safety and the environment,
and the integration of the system on the cars.

Another European project, PROSPER9, has been launched in 2002 [27]. The PROSPER
project was developed referring to the council resolution of June 2000. It explicitly identifies
that advanced assisted driving technology and technology relating to speed limitation devices
can be an important measures for further investigation. The main project output will be the
assessment of cost benefit and cost effectiveness of ISA road speed management methods in
relation to traditional methods, and a thorough analysis of possible and suitable implementation
strategies for different road speed management methods. The results are expected to have a
considerable impact on the development and implementation of national and European road
transport safety policies, particularly in the short term.

4www.securite-routiere.org
5Intelligent Speed Adaptation
6External Vehicle Speed Control
7www.lavia.fr
8www.vv.se/isa
9www.prosper-eu.nl

RR n° 5832

14 Separating Control and Data Flow: Methodology and Automotive System Case Study

Between October 2002 and December 2003, an ISA trial took place in the city of Ghent,
Belgium [28]. ISA-Ghent project progressed in parallel with PROSPER project but it is not
a part of it in spite of their common objectives. The tested ISA device is the Limit Advisor
M2002 developed by the Swedish companies.

Another similar project was developed in Denmark. It is the INFATI project10, a Danish
acronym for ”INtelligent FArtTIlpasning“ that means ”Intelligent Speed Adaptation (ISA)“ [30].
This project is mainly bound to the study of the techniques and the means for the realization of
the system, system specification, prototype development, tests and informations.

EWGOSC, a European Work Group On Speed Control11 groups researchers implied in
ISA experiments annually. This work group allows researchers to compare their results and
experimental protocols to be able to improve their future work.

3.2 Optimization Technique for the Representation of the Roadmap

The presented projects are all based on a GPS system to locate the cars on the roads. They
also use a data base representing the speed limits for each zone on the map. However, the
imprecision of the cartography and the possible errors of the position given by the GPS make it
difficult to localize the car on the map, and to find the corresponding speed limit.

To fill this gap, several concepts have been proposed using the GPS system to give more
precision on the localization of the car. The LAVIA project for example, combines the GPS
system with a navigation system to calculate the distances and the course of the car. This
approach consists in representing the roads by segments of straight lines. Each segment is
defined by two points and a speed limit as shown by figure10. This needs to transform the

Figure 10: Road graph with segments

roadmap into a graph in which the arcs represent the segments and the nodes represent the ends
of each segment. Each arc is labelled by a cost representing the speed limit authorized in its
zone.

For technical reasons, the segments should not exceed 500 meters. This gives in the ma-
jority of the cases a rather significant number of segments which can generate a problem of
memorization.

Another technique, used by ISA-Ghent project for example, consists in dividing the roadmap
into a set of zones and associating each zone with its speed limit. This approach combines the
digital map with polygonal structures called ”delimitation boxes“ to minimize the number of

10www.infati.dk
11The ICTCT-extra workshop of 2002 in Nagoya (www.ictct.org)

INRIA

Separating Control and Data Flow: Methodology and Automotive System Case Study 15

segments (figure11). The form of these zones is inevitably not regular which imposes the di-

Figure 11: Definition of different zones

vision of the roadmap in a set of small identical squares called ”grids“. Each grid is defined by
two points and its speed limit, and the zone is defined by a set of adjacent grids as shown by
figure12.

Figure 12: Definition of the zones through a set of grids

In order to decrease the number of grids associated to each zone, we propose an optimization
algorithm allowing to join the adjacent grids with the same speed limit in order to create a large
rectangle. In this case, each zone is represented by a set of rectangles defined by two points12

and the speed limit as indicated by figure13.
The roadmap is represented by a set of lines of the form:

(X1, Y1)
︸ ︷︷ ︸

point1

| V
︸︷︷︸

speed limit

| (X2, Y2)
︸ ︷︷ ︸

point2

At each instant, the GPS gives the position of the car P(X , Y). If X1 ≤ X ≤ X2 and Y1 ≤Y ≤Y2,
then P belongs to the rectangle defined by the two points (X1, Y1) and (X2, Y2), and the car is
in the zone limited at the speed V .

This representation technique of the roadmap makes it possible to minimize, in a consid-
erable way, the size of the data base, and consequently the memory capacity. In this case, it
becomes optional to know details on the roads and it is not necessary to install the cartography
in the car, which has generally a high cost. Furthermore, error risks due to the imprecision of
GPS decrease considerably.

