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Abstract: The global convergence of a recently proposed constant modulus (CM) and
cross-correlation (CC)-based algorithm (CC-CMA) is studied in this paper. We first show
the original analysis of global convergence of CC-CMA is incorrect. We then point out that
the global convergent analysis of gradient stochastic algorithms including CC-CMA could be
completed by solving a semi-algebraic set. By developing an optimal algorithm to examine
the roots distribution a semi-algebraic set related with CC-CMA, we present that CC-CMA
can converge globally if the parameter which mix the CM and CC terms is properly selected.
Since our approach is quite general, it can be extended to the convergence analysis of any
gradient stochastic algorithm. Simulation results confirm the theoretical analysis on the
conditions of mixing parameter.
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Sur la détermination des paramétres de mélange de
I’algorithme CC-CMA par I’étude d’ensembles
semi-algébriques

Résumé : Ce rapport montre comment utiliser efficacement quelques outils de clacul symbo-
lique pour assurer la convergence globale d’un algorithme récent d’optimisation (CC-CMA)
de type gradient stochastique mélangeant des termes CM (module constant) et CC (inter-
corrélation). Dans un premier temps, nous montrons que I’analyse originale de ce processus
est incorecte puis établissons que I’étude de convergence se raméne & la résolution d’un sys-
téme d’égalités et d’inégalités polynomiales d’épendant de paramétres. La description des
solutions de ce systéme par une méthode formelle montre que le processus (CC-DMA) peut
converger globalement dés lors que les paramétres fixant le mélange des termes CM (module
constant) et CC (inter-corrélation) sont fixés correctement. Notre approche étant générale,
elle peut a priori étre étendue & ’analyse de convergence de tout algorithme de gradient
stochastic.Enfin, nous proposons quelques simulations illustrant les résultats obtenus

Mots-clés : séparation de signaux, algorithme module constant, inter-corrélation, en-
semble semi-algébrique, variété discriminante, bases de Grobner
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1 Introduction

The problem of blind signal separation (BSS) is of continuing interest in a wide range of fields
such as wireless communications and signal processing applications. The basic objective of
the BSS is to recover a set of source signals from a set of observations that are mixtures
of the sources with no, or very limited knowledge about the mixture structure and source
signals. To extract the original sources, many BSS algorithms have been proposed during
the past decade [15]. Among these algorithms, the cross-correlation and constant modulus
algorithm (CC-CMA), first reported in [21]-[22], appears to be the algorithm of choice due
to its computational simplicity. The constant modulus (CM) term of the CC-CMA, which
can be regarded as an extension to MIMO systems of CM algorithm in [T4] and [3T], aims
to guarantee obtaining a single signal at each output of the separator. To prevent repeated
retrieval of sources, a cross-correlation (CC) term is involved as the second term of CC-CMA
to ensure all the retrieved sources are uncorrelated. The CM term and the CC term of the
CC-CMA are weighted by a mixing parameter, which is a real positive number.

An important issue in CC-CMA algorithm is the global convergence analysis, which is
first considered by Castedo et al. in [6]. This issue is important because the cost function
proposed in the CC-CMA is not a quadratic form and may contain undesirable stationary
points. If these undesirable points are local minima, the algorithm could be trapped in one
of them. As a result, the CC-CMA would fail to separate source signals after it converges.
By classifying all the stationary points into six groups and investigating the signs of principal
minors of extended Hessian matrix at the stationary points in each group, Castedo et al.
tried to prove that only the solutions in the group corresponding to desired separation are
local minima if the normalized kurtosis of sources are less than two. However, as shown in
Section II, such a conclusion is not true since one group of undesired stationary points can
be local minima as well if there is no constraint on the mixing parameter.

It should be noted that the proper selection criterion on the mixing parameter can not
be obtained by the method reported in [6] and [T0]. This method is only feasible for the case
where one of principal minors of the extended Hessian matrix is shown to be negative. For
the concerned undesirable stationary points, the sign of principal minors will be uncertain
unless further information about the distribution of these stationary points depending on the
mixing parameter is available. Moreover, the existing results of the convergence analysis on
CC-CMA for finite impulse response (FIR) channel (see [I6] and [I8]) also can not be applied
to the studied problem, as they rely on the assumption that the channel and source signals
are all real values. In this paper, in contrast, we will consider the case that the channel
and sources take complex values. Besides the CC-CMA, there still exist some other BSS
techniques which have been proved to be global convergent. The typical examples include
the convergence analysis of multiuser kurtosis maximization (MUK) algorithm in [23] and
hierarchical criteria for MIMO blind deconvolution in [30]. The analysis in [23] is based on
a special property of MUK algorithm in which the updating of each row in matrix equalizer
only depends on its previous row vectors. The analysis on hierarchical criteria for MIMO
blind deconvolution relies on the hierarchical structure of cost function in [30]. Since these
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4 Gu & Lazard € Rouillier & Xiang

analyses exploit some properties which can not be expected in the CC-CMA, they are not
feasible for our problem as well.

In this paper, we will complete the results of [6] by providing a constraint on the mixing
parameter which then guarantees the global convergence of the CC-CMA. Different from
the methods mentioned above, we address the problem by investigating the solutions of
the semi-algebraic sets. Loosely speaking, a semi-algebraic set is the set of solutions of a
system of polynomial equations and polynomial inequalities depending on variables which
are either unknowns or parameters. In fact, the convergence analysis for many stochastic
gradient algorithms can be completed by computing the points where the gradient of cost
function vanishes and examining the positiveness of the principal minors of Hessian matrix
at these points (see [5], [10], [11], [13], [19], [29]). Clearly, we can construct some semi-
algebraic sets from these gradient equations and principal minors. By deriving a systematic
method to solve semi-algebraic sets, we present a general frame for convergence analysis of
a family of stochastic gradient algorithms, thus facilitating algorithm design.