12Each point is defined by its two coordinate (longitude, latitude)

RR n° 5832

16 Separating Control and Data Flow: Methodology and Automotive System Case Study

Figure 13: Optimization techniquefor the representation of the roadmap

3.3 ICCG System Description

In this section, we propose to study an ISA system that we call ICCG (Intelligent Cruise Con-
trol with GPS). This system uses the optimisation technique presented in section 3.2 for the
representation of the roadmap. The main goal of our work consists in applying a new design
methodology, separating control and data parts, for this type of system. It allows to study the
interest of this technique, in particular for the verification of the system.

The functioning of this system is similar to that of ISA. Its main role consists in limiting the
car speed automatically to the local prescribed speed given by the driver or by the GPS.

The ICCG can be seen as an electronic help which facilitates the control of a car. It informs
the driver about the various changes of speed limits and, in some cases, obliges him to respect
them. The study of such a system can be very important since it makes possible to considerably
increase the safety of drivers.

The studied system can operate in five different modes:
���������

, 	
 �

� , � ���
���� , 	�
 �

�������
and � ���
 ��������� . The interaction with the system and the activation or deactivation of different
modes are done through a set of buttons:

• � � : activate the system and set the speed limit to the current speed of the car

• �� : stop the system

• � � � : set the speed limit to the current speed of the car

• ����� ��� � : reactivate the system after an interruption

• � �
 � ���
� � � ������� : increase the speed limit by a constant �
	������
� � �

• � �
 � ��
 � � � ������� : decrease the speed limit by a constant �
	�� ���
� � �

• ����� : activate or deactivate the GPS

• � ���
���� : switch the system to � � �
���� mode or return it to 	�
 �

� mode

Informations about the running modes can be displayed on a dashboard to inform the driver
about which mode is activated. It is also possible to display the speed limit and the current
speed of the car as shown by figure14.

Initially, the system is in
����� � �

mode. The activation of the system and the switch to 	�
 �

�
mode is done using the � � button. A more detailed description of the switch between the various
modes is given by figure15.

INRIA

Separating Control and Data Flow: Methodology and Automotive System Case Study 17

Figure 14: System representation

Globally and independently of running modes, the system can be in one of the four states:

• ��� � � � : the system is activated

• ��� � �� : the system is deactivated

• ��� ����"
�� : the system is suspended

• ����� � �
 � : the GPS signal is lost

Figure 15: Different modes of the system

The switch between states of the system is done according to the brake pedal, accelerator
pedal and GPS signal (figure 16). Thus, in this system and for safety reasons, we define an
interval speed (

� � ����� ����� �
	�� ��� � ��� � �
	������ �
 �) at which the system can be activated. Outside
this interval, the system is systematically desctivated and switches to ��� ����"
�� state. For ex-
ample, if the current speed exceeds 160km/h or it is lower than 30km/h, we consider that the

RR n° 5832

18 Separating Control and Data Flow: Methodology and Automotive System Case Study

Figure 16: Different states of the system

intervention of the system does not have importance and the driver has total control over the
car.

3.3.1
����� ���

Mode
���������

mode is only an informative mode. Its function only consists in indicating the driver, by
an audio or luminous signal, if the allowed speed limit is exceeded. This speed is given by a
GPS and represents the speed limit authorized in the current zone of the car.

The overspeed alarm does not influence the real speed of the car. The driver has the whole
control over the car and the alarm signal represent only a warning signal. In this mode, pedals
act normally on the behavior of the car and do not have any influence on the state of the system.
However, if the GPS signal is lost, the

����� ���
mode is deactivated, an audio signal is sent and

the system passes in ����� � �
 � state.

3.3.2 	�
 �

� Mode

This mode is the most used in marketed cars. In this mode, the GPS is deactivated and the
system does not allow to exceed the speed limit fixed by the driver who can always control the
car by accelerating or braking, but cannot exceed the limited speed.

The main functioning of this mode, is that the car cannot exceed the pre-selected speed limit
since the accelerator pedal becomes systematically inactive when the driver reaches this limit.
However, by necessity (taking over another car for example), the driver can exceed the fixed
speed limit and the system is switched off. This is known as the ”kick-down“ phenomenon
which can disable the system temporarily. To do that, we introduce a constant value �
 � �%� � � �
beyond which the accelerator pedal is taken into account. In this case, the system becomes
inactive, it goes to ��������"
�� state and becomes active again (����� � �) when this pedal is released.

3.3.3 � ���
���� Mode

This mode allows to maintain the car at a constant speed given by the driver. The system forces
the car to reach the speed limit and maintain it. In this case, the driver does not control the speed
of the car via the accelerator pedal but rather by using a set of buttons.

The � � button allows the selection of the speed limit to respect, the two buttons � �
 � ���
� � � �
and � �
 � ��
 � � � � allow, respectively, to increase or decrease this speed by a constant value
�
	������
� � � and the � � � button assigns the current speed of the car to the speed limit.

INRIA

Separating Control and Data Flow: Methodology and Automotive System Case Study 19

If the driver presses the accelerator pedal, the functioning of the system is interrupted and
the system becomes inactive (��������"
�� state). The system can take again its functioning and
pass to ��� � � � state only if the accelerator pedal is released. Thus, pressing the brake pedal
completely deactivates the system which goes in ��� � �� state. In this case, the system can be
reactivated only through the ����� ��� � button.

3.3.4 	
 �

��� ��� mode

The behavior of this mode is similar to that of 	�
 �
 � mode. In 	�
 �
 ������� mode, the car cannot
exceed a speed limit defined by the system. This limit depends on the speed required by the
driver, the maximum speed authorized in the current zone and the maximum speed authorized
in the next zone. In this case, the speed limit always takes the minimum value of these three
speeds to ensure the safety of driver.

3.3.5 � ���
���� ����� mode

This mode has the same behavior as the � ���
 ��� mode. The only difference is that the speed
limit is calculated in the same way as in 	
 �

��� ��� mode since we take the GPS into account.
If the GPS signal is lost, the system is automatically stopped and goes in ����� � �
 � state.

For safety reasons, in addition to the current position of the car, we take into account another
position called ��� � � � � � � . This position represents an anticipation of the next position of the
car (∼ 3 or 4 seconds in advance). According to the current position of the car, its speed
and its direction, we calculate the anticipation point ��� � � � � � � which allows to deduce the
speed limit of the following zone ��� � � � � � � � 	�� ��� 	
 �

� . This safety measure is only useful
if ��� � � � � � � �
	������ 	�
 �

� < ��� � � �
	���� � 	�
 �
 � . For example, if the car is on a road limited to
130km/h, and it moves towards an exit road limited to 90km/h, its speed must go down to 90
before being on the exit road.

3.4 System Design without Control/Data Flow Separation Methodology

The specification of the ICCG system consists of two essential parts. The first part (� � � �) rep-
resents the behavior of the cruise control with GPS, and the second part (� � � �
 � 	 � �) specifies
the behavior of the car with which our system will interact.

The ICCG system takes as input a set of values representing the differents buttons (� � ,
�� ,. . .), the pedals of the car, the speed limit of the current zone and that of the following
zone. As output, the system provides an information on its state which can be active (��� � � �),
inactive (�����
��) or suspended (��� ����"
��). It also provides an information about the selected
mode, the fixed speed limit (� 	�� ��� 	
 �

�), the speed requested by the driver (

 �
 ��� � �
	�� ���),
the current speed of the car (� ��� � ��� ���
	�� � �), an alarm signal (

����� ��� �
�� � � �) to indicate that
the speed limit was exceeded, the � � �
	 �%� � � � � ��� � � � signal to block the accelerator pedal, and
the ������� � �
 � signal indicating the loss of the GPS signal or the nonidentification of the zone.
A global view of our system is given by figure17. The main functioning of the system allows,
from command buttons, to specify running modes, to save the speed limit requested by the
driver, and to act on the speed of the car according to the selected mode.

A possible solution for the specification of the ICCG system has been proposed in [31].
The corresponding design model is given by figure 18. This model was achieved in a very
intuitive way since the main goal was just to develop a functional model without following any
control/data flow separation methodology.