Another appealing feature of our approach is the computation efficiency. In theory,
determining the root distribution of a semi-algebraic system can be realized by some existing
techniques such as the Cylindrical Algebraic Decomposition (CAD) and Comprehensive
Grobner bases method. However, these methods can not be employed for our problem since
they are far from being efficient in practice. The computation of discriminant variety, an
important concept in algebraic geometry which will be introduced in Section III, of the CAD
[7] is obtained by considering all the polynomial equations and polynomial inequalities in a
semi-algebraic set. Obviously, when the number of equations and inequalities in the studied
semi-algebraic system becomes large, the computation burden of the CAD algorithm will
be huge. To reduce the computation complexity, a partial CAD algorithm is proposed by
[R]. However, it is still not an optimal algorithm since the discriminant variety obtained by
this method depends on selecting proper projection strategy. As for the algorithms based
on Comprehensive Grobner bases(see [32], [33]), the computation also relies on an ad-hoc
projection strategy. Thus, they are only efficient for some special cases. In this paper,
we will develop a systematic approach to solve a semi-algebraic set with low computation
complexity. Our algorithm is optimal in the sense that the discriminant variety it derives is
a Zariski closure, which is the smallest subset of necessary variety. Hence, any unnecessary
information will not be produced by our algorithm.

This paper is organized as follows. Section II formulates the problem. The necessary
mathematic knowledge are summarized in Section III. The algorithm for determining the
root distribution of semi-algebraic system is proposed in Section IV. Section V presents
a selection criterion for the mixing parameter of the CC-CMA. Numerical simulation are
provided in section VI to validate our results and section VII is devoted to the conclusion.
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2 Problem Formulation

We consider that mutually independent sequences are transmitted through a MIMO linear
memoryless channel. The system model takes the following form

x=As+n (1)

where x is a IV x 1 vector of observations, A denotes the NV x K system channel, s represents
a K x 1 vector of transmitted symbols and n is the NV x 1 vector of Gaussian noise. Note
that V must be no less than K to meet the channel invertibility condition. The objective
of BSS is to select the proper weights of a separating matrix W with K x N dimension in
such a way that each element in the output vector restores one of the different sources. The
ith element of the output vector can be described as

y=wlx i=1...K (2)

K3

where w is the ith row vector of matrix W. The superscript ¥ denotes the transpose

conjugate operation. The CC-CMA algorithm minimizes the following cost function to
perform source separation

K

K
J= Y Bl — 1P+ 530 >0 |Elwail 3)

i=1 i=1 j=1,j#i

where the mixing parameter « is a real positive number, F|-] is the expectation operator
and * denotes conjugate.

Based on the assumption that the sources are independent, non-Gaussian, zero-mean,
complex-valued signals with circular symmetry, the convergence analysis of the CC-CMA
is considered by [6]. For the sake of simplicity, the analysis is restricted to a two-input
two-output MIMO system under a noise-free environment. Therefore, the input-output
relationship of such a system can be written as

Y | _ | 911 G12 S1 (4)
Y2 921 g22 S2
where g;; corresponds to the overall response of the ith output to the jth source. Denote

ki = E[|si|*]/E[|si|*] as the normalized kurtosis of s;. One can easily find the cost function
J can also be expressed in terms of k; and g;; as

J = kilgu|* + kalgie|* + 49111 |g12|* + k1]ga1|*
+haolgaal* + 4lg211?[g22]” — 2|g11[* — 2lg12|?
—2[ga1]? — 2|gaal* + a(lg111?[g21]? + |g12/*|g22]?
+911912921922 + 911912921932) + 2. (5)
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Taking the first derivative of ) w.r.t. g11, g12, g21 and goo yields the following equations

8<] * k%
Ervi g11(2k1lg11]? + 4lgr2|” — 2+ algai|’) + agizgs ga2
oJ = g5 (2k 2 4 2 2 2 * *
Bgrs 912(2k2]g12|” + 4lg11|” — 2 + alge2]”) + agi1921922
8‘] % 2% 2 4 2 2 2 * *
g1 921 (2k1|g21|” + 4lg22|” — 2+ alg11]”) + agi1912922
aj % 2 2 2 * ok
Bgms 922(2k2|g22|" + 4]g21|" — 2 + &|g12]") + ag1197292:1- (6)

Obviously, all the stationary points of the CC-CMA are the roots of the above equations.
These nonlinear equations contain multiple solutions which can be classified into six groups
[6]. By investigating these groups respectively, Castedo et al. claimed the CC-CMA algo-
rithm will be globally convergent if k; < 2 since only the solutions in the group corresponding
to desired separation are local minima. Such a conclusion is not true since one group of the
undesired stationary points can also be local minima if there is no constraint on a. The
concerned group is Group 6 in [6]. In this case, Each output of the separator extracts a
linear combination of both sources, i.e., the four g;; are different from zero. To examine
whether these undesired stationary points are local minima or not, one needs to check the
positiveness of the following extended Hessian Matrix

8%J | 8%J | .
9gi;0g;, 4.9,k1=1  Bg;;0 i,5,k,1=1
HGJ — 96]2;]M 2] 952j]kl 2] i (7)
997,095, |i7j;7€;l:1 9g;; 09K |i;j7k7l:1
From (@), we know that
2
o0°J — 9%k 2 9119T29§1922
Do oot 1|g11| -
9110971 lg11]
82J g* *
2 11912921922
7(9 a - = 2k2|glg| — 0472 . (8)
9120912 lg11]
: 3%J 8%J
Since BoriB0T, and 913097 must be real, we have
* * *
9119f2921922 = 011912921922 = j2|911||912||921||922|' (9)

It should be noted that only the positive case of @) is considered by [6].
If 911972951922 = 911912921952 = |9111|912]|921|g22], it can be easily found that the deter-
minant of the second upper left matrix of (@) takes the following form

0%J 0%J
0911097, 0911093
Ao = det 9(1912J911 9(1912J912

0912097, 09120975
|911|2 |912|2

= 4|g11 P’ |g12|* (k1k2 — 4) — 2alg11]|g12llg21]|g22] (k1 5 + ka7—15 +2).  (10)
|g12] lg11]
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Clearly, Ay in this case will be negative if k1 < 2 and k2 < 2. Hence, HgJ will not be
(semi)positive at the stationary points which make g1197595; 922 positive.

If we consider the negative case of (@), the determinant of the second upper left matrix
can be obtained as follows

|911|2 |912|2
l912[? lg11]?
When k; < 2 and ks < 2, the first term of (1) will be negative. However, the value of As

in this case is uncertain since the second term of ([[Il) will always be positive. Moreover,
one can find the sign of other principal minors of ([@d) can not be determined either for the
case g11912951922 = 911912921950 = —|911|912|921|922|. Therefore, the positiveness of HgJ

in this case can not be determined and the condition k1 < 2 and ks < 2 are not sufficient to
ensure that CC-CMA is globally convergent.

Naturally, one wants to find a range for o which makes () have roots satisfying g1195295, 922 =
911912921952 = —|g111]912]]921]|g922] and HgJ will not be (semi)positive at these roots. To
find the selection criterion on «, we employ the method developed for solving semi-algebraic
sets. As mentioned in Section I, a semi-algebraic set consists of polynomial equations and
inequalities. Clearly, in our case, the equations originate from 8‘99‘1]1 =Y 86912 - aaag‘:l =0
and % = 0 respectively. The equations in the algebraic set can be further written as

+ ko

Ay = 4)g11)?|g12)* (k1k2 — 4) + 2ag11||g12]|g21]|922| (k1 +2). (11)

follows by multiplying g;; by % respectively

lg111(2k1|g11]* + 4lg12]* — 2algar|*) — algiz||ga1[lgaz| = 0
|g12](2k2|g12]* + 4lg11* — 2algaa|®) — algn||ga1|lgaz| = 0
|g211(2k1|g21]* + 4lga2|* — 2algni|*) — algn||giz|lgaz| = 0
|g22|(2k2|gaa|* + 4lga1|* — 20]g12|*) — algi1lgr2]|gar| = 0. (12)
Moreover, we have the following inequalities
0<k <2,0<k; <2,a>0
l911] > 0, |g12| > 0, [g21] > 0, [ga2| > 0. (13)

Our problem is to find the necessary and sufficient conditions on the parameters k1, ko and «
such that the algebraic set, composed by equations ([2) and inequalities ([[3), has solutions
which make HgJ not be (semi)positive. It should be noted that such a problem can be
reduced to a simplified version for wireless communication since different users normally
share the same statistical properties, i.e., k1 = ko. Without loss of generality, we further
assume k1 = ko = 1. In this case, M-ary phase shifting keying (MPSK) modulation scheme
is used to transmit the symbols. Thus, the studied problem in this paper can be described
as determining the range of o which makes the following semi-algebraic set

l9111(2|g111* + 4|g12]* — 2alga1|*) — algrzllgz1lgaz| = O
lg12|(2lgr2* + 4lgn1 > — 2alga2|*) — algi1]|gz1|lgaz| = 0
lg211(2]g21]* + 4|g22|* — 2algi1|*) — algillgizllgaz| = 0 (14)
lgo2|(2]g22|? 4 4lga1]* — 2algi2|*) — alguillgi2|lga1| = 0
a>0,|gi1] > 0,]g12] > 0,|g21]| > 0, |g22| >0

have real solutions. In the mean time, all these solutions make HgJ not be (semi)positive.

RR n° 5830
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3 Necessary Mathematical Knowledge

According to the above section, we know that the first problem needs to be solved is to
determine the root distribution of a parametric system ([[d)). We address such a problem by
investigating the number of real roots of the following semi-algebraic set

p1(X,a) =0
p2(X,a) =0

s: ! ... (15)
ps(X, ) =0

filX,0)>0... fi(X,a) >0

where X = {Xy,..., X, } is the set of indeterminates, « is a unique parameter, p; and f;
are the polynomials in terms of X and «. For our specific case, X1 = |g11], X2 = |g12], X3 =
|g22], X4 = |g21|, p; and f; are the polynomials in terms of X and « defining the equations
and inequalities of ([4) respectively It should be noted that the first derivative of many
stochastic gradient algorithms under some practical constraints can be modeled by system
(@) (see [a], [TO], [T11, T3], [T9], [29]). As aresult, developing a general method to determine
the root distribution of semi-algebraic set ([8) can provide a uniform frame for analyzing
the convergence of a family of stochastic gradient algorithms.

We do not give any proof in this section. Most of them may be found in many places, and
especially in [9]. For the results which do not appear there, we will give explicit references.

3.1 Mathematical background

In the sequel, we will borrow some elements from algebraic geometry and cumulative algebra
to solve system ([d). To facilitate illustrating our methods more easily, we introduce a
minimal dictionary at first. For such a purpose, an essential structure is the ideal.

Definition 1 Let k be a field, and let Py,--- , P; be the polynomials in k[X,«]. Then we
call

<P1,~-,Ps>z{ihipi:h1,-~-,hseR[X,oz]} (16)

the ideal generated by P, --- , Ps.

We denote by & = (p1,...,ps) the ideal generated by the polynomials defining the
equations in ([A) and by F = {fi1,..., fi} the set of polynomials defining the inequalities
in the inequalities of ([[H). The geometrical objects to be studied are the variety of the
ideal £ and the semi-algebraic set consisting in the points of this variety which satisfy the
inequalities. Moreover, assuming that k¥ = Q, two set of varieties will be studied in this
paper which include the complex variety (the set of complex zeroes of a given ideal) and the
real variety (the set of real zeros of an ideal).. Both of them are defined independently from
the chosen set of generators of the ideal.