RR n° 5832

20 Separating Control and Data Flow: Methodology and Automotive System Case Study

Figure 17: ICCG system: global view

INRIA

Separating Control and Data Flow: Methodology and Automotive System Case Study 21

Figure 18: Internal structure of ICCG model without following any control/data flow separation
methodology

RR n° 5832

22 Separating Control and Data Flow: Methodology and Automotive System Case Study

3.5 System Design using Control/Data Flow Separation Methodology

As shown by figure18, the model contains a mixture of control and data processing. It does not
allow to clearly distinguish the various modes of the system and the switch conditions between
modes. This model is very ambiguous since a small modification in the behaviour of a given
mode requires the modification of the whole application. Indeed, it is difficult to extract the
mode from the total specification. This is also valid for the introduction of a new mode or
the deletion of an existing one. Thus, the application of formal verification techniques on such
models is very difficult and even impossible. Errors are more and more serious and the resulting
system will be unstable

For these reasons and to test our design methodology, we have modified the specification by
adopting our methodology which allows a good separation between control and data flow parts,
and makes it possible to clearly distinguish the different modes of the system. The specification
diagram relating to ICCG system, following this methodology, is given by figure19.

Figure 19: Internal structure of ICCG model according to control/data flow separation method-
ology

This model is composed of three main parts. The first part is a pre-calculation part repre-
sented by � � �
�
� ��� �
 ��� model which contain the common processing for the different modes.
This calculation part is always executed independently of the selected mode. It gives as out-
put a set of values which can be used by the control part, the different execution modes, or be
directly displayed on the dash-board. The second part is the control part represented by the

INRIA

Separating Control and Data Flow: Methodology and Automotive System Case Study 23

SSM � ��� � � � � ��� . This part allows to select the mode to be activated according to the value
of input buttons. The third part is a mode-calculation part. It is composed of five calculation
parts relating to the different modes of the system. The execution modes have always the same
interface which can facilitate the introduction, the deletion and the modification of modes.

4 Experimentation of the System

4.1 Simulation of ICCG System

In this section, we present a simulation example for the different running modes of the ICCG
system. For simplification reasons, we divide our study into two parts: the first part studies
the simulation of the

����� � �
, 	�
 �

� and 	�
 �

��� 	 � modes, and the second part studies the

simulation of the
����� � �

, � ���
���� and � ���
���������� modes.
Figure 20 represents the simulation example of the three modes:

����� ���
, 	
 �

� and 	�
 �
 ��� 	 � .

In this figure, we present six simulation steps:

Figure 20: Simulation example of modes: � � �#��� ,
� ��� ��� and

� ��� �������	�

RR n° 5832

24 Separating Control and Data Flow: Methodology and Automotive System Case Study

1. The
����� � �

mode is activated and the �
	�� � � 	�
 �
 � is fixed to the minimum value of
current speed and next area speed. When � ��� � �������
	�� ��� exceeds the �
	�� ��� 	�
 �

� , the����� ��� ��
�� � � � is activated until the � ��� � �������
	�� ��� becomes less than the �
	�� � � 	�
 �
 � .

2. The � � button is pressed and the 	�
 �

� mode is activated. In this case, the � ��� � ��� ���
	�� � �
is equal to �
	�� ����	�
 �

� and if the driver wants to exceed this limit, the accelerator is
stopped and the alarm signal is sent.

3. The ����� button is pressed and the 	
 �

��� ��� mode is activated. In this mode, the
�
	�� ����	�
 �

� takes the minimum value between the speed given by the GPS, the cur-
rent speed and the next area speed. Also in this case, if the � ��� � � �����
	������ exceeds the
�
	�� ����	�
 �

� then the accelerator is stopped and the alarm signal is sent.

4. The accelerator pedal is strongly pressed (kick-down phenomenon) and the system goes
to the ��� ����"
�� state.

5. The accelerator pedal is released and the ICCG system is reactivated. The �
	�� � � 	�
 �
 �
takes its last value before pressing the accelerator pedal, the � � �
	 �
� � � � � ��� � � � and the����� ��� �
�� � � � are activated because the � ��� � �������
	�� ��� exceeds the �
	������ 	�
 �

� .

6. The �# button is pressed, the ICCG system is deactivated and the
����� ���

mode is acti-
vated.

Similarly, figure21 represents the simulation example of the three modes:
����� ���

, � ���
����
and � ���
���������� . In this figure, we also present six simulation steps:

1. The � � button is pressed and the ICCG system is activated. In this case, the accelerator
pedal is strongly pressed (kick-down phenomenon), the

����� ���
mode is deactivated and

the system goes to the ��������"
�� state.