INRIA



Sur la détermination des paramétres de mélange de l'algorithme CC-CMA par l’étude d’ensembles semi-algébriques9

Definition 2 Let Py,--- , Ps be polynomials in Q[X, «]. Then we set
V(P ,P) ={XeC"™: P(X,a) =0, 1<i<s}. (17)

We call V(Py,- -, Ps) as the variety defined by Py,--- , Ps. The real variety will be denoted
by V(Pr,---,P)NRHL,

Another important concept which needs to be introduced is discriminant variety. Loosely
speaking, a discriminant variety, denoted by Wp, is an algebraic variety (systems of algebraic
equations depending only on the parameters) defining a partition of parameter’s space into
subsets which are

e the discriminant variety Wp itself, and

e open connected disjoint subsets Uy, -+ ,U, of parameters’ space which do not insect
the discriminant variety and such that any solution of ([3l) which the parameters lying
in some U; belongs to the image of an analytic function of f; into the solutions of (7).

A more precise definition of discriminant variety can be found in [I7]. Normally, the dis-
criminant variety is defined in the complex case, i.e. one is interested with the study of the
complex roots of the system S obtained by replacing the inequalities in S with inequations.
But the definitions commute with the intersection with the real space. One can thus first
define the discriminant variety W, for the complex system S and then get the restriction
Wp NR as a discriminant variety of S .

A very interesting property of discriminant varieties is that, if v and v are two vectors
of parameters which belong to the same U;, the specialized systems S,—, and S,—, have
exactly the same number of real roots. Based on this property, we know that one key step
in solving our problem is to compute a discriminant variety Wp of S. Since there is only
one parameter («) in our studied system, determining Wp of S, or more precisely counting
the number of solutions of the system w.r.t. o remains to

e set ap = 0 and «,41 = oo and compute real numbers «y,...,«, such that over
iy, aipa[,i = 0...7, V(S) N R is an analytic covering of ], a;11] for the projection
on the a-axis, i.e., V/(S) N R is the union of analytic branches which do not intersect
over, Jay, a;y1[. Note that this property induces that the system has a constant number
of real solutions over each interval |a;, 1]

e take any rational number (; €|a;, ;41 for i = 1...r, and count the number of real
roots of V(8) U {a = B }, which is the constant number of real roots of all systems
V(S)U{a =~} with v; €]ay, aiq1]-

o for each o;, i =1...r, solve the system V(S) U {a = «;}.

Now, we are in the position to present a method to calculate Wp. For simplicity, we
first consider Wp of &, i.e., we do not consider the inequalities in ([[3) at this stage. Since

RR n° 5830
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Wp is only related to the parameter space (only related to « in our case), we introduce the
following projection mapping operation

I, : C**Y — ¢ (18)
which sends (o, X1,---, X,,) to a. Moreover, we denote by II.! the inverse projection on
the parameter space (o) — (o, X1, ,X,). According to [TI7], Wp of £ can be obtained
as follows

Wp =0sU O, U{0,4+0c0} (19)

where O, is the set of a € R such that II;*(a) () V() is not compact for any compact
neighborhood U of « and O, is the set of real critical values of I1,, restricted to V(€) (from the
pure algebraic point of view, this includes the projections of singular points). In other words,
O+ modelizes the phenomena “roots going to infinity” when the parameter varies while O,
modelizes “critical values and projections of singular points”. Classical mathematical results
(see |20] for O and Sard’s semi-algebraic theorem in [I] for O.) show that these two sets
of points are finite in general and we will see later that it is the case for our problem.

Let us now consider the full semi-algebraic set S which includes the inequalities in ([IH).
According to the above results, one can decompose V(€) as points and continuous branches
which do not intersect. In the following, we use the fact that the sign of a given polynomial
(for example f1) will not be constant on such a branch if and only if f; vanishes at some point.
Let us define O, UO, = {a, ..., ) }. Over each interval Jaj, a;, [, either f is identically
null at each point of a given branch, or it vanishes at a finite number of points or it never
vanishes. We suppose that f vanishes at most at a finite number of points, which remains to
suppose that V() NR®> N {z € R®, f = 0} is a finite set of points (we will see how to get rid
of this condition on our problem in next section). Thus, there exists a finite number of reals
w1, ..., wy such that Ut_; V(E)NR5 N {a = w;} contains V(E)NR*N{fi =0V...V f; = 0}.
If we take {ag,...,r11} = Oc U Ox U{0,+00} U {w1,...,ws}, the semi-algebraic system
S then has a constant finite number of points over each interval o, ;1] Therefore, the
discriminant variety Wp of S can be obtained by

Wp =0 U O, U{0,+00} U{wry,...,ws}. (20)

3.2 Algorithmic background

From section Bl one can see that the main difficulty is to compute explicitly O, O, and
wi,...,ws. Moreover, we know that eliminating the indeterminates X from S is a key
ingredient of computing Wp. In this section, we resort to the Grébner basis to realize such
computations. Here, we first briefly summarize some known basic results about Grébner
bases and their applications to elimination theory and solving zero-dimensional systems. A
complete introduction of Grobner bases can be found in [9], [4] and [2].

INRIA
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3.2.1 Grobner bases

A Grobner basis of an ideal [ is a computable generator set of I with good algorithmical
properties and defined with respect to a monomial ordering. In this paper, we will use the
two following orderings and some others which will be defined later.

e lexicographic order: (Lex)

X0 X0 Spe XP XD
@H’LQ <n , { Q5 ﬁh fori 17' 5 20 1u ( )
(67 </6i0

o degree reverse lexicographic order (DRL):

X0 X0 <pgp, X X
G XX X pe Xt XX,

n

(22)

Let us define the mathematical object “Grobner basis”.

Definition 3 For any n-uple 1 = (p1, ..., pun) € N", let denote by X* the monomial X! -
...+ Xtr . Given an admissible monomial ordering < and P = Y. aiX“(i) a polynomial
in Q[X1,...,X,], we define LM(P, <) = max;—¢...r , < XH which is the leading monomial
of P w.r.t. <;LC(P,<)=a; with LM(P,<) = X+ which is the leading coefficient of P
w.r.t. < and LT(P, <) = LC(P, <) LM(P, <) which is the leading term of P w.r.t <.

Definition 4 A set of polynomials G is a Grobner basis of an ideal I w.r.t to a monomial
ordering < if for all f € I there exists g € G such that LM(g,<) divides LM(f, <).

Given any admissible monomial ordering <, one can easily extend the classical Euclidean
division to reduce a polynomial p by a set of polynomials F', performing the reduction w.r.t
to each polynomial of F' until getting an expression which can not be further reduced. Let
denote such a function by Reduce(p, F, <) (reduction of the polynomial p w.r.t ). Unlike in
the univariate case, the result of such a process is not canonical unless F' = G is a Grobner
basis.

Theorem 1 [J] Let G be a Grébner basis of an ideal I C Q[X1,...,X,] for a fized ordering
<. Then,

(i) a polynomial p € Q[X1,...,X,] belongs to I if and only if Reduce(p, G, <),

(i) Reduce(p, G, <) does not depend on the order in which the reductions by polynomials
in G are done. Thus, this is a canonical representation of the polynomials which are
equivalent to p modulo I.

Grobner bases are computable objects. The most popular method for computing them is
Buchberger’s algorithm [3]. It has several variants and is implemented in most of computer
algebraic software such as Maple or Mathematica. For difficult computations, one will prefer
dedicated software such as FGb developed by J.C. Faugére [12].
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3.2.2 Elimination or block orderings

We pay a particular attention to Grobner bases with respect to elimination or block orderings
(defined below) since they provide a way of eliminate some variables from the system.
Especially the discriminant variety, which is defined by equations depending only from the
parameters is efficiently obtained by Grobner basis computations for an ordering eliminating
the Xz

Definition 5 Given two monomial orderings <y (w.r.t. the variables Uy,...,Uy) and <x
(w.r.t. the variables X441,...,X,), a block ordering <y x is defined as follows : given two
monomials m and m’, then m <y x m’ if and only if either my,, _, <x m]

luy=1,....,uy=1
<um We say that

— !/
=1 ug=1 = My oy Uy=1
such an ordering eliminates Xg41,...,X,.

or (m|U1

The lexicographical ordering such X; < ... < X,, is a block ordering for any 1 < i < n,
which eliminates X;1,...,X,. However, this ordering is not recommended for elimination
because the computation is usually much harder than with block orderings such both <
and <y are DRL orderings.

Two important applications of elimination orderings are the projections and localizations,
which can be summarized in Proposition 1 and 2. To facilitate the illustration, the following
notation is needed. Given any subset V of C? (d is an arbitrary positive integer), V is its
Zariski closure which is the smallest subset of C? containing V. If V is a constructible set
(i.e. it may be defined by equations and inequations), then V is also the closure for the usual
topology. This will be always the case in the following.

Proposition 1 [fJj Let G be a Grobner basis of an ideal I C Q[U, X] w.r.t. a block ordering
<u.x, then G Q[U] is a Grébner basis of I (\Q[U] w.r.t. <y. Moreover, if iy : C* — C?
denotes the canonical projection on the coordinates U, then V(I NQ[U]) = V(GNQ[U])) =
Iy (V(I)).

Proposition 2 [9] Let I C Q[X] and T be a new indeterminate, then V(I)\ V(f) = V(I +
(Tf-1)NQX]). If G C Q[X,T] is a Grébner basis of I + (T f — 1) w.r.t a block ordering
<x,r, then G’ Q[X] is a Grébner basis of I : f> = (I + (Tf — 1)) Q[X] w.rt <x.
The variety V(I)\ V(f) and the ideal I : > are usually called the localization of V(I) and
Ibyf.

3.2.3 Certified solutions of zero-dimensional systems

Zero-dimensional systems are polynomial systems with a finite number of complex solutions.
The following theorem shows whether we can detect that a system is zero dimensional or
not by computing a Grébner base for any monomial ordering.

Theorem 2 [9] Let G = {gi1,...,91} be a Grobner basis of a system S = {Py,...,P;} €
Q[X1,...,X,]®%, for an ordering <. The following two properties are equivalent:
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e For all index i, i = 1...n, there exists a polynomial g; € G and a positive integer n;
such that X" = LM(g;j,<);

e The system {P; = 0,...,Ps; = 0} has a finite number of solutions in C" (i.e. it is
zero-dimensional).

If S is zero-dimensional, then according to Theorem B only a finite number of monomials
m € Q[Xy,...,X,] are not reducible modulo G (this means that Reduce(m,G,<) = m).
This implies that a system is zero-dimensional if and only if Q[X7, ..., X,]/I is a Q-vector
space of finite dimension. When a Grobner basis G is known, a basis of this vector space is
given by the monomials which are not reducible by G and the result of Reduce(f, G, <) is
the expression on this basis of the image of f in Q[X1,...,X,]/I.

Theorem 3 [9] Let S = {P1,..., Ps} be a set of polynomials with p; € Q[X1,...,X,],Vi =
1...s, and suppose that G is a Grébner basis of (S) w.r.t any monomial ordering <, which
satisfy the equivalent conditions of Theorem[d. Then, we have

e Q[X1,...,X,]/I ={ Reduce (p,G,<),p € I} is a vector space of finite dimension;

o B={t=X"- X, (e1,...,en) € N’| Reduce(t,G,<) =t} ={wy,...,wp} isa
basis of Q[X1,...,X,]/I as a Q-vector space;

e D = 4B (the number of elements in B) is exactly the number of elements of complex
zeroes of the system {P; =0, ..., P; = 0} counted with multiplicities.