2. The accelerator pedal is released and the system goes to the ����� � � state (the 	�
 �

� mode
is activated).

3. The � ���
���� button is pressed, the � ���
 ��� mode is activated and the � � � � �������
	�� ���
reaches the �
	�� � � 	�
 �
 �

4. The � ��� button is pressed and the system goes to � ���
���������� mode. In this case, the
value of �
	�� � � 	�
 �
 � changes since the speed limit of the zone is lower than the current
�
	�� ����	�
 �

� .

5. The accelerator pedal is pressed (kick-down phenomenon) and the system goes to ��������"
��
state. When the pedal is released, the system is reactivated and � 	�� ��� 	
 �

� takes its last
value.

6. The brake pedal is pressed and the system is stopped (��� � �� state). In this case, only
the ����� ��� � button allows to reactivate the system.

4.2 Formal Verification of the ICCG System

The goal of this study consists in verifying some properties of our ICCG system. This verifica-
tion process is applied for the two design models, without and with separation methodology, to

INRIA

Separating Control and Data Flow: Methodology and Automotive System Case Study 25

Figure 21: Simulation example of modes: � ������� , �!�������%	 and �!���
���%	 ��� �

RR n° 5832

26 Separating Control and Data Flow: Methodology and Automotive System Case Study

compare the obtained results by each model. In the following, we will note the first specifica-
tion model, which does not follow a clear separation design methodology, by � ��� � ��� , and the
second model, which follows our design methodology and clearly separates control and data
parts, by � � ��� ��� . The set of properties that we choose to verify is as follows:

• Property1: at each moment, one and only one running mode is activated at once

• Property2: if the
���������

mode is activated then the
��������� �
�� � ��� is True if and only if

� ��� � � �����
	������ > �
	���� � 	�
 �

�
• Property3: if the

����� ���
mode is activated then the system does not have any effect on the

accelerator (� � �
	 �%� � � � � ��� � � � =False)

• Property4: if the 	
 �

� mode is activated and � ��� � � �����
	������ > �
	�� � ��	�
 �
 � then the
accelerator is stopped (� � � 	 �
� � � � � ��� ��� � =True)

• Property5: if 	�
 �

������� or � ���
���������� modes are activated, the speed limit value is that
of the minimum of

 �
���� � � 	�� ��� ,
� � � � �
	������ 	�
 �

� and ��� � � � � � � �
	�� � � 	�
 �
 �

As indicated in section 3.4, � ����� ��� mixes control and calculation parts which can compli-
cate the understanding of the application and the distinction of the different running modes of
the system. In this model, if we want to verify some properties of a given mode, we must verify
all the system since the distinction of the concerned mode is very difficult and even impossible.
Contrary to this model, � ��� � ��� allows a clear separation between control and calculation parts
and therefore a good distinction of the different running modes of the system. In this model, if
we want to verify some properties of a given mode, only the concerned mode will be verified
and the property formula is less complicated than that used for the verification of the same prop-
erty in � ����� ��� . For example, if we want to verify Property2 for ������� ��� , we must verify that
the system is in

���������
mode. However, the verification of this same property for � � ��� ��� does

not require the verification of the mode since we know that the verified mode is
��� � ���

mode.
This separation methodology also allows to easily detect and locate the specification errors, and
avoids remaking all the specification in the case of errors.

We give in table 1 a comparison of verification times obtained for the different properties
of each model. These results are obtained by using the verification tool of Scade. This tool is
used to exhaustively verify complex functional properties, detect hard-to-find corner-case bugs,
and explore complex design behaviors. The Scade formal verification module is called Design
Verifier13 and it is a model-checker based on a powerful proof engine developed by Prover
Technology AB14. The property to verify is generally described in a separated node which must
be linked to the system without modifying it and act as an observer of the system.

Model-checker procedures are useful tools for the verification of finite-state systems. The
first model-checker algorithm has been developed by Clarke and Emerson in 1981 [33]. It
consists in confronting an automaton structure, called model, with a temporal logic formula,
called property. The automaton represents the behavior of the studied system, while the formula
makes the expression of the property to verify for this system possible.

In our study, table 1 shows that the separated verification of the different modules gives the
same result if we verify all the system. Moreover, the verification time of separated modules
is much faster since the number of states of the checked automaton is much smaller. This
difference in time relates also to the fact that the formulas of the verified properties are simpler

13www.esterel-technologies.com/products/scade-drive/design-verifier.html
14www.prover.com

INRIA

Separating Control and Data Flow: Methodology and Automotive System Case Study 27

Property Verified module
for �����
	����

Verified module
for �����
	����

Valid Time
� � ��� ���

Time
� ����� ���

Speed
up

Property1 Whole system SSM
� ������� � � ���

√
0.460s 0.080s 5.75

Property2 Whole system
���������

mode
√

0.430s 0.030s 14.33

Property3 Whole system
���������

mode
√

3.424s 0.010s 342.40

Property4 Whole system 	�
 �

� mode
√

0.440s 0.040s 11.00

Property5 Whole system 	�
 �

������� mode
√

8.702s 0.080s 108.77

� ���
 ���������
mode 0.090s

96.68

Table 1: Verification times of different properties

in the case of modular verification. The obtained result is interesting since it makes it possible to
separate the specification of the system into several modules according to a given methodology,
and to verify these various modules separately. This verification technique, that we call modular
verification, makes it possible to well locate the errors, to gain time, to gain memory space and
to reduce state explosion problems.

4.3 Prototype

To test the ICCG system in a real situation, we have developed a simulation prototype using
Visual Studio .Net and the C# language15.

The first application of our prototype is a simulation map allowing to define a roadmap and
to create the data base relating to this map. Generally, this application consists in representing
graphically on a roadmap the speed limit of the different zones as we have shown by figure22.
This application allows also to apply the optimization algorithm introduced in section 3.2, and
to generate the data base from the obtained result (figure23). For safety reasons, the critical
points of the roadmap such as the exits of motorways can be treated in a more precise way. We
can zoom on these zones to increase the accuracy and then apply the same optimization process.

The second application is developped to simulate the fonctionning of the ICCG system in
a real conditions. To do that, we have connected our system to a GPS of type Garmin16. The
GPS uses the communication protocol NMEA (National Marine Electronic Association) [32] to
send informations about the car position each one second to the ICCG prototype. In this case,
the prototype computes, in real time, the speed of the car, its direction and its current position
using geographical data (latitude and longitude). According to these informations and to the
data base of the roadmap generated by the simulator, the prototype locates the current and the
next position of the car and then the speed limits to be respected.

15www.hitmill.com/programming/dotNET/csharp.html
16www.garmin.com

RR n° 5832

28 Separating Control and Data Flow: Methodology and Automotive System Case Study

Figure 22: Application of the simulation map

Figure 23: Optimization and data base generation of the roadmap

INRIA

Separating Control and Data Flow: Methodology and Automotive System Case Study 29

4.4 Field Test

A real test of our application was performed in Villeneuve d’Ascq17 using a laptop and a Garmin
GPS (figure24). It represents a simple test of the system since the application does not react

Figure 24: Real test

directly on the speed of the car. In our case, the ICCG system informs only the driver by an
alarm signal if the speed limit is exceeded.

To display the different informations on the state of the system and the speed changes, we
have proposed a graphical interface giving the roadmap, the car position, the next car position,
the car speed, the speed limit,. . . . We have also proposed an interface for the different buttons
of the ICCG System as shown by figure24.

In this test and to be much more interested by the speed limits of the roads, we have fixed
the speed requested by the driver at 140km/h. In this case, the authorized speed limit will be
always that of the current zone of the car. This test gave satisfactory results and showed that the
detection of the different changes of zones is precise. For example, the passage from a 90km/h
zone to a 70km/h zone was very quickly announced by the system and the alarm signal was
activated until the speed of the car went below 70Km/h.

5 Conclusion

In this paper we have studied the application of a control/data flow separation methodology
in the case of an automotive system. First, we have shown that the specification environment
Scade does not follow a clear separation design methodology and leads to a mixture of control
and data flow representation. This mixture can make difficult the understanding of the system
and the re-use of existing applications. For these reasons, we have proposed a design methodol-
ogy allowing to separate clearly control and data parts, and consequently give a good modular
development and an easy re-use of the different components of the system.

To illustrate the advantages of our methodology, we have studied its application on a real
automotive system example (ICCG). This study has shown that the obtained specification model
is more readable, it is easier to maintain and to re-use. Also, this model allows a modular formal

1759650, France

RR n° 5832

30 Separating Control and Data Flow: Methodology and Automotive System Case Study

verification since the differents modules of the system are easily locatable. This verification
technique makes it possible to gain time and memory capacities and allows to detect more
easily errors in the system.