Thus, when a polynomial system is known to be zero-dimensional, one can switch to linear
algebra methods to get information about its roots. Once a Grébner basis is known, a basis
of Q[X7,...,X,]/I can easily be computed according to Theorem Bl

For any polynomial ¢ € Q[X3, ..., X,], the decomposition § =Reduce (q,G,<):Z£1 a;w;
is unique (see Theorem [M). We denote by ¢ = [a1,...,ap] the representation of g in the
basis B. For example, the matrix w.r.t. B of the linear map

mq( Q[X1,..., X,/ I — Q[Xl,...,Xn]/I> (23)

—

p — Pq

can be explicitly computed since its columns are the vectors qw;. One can then apply the
following well-known theorem

Theorem 4 [Z] The eigenvalues of my are exactly the g(o) where a € Vi (S).

According to Theorem H the i-th coordinate of all & € V¢(S) can be obtained from
My, eigenvalues but the issue of finding all the coordinates of all the o € V(S) from
Mx,, ..., Mx, eigenvalues is neither explicit nor straightforward and often numerically un-
stable.
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The Rational Univariate Representation The Rational Univariate Representation
(RUR) is, from the end-user point of view, the simplest way to symbolically represent the
roots of a zero-dimensional system without losing information since one can get all the
information on the roots of the system by solving univariate polynomials [26].

Given a zero-dimensional system I, a RUR of V(I) has the following shape

_ _9t.x. (1) ~ 9t.x,(T)
ft(T) - 07X1 - gtﬁl(T) 9 -;Xn - gt71(T)

where fi,0t1,0t.x,,---,9t,x, € Q[T], T is a new variable. The RUR defines a bijection
between the roots of F and those of f; preserving the multiplicities and the real roots

(24)

V(S)(NR) ~  V(fi)(NR)
0 ey PR (25)
gt, x4 (t(a gt,x, (Ha
(Gt gty ) Ha)

To compute a RUR, one has to solve the following two problems:
e find a separating element ¢, and

e given any polynomial ¢, compute a RUR-Candidate f, g¢.1, 9t x,, - - - G¢,x,, such that
if ¢ is a separating polynomial, then the RUR-Candidate is a RUR.

According to [26], a RUR-Candidate can be explicitly computed when we know a suitable
representation of Q[ X1, ..., X,,]/I, which can be summarized as follows

o fi= Zf): 0 a;T" is the characteristic polynomial of m,. Let us denote by f; its square-
free part.

o for any v € Q[X1,..., Xu], grw = ge(T) = Y0y Trace(myp) Ha—i—1(T), d = deg(f1)
and H;(T) = 37_oaT"7

In [26], a strategy is proposed to compute a RUR for any system from a Grébner basis for
any ordering.

From formal to numerical solutions Computing a RUR reduces the resolution of a
zero-dimensional system to solving a polynomial with one variable (f;) and to evaluating n
rational fractions (%,i =1...n) at the roots. The next task is thus to compute all the
real roots of the systém, providing a numerical approximation with an arbitrary precision
of the coordinates.

The isolation of the real roots of f; can be done using the algorithm proposed in [28].
The output will be alist I, of intervals with rational bounds such that for each real root « of
f¢, there exists a unique interval in [y, which contains o. The second step consists of refining
each interval in order to ensure that it does not contain any real root of g; . Since f; and
g:,1 are co-prime, this computation is easy. Then, we can ensure that the rational functions
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can be evaluated by using interval arithmetics without any cancelation of the denominator.
The last evaluation is performed by using multi-precision arithmetics (MPFI package - [27]).
Moreover, the rational functions defined by the RUR are stable under numerical evaluation
even if their coefficients are huge rational numbers. Thus, the isolation of the real roots
does not involve huge compaction burden. To increase the precision of the result, it is only
necessary to decrease the length of the intervals in [y, which can be easily done by bisection
or using a certified Newton’s algorithm. Note that it is quite simple to certify the sign of
the coordinates.

Signs of polynomials at the roots of a system Due to the existence of inequalities
in semi-algebraic system, it is important to develop a method computing the sign of given
multivariate polynomials at the real roots of system ([3) if it is zero-dimensional. Instead
of plugging straightforwardly the formal coordinates provided by the RUR into the f;, we
better extend the RUR by computing rational functions h; ; which coincide with the f; at
the roots of I. Precisely, using the notations BB, f;(ca,...,an) = he(t(oa, .., an)). This
can be simply done by using the general formula h;; = Ei?)l Trace(fjt")Hp—;—1(T) in
[26]. One can directly compute the Trace(f;t") by reusing the computations already done if
the RUR has already been computed. Hence, it is not more costly to compute the extended
RUR than the classical one.

4 Computation of the roots distribution

The objective of this section is to prove the following result.

Theorem 5 If denote 3 ={X1 =Xo=X5=X,= %}, we will have
e for 0 < o < 1 the system {I4) has 5 solutions including (o, 3);

o for a =1, the system (IJ) has 3 isolated points including B and a infinite number of
solutions which lies on a semi-algebraic curve defined by X1 = X3, Xo = Xy, X3 =

2—3xX?2
s+, X§ > 2/3;

e for 1 < o < oo the only solution for system (I is (o, B).

In order to use efficiently the properties of Grébner basis introduced in section B2l we
introduce the following specific monomial orderings.

Notation 1 Let <x be a DRL ordering in {Z4) for the monomials depending on the vari-
ables X, <o x= (<,<x) will denote the product of orderings (see definitiond) o <, x X;
for all X; € X and X; <o x Xj if and only if X; <x X for all X;, X; € X.

As described in section Bl O, is the set of critical values of the restriction to VN R® of
the projection on the a-axis or, equivalently, of the projection on the a-axis of the critical
points of the restriction to V N R> of the projection on the a-axis. Let’s denote by Jacy
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the Jacobian determinant w.r.t X of £. The critical points of the projection on the a-axis
are included in the solutions of the system &. = {Jacx(£),g = 0,9 € £}. It appears that
the system defining &, is zero-dimensional. Since the number of polynomials in £ equals
the number of indeterminates, the critical points are exactly the roots of this system (more
details about such situations can be founded in [I7]). Thus, by computing a Grobner basis
of & w.r.t. <, x and applying Proposition [[l one obtains O, as the set of real zeros of a
unique polynomial P, € Q[a]. For our system, we get P, = (o — 1)(a — 2)(a — 3)(a + 1).