Acknowledgment

The authors would like to thank Ahmed Jerbi and Yousri Miled who developed the preliminary
specification and the on road prototype of the ICCG system.

References

[1] David Harel and Amir Pnueli, On the development of reactive systems, In K. R. Apt, editor,
Logics and Models of Concurrent Systems, 13, NATO ASI Series,springer-Verlag, pages
477-498, New York, 1985

[2] L. Zaffalon and P. Breguet, Conception de Systèmes Réactifs. Revue Scientifique de l’EIVD,
2001

[3] N. Halbwachs, Synchronous programming of reactive systems. Kluwer Academic Publish-
ers, ISBN: 0792393112, 1993

[4] G. Berry and A. Benveniste, The synchronous approach to reactive and real-time systems.
Proceedings of the IEEE, 79(9), pages 1270-1282, September, 1991

[5] P. Caspi, D. Pilaud, N. Halbwachs and J. A. Plaice, Lustre, a declarative language for
real time programming. Proceedings of the 14th ACM SIGACT-SIGPLAN symposium on
Principles of Programming Languages, pages 178-188, Munich, West Germany, 1987

[6] N. Halbwachs, P. Caspi, P. Raymond and D. Pilaud, The synchronous data-flow program-
ming language LUSTRE. Proceedings of the IEEE, 79(9), pages 1305-1320, September,
1991

[7] Albert Benveniste, Patricia Bournai, Thierry Gautier and Paul Le Guernic, SIGNAL: a Data
Flow Oriented Language for Signal Processing. INRIA Technical Repport, RR-0378, Cen-
tre de Rennes IRISA, March, 1985

[8] P. Le Guernic and T. Gautier and M.Le Borgne and C. Le Maire, Programming Real-Time
applications with SIGNAL, Another Look at Real-Time Programming. Proceedings of the
IEEE. 79(9), pages 1321-1336, September, 1991

[9] Frédéric Boussinot and Robert De Simone, The Esterel Language. Another Look at Real-
Time Programming. Proceedings of the IEEE. 79(9), pages 1293-1304, September, 1991

[10] Gerard Berry and Georges Gonthier, The Esterel Synchronous Programming Language:
Design, Semantics, Implementation, Science of Computer Programming, 19(2), pages 87-
152, November, 1992

[11] Gérard Berry, The Foundations of Esterel. Proofs, Languages, and Interaction, Essays in
Honour of Robin Milner. MIT Press, 2000

INRIA

Separating Control and Data Flow: Methodology and Automotive System Case Study 31

[12] F. Maraninchi and Y. Rémond, Argos: an Automaton-Based Synchronous Language. Com-
puter Languages. Elsevier. 27, pages 61-92, April, 2001

[13] Ouassila Labbani, Jean-Luc Dekeyser and Pierre Boulet, Mode-automata based method-
ology for Scade, In Springer, Hybrid Systems: Computation and Control, 8th International
Workshop, LNCS series, pages 386-401, Zurich, Switzerland, March 2005

[14] Esterel Technologies, SCADE Language Reference Manual, 2004

[15] Florence Maraninchi and Yann Rémond, Mode-automata: About modes and states for
reactive systems, European Symposium On Programming, Springer verlag, LNCS 1381,
Lisbon, Portugal, March, 1998

[16] M. Jourdan and F. Lagnier and F. Maraninchi and P. Raymond, A multiparadigm language
for reactive systems. IEEE International Conference on Computer Languages (ICCL).
Toulouse, France, 1994

[17] Nicolas Pernet and Yves Sorel, Optimized Implementation of Distributed Real-Time Em-
bedded Systems Mixing Control and Data Processing. International Conference: Computer
Applications in Industry and Engineering, Las Vegas, USA, November, 2003

[18] Esterel Technologies, Efficient Development of Airborne Software with SCADE SuiteTM ,
2003
url: www.esterel-technologies.com/technology/WhitePapers/overview.html

[19] Charle Andrés, Representation and Analysis of Reactive Behaviors: A Synchronous Ap-
proach. Computational Engineering in Systems Applications (CESA). IEEE-SMC, pages
19-29, Lille, France, July, 1996