In the same way, one can compute Pr € Q[«] by eliminating the variables X in the system
Er ={lljer f=0,9=0,9 € £} (see Proposition ). We first obtain Pz = 0, which means
that some of the polynomials of F vanish on a entire (complex) component of V. Thus, we
can localize £ at [[ ;. » f and obtain a system £’ whose zeros are V \ {z € C5, f =0, f € F}
by Proposition [l and This variety represents the smallest algebraic variety containing
all the branches of V (it is thus contained in V) for which none of the polynomials of
F is identically null. Then, we compute Pr by using £’ instead of £ and obtain Pr =
ala—3)(a—1)(a—2)(a+1).

The explicit computation of a finite set containing O, can be done using classical results
from [9] or [4]. One can first compute a Grdbner basis G of I for <, x and then consider
all the polynomials LC(g,<x),g € G (which belong to Q[a]). O as well as a part of O,
is included in the union of the roots of these univariate polynomials , which yields some
extraneous points with no geometrical meaning. Different with these classical methods, a
more efficient approach is introduced as follows which yields less computed points.

Theorem 6 Let G be a reduced Grébner basis of any ideal I whose zero set is V w.r.t. a block
ordering <. x . Here <x 1is the Degree Reverse Lexicographic ordering s.t. X1 < ... < X,.
We define g° = ged{LC(9,<x) | g€ G , Im >0, LM(g,<x)=X"}. Then,

e O = U, V(95°) NR, where V(g{°) denotes the (complex) zero set of g3°.

The proof of this theorem appears in [I7] which is based on the properties of the special
monomial ordering.

Note that since Os = V(I]_ ;1 97°), one can define O as the set of real zeroes of a
univariate polynomial P, € Q[a]. For our problem, we obtain Py = oo — 3)(a — 1)(a +
3)(a+1). Let denote by g = 0,01 = 1,0 = 2, w3 = 3 the real points of the discriminant
variety and introduce gy = +00. Based on the previous computation on P., Pr and P, we
can find that system S has a constant finite number of real roots over each o, a;11[,4 = 0..3
or, equivalently, for each ¢ = 0. .. 3, the systems SU{«a = v} have a constant number of real
roots Vv €]y, ai+1[. Moreover, it has a finite number of real roots for a = 2 since 2 is not
a real root of P...

As described in section Bl and according to Theorem [0 one needs to perform the
following two computations to prove the Theorem B

e for i = 0...3, take any rational number (3; €]a;, a;4+1[ and count the number of real
roots of SU {& = (; } which is the constant number of real roots of all systems
S U{a =} with v; €]ag, aip1].
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e for each o;, i =0...3, solve the system S U {a = o }.

In the first case, one needs to solve systems with a finite number of complex roots and
to compute the sign of the polynomials from F = {X;, X2, X5, X4} at each root. In the
second case, one may get systems with an infinite number of complex solutions (if « belongs
to Os). Such a case occurs only if & = 1 or & = 3. Since the «a; are real numbers, one
will solve symbolically the systems S; = {a =1, =0,f >0,g€ &,f € F},5 = {a =
2,=0,f>0,9ge&,feF},S5={a=3,g=0,f>0,9g €& f e F}in order to avoid
numerical approximations. Thus, for both problems, one has to compute the number of real
roots of a system with rational coefficients and the sign of some polynomials at these roots.
Let’s describe now the main tools we used.

The first computation is to select (3;, which are rational numbers contained in the intervals
Jai, civ1[- We take Bo = 1/2, 81 = 3/2, 2 = 5/2, 83 = 4. After obtaining ;, we solve {a =
Bi,g=0,f>0,9ge& feF}i=0.3and {a =0a;,9=0,f>0,g€&,feF},i=0...3.
Applying the algorithm described in section B2ZZ3, we know that the system ([4) always has

e 5 real roots for « €]0, 1], and
e 1 real root over the range « €]1,2[, a €]2, 3] and |3, +o0].

In order to get a complete result, one need finally to study the situations where o = 1,
a=2and a=3.

The first case we need to study is a = 3. We compute a lexicographic Grébner basis with
X1 > X5 > X3 > X, which contains the polynomial (12X —4X? +1)(X4 — X3)(X4 + X3).
Since 12X} — 4X7 + 1 has no real roots, all admissible solutions verify X, — X3 = 0. We
add this constraint into the systems. It shows that lexicographic Grébner basis contains the
polynomial (Xs — X7)(X2 + X;). We add X5 — X; and X, — X3 into the system and its
Grobner basis then contains the polynomial w(3w?—1). Adding Xo— X7, X;—X3 and 3X7—1
to the system, the lexicographic Grébner basis is then {X; — X9,3X2 —1, X, — X3,3X2 —1}
and the only admissible solution for « = 3 is thus f = {X; = Xs = X3 = X4 = %}

By computing a Grébner basis for @ = 2, one can check immediately that the system
{a = 2,9 = 0,g € &'} is zero-dimensional. Applying the algorithm described in section
BZ3 one can find that it has only one solution with all positive coordinates, which is thus
6:{X1:X2:X3:X4:\/L§}.