[20] Hervé Marchand and Eric Rutten, Managing multi-mode tasks with time cost and qual-
ity levels using optimal discrete control synthesis. In Proceedings of the 14th Euromicro
Conference on Real-Time Systems, ECRTS’02, Vienna, Austria, June, 2002

[21] Florence Maraninchi and Yann Rémond, Applying Formal Methods to Industrial Cases:
The Language Approach (The Production-Cell and Mode-Automata). Proc. 5th Interna-
tional Workshop on Formal Methods for Industrial Critical Systems, Berlin, April, 2000

[22] Paul Caspi and Marc Pouzet, Lucid Synchrone, a functional extension of Lustre. Technical
Report, Université Pierre et Marie Curie, Laboratoire LIP6, 2000

[23] Xavier Leroy, The Objective Caml System Release 3.0.8: Documentation and user’s man-
ual. Institut National de Recherche en Informatique et en Automatique, July, 2004
url: caml.inria.fr/pub/docs/manual-ocaml/

[24] Edward A. Lee, Overview of the Ptolemy Project. Technical Memorandum UCB/ERL
M03/25, University of California, Berkeley, July, 2003
url: ptolemy.eecs.berkeley.edu/publications/

[25] A. Girault, B. Lee, and E. A. Lee, Hierarchical Finite State Machines with Multiple Con-
currency Models. IEEE Transactions On Computer-aided Design Of Integrated Circuits
And Systems, 18(6), June, 1999

RR n° 5832

32 Separating Control and Data Flow: Methodology and Automotive System Case Study

[26] Michel Marchi, Jacques Ehrlich and Laurent Salesse, LAVIA: the French ISA project, main
issues and first results on technical tests, Proceedings of the 10th ITS Congress, Madrid,
Spain, 2003

[27] Veerle Beyst, PROSPER: Project for Research On Speed adaptation Policies on European
Roads, Final Report on Stakeholder Analysis. Technical Report, version 1.4, 2004

[28] Jean-Manuel Page, A final technical report on the Belgian Intelligent Speed Adaptation
(ISA) trial. Technical Report, Project and research engineer, Belgian Institute for Road
Safety, 2004

[29] Torbjörn Biding and Vägverket, Intelligent Speed Adaptation (ISA), Results of large-scale
trials in Borlänge, Lidköping, Lund and Umeå during the period 1999-2002. Technical
Report, 2002

[30] C. S. Jensen, H. Lahrmann, S. Pakalnis and J. Runge, The INFATI Data. TimeCenter
Technical Report, 2004

[31] Ahmed Jerbi and Yousri Miled, Limiteur-Régulateur de Vitesse Intelligent (LRVI), Projet
de Fin d’Études d’Ingénieur en Informatique, Faculté des Sciences de Tunis, Organisme
d’accueil: Laboratoire d’Informatique Fondamentale de Lille, Juin, 2005

[32] David R. Morse, Henrik S. Gedenryd, Simon Holland, A Simple, Technology-neutral Lin-
gua Franca for Location Systems, Applied To Combined Indoor-Outdoor Navigation, Tech-
nical Repport 2002/10, 2002

[33] E. M. Clarke and E. A. Emerson, Design and Synthesis of Synchronization Skeletons Us-
ing Branching-Time Temporal Logic. In proceedings of the IBM Workshop on logics of
programs, 131 of LNCS, pages 52-71, Springer Verlag, 1981

INRIA

Unité de recherche INRIA Futurs
Parc Club Orsay Université - ZAC des Vignes

4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)��������� �	��
�

���������� ��� ���

ISSN 0249-6399

	Introduction
	Control/Data Flow Separation Methodology using Scade
	Context
	Reactive Systems and Synchronous Approach
	Scade
	Control/Data Flow Combination in Scade

	Control/Data Flow Separation Concept
	Mode-Automata
	Mode-Automata based Control/Data Flow Separation in Scade
	Benefits of the Control/Data Flow Separation Methodology

	Automotive System Case Study
	Context
	Optimization Technique for the Representation of the Roadmap
	ICCG System Description
	Alarm Mode
	Limit Mode
	Cruise Mode
	LimitGPS mode
	CruiseGPS mode

	System Design without Control/Data Flow Separation Methodology
	System Design using Control/Data Flow Separation Methodology

	Experimentation of the System
	Simulation of ICCG System
	Formal Verification of the ICCG System
	Prototype
	Field Test

	Conclusion