Let us now study the case a = 1. By computing a Grobner basis for a lexicographic
ordering with X; > X5 > X3 > X4, one of the polynomials in the basis is

CXs+1)(2Xs—1) (6 X2 +6X4+1) (6X,°—6Xs+1) (3X3°—2+3X,%)  (26)

From (EZ8) , one can easily find that only the following three cases 2X4—1=0, 6 X2 —6X, +
1 =0,3X2—2+3X? =0 are need to consider since the other subsystems have clearly
no admissible solutions. Moreover, one can check that both systems {« = 1,2X, — 1 =
0,9 =0,g € &} and {a = 1,6X7 —6X4+1=0,9 = 0,9 € £} have a finite number of
solutions. In order to simplify the study, we compute their roots with a unique system of
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equations {a =1, (2X, — 1)(6X7 —6X4+1) = 0,9 = 0,9 € £} using the method described
in section BZZ3 Direct computation shows that there are 3 admissible solutions for o = 1
and (2X; — 1)(6X? —6X, +1) = 0. For @« = 1 and 3X3 — 2 + 3X7 = 0, we compute
a lexicographic Grébner basis with X; > X5 > X3 > Xy. It contains the polynomial
(X2 — X4)(X2 + X4) so that one can restrict the computations by adding (X2 — X4) to the
system. We again compute a lexicographic Grébner basis with X; > X5 > X3 > X4 It
contains the polynomial X4(X; — X3) so that one can again restrict the computations by
adding (x — z) to the system. Finally, adding Xo — X4 and X; — X3 to the system, the
lexicographic Grobner basis is {X; — X3, X2 — X4,3X3 — 2+ 3X7}. The system has thus

an infinite number of solutions {X; = X, Xo = X4, X3 = /2224 | |X,| > @ .

3

5 Convergence Analysis

Based on Theorem [l we now investigate the selection criterion on « for global convergence.
We start from the range of a €]1,00[. From Theorem B we know that ([Id) has only one
solution (|g11| = |g12| = |g21| = |g22| = % ) if @ > 1. Substituting this solution into (@), we
can easily find

911921 + 912922 = 0
911912 + 931922 = 0. (27)

In this case, the extended Hessian matrix [@l) can be determined as follows

EgJ SgJ }
Hod = | & . 28
¢ [ StJ ELJ (28)
where EqJ takes the following form
T (4~ a)ghin 0 0
4 — a)gngi =5 0 0
EeJ= | 12 3 2
¢ 0 0 Zo o (d+a)ghigne ®)
0 0 (=4 + )g1191, He

S¢J can be obtained by

2(911)* 4101z 0995 09iz95
4911912 2(972)7 Q911952 @gia95

SoJ = 11912 T12). 11922 12922 | 30
@g11921 g11922 2(951)2 49519522 (30)
agi2931 912952 4931930 2(952)
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Hence, the determinants of the first five upper left submatrices of HgJ are

ay =2
AQ — 4(0(3—1)
4(a—1)2+a
£y = A=zt 51

_ 16(a—1)?2
4 alia
A5 == T
It is apparent that A will always be negative if « is selected from the range of |1, o0].
Hence, HiJ will not be (semi)positive definite in this case and the CC-CMA will be a
globally convergent algorithm is the mixing parameter is larger than 1.

Now, let us consider the case that o = 1. It is easy to see that g1, = \1/—05 , g2 = 22,

g21 = —gn and goa = gi2 are one of the solutions of the equations in (@) and satisfy
911972951922 = G711912921950 = 7500 For this undesired stationary point, the eigenvalues
of the Hessian matrix HgJ can be obtained as follows
4 44/291
M =4, A== A3 =4/3
1 » A2 T3 + 75 0 3 /3,
4 4291
)\425— o Ap=0 forn=5,---,8. (32)

Since these eigenvalues are nonnegative, HgJ is positive semidefinite. In other words, this
undesirable stationary point will be a candidate for a local minima of the CC-CMA. To
check whether this point is a local minima, or not, we consider the following perturbation

g;; =gij tex+eyy, 1,5=1.2 (33)

where ¢, are €, very small positive numbers, 3 = v/—1. Substituting these g;; into (@), we
can easily obtain

782 , 194 , 16V582 ;5 16v/582

+ _ 2 2_2 4 4
Jt—J = 75 S+ — —E g, + 5 es + 5 ez, + 32e56,, + 16, + 162,
782 2 194 22
~ —_— 0. 4
eCat ey > (34)

Clearly, this undesired stationary point is a local minimum and the CC-CMA will not
converge globally when o = 1.

Then, we study the case that « €]0, 1[. From theorem H we know that the real solutions
of ([4) form 5 non intersecting continuous branches over ]0, 1], including (o, 3)acjo,1- We
now show that As or Ay is negative over each of these branches so that HgJ is never
(semi)positive when « €]0,1[. Since these branches are non intersecting and continuous,
one first shows that Ay has constant sign by proving that it never vanishes : by computing
a Grobner basis of {Ay,E'}, where &’ is the set of polynomials defining the equations of
(@) for a block ordering eliminating all the variables but « (see section BZZ2), one gets a

RR n° 5830



20 Gu & Lazard € Rouillier & Xiang

univariate polynomial p(«) with no real roots in ]0,1[. Since the roots of this polynomial
are the projections on the a-axis of the zeroes of the ideal (A4,&’) (Proposition M), Ay
never vanishes on the solution branches over |0, 1[. Since the branches are continuous, A4
as constant sign on each of these branches.

We now show that Ay is positive on (o, 3)ae)o,1 and negative on all the other branches
over ]0,1[. We choose an arbitrary value oy €]0,1[, solve the zero-dimensional system
obtained by replacing « by «p in () and use the extended RUR to get the sign of A4 at
each of the five real solutions using the algorithm (extended RUR) from section We
find that A, is negative at 4 roots and positive at one root. Since the branches are non
intersecting and continuous over ]0, 1], and since A4 never vanishes on a branch, one deduce
that A, is negative on 4 branches and positive on 1 branch and it is easy to check that it is
positive on the branch («a, #)aejo,1]-

It is easy to check that A4 is negative on the branch (o, 3)ae)o,1; Which proves that A
or Ay is negative on each branch over 0, 1[ and thus that H¢J is never (semi)positive when
a €]0,1].

6 Numerical Results

In this section, we first give the numerical examples to examine the root distribution of
system (@) for 0 < o < 1. From Tab. 1, we can easily find that ([d]) always has five
solutions when o = 0.9, a = 0.5 and a = 0.3. Notice that the solution 5 in Tab. 1
corresponds to 8 in Theorem Clearly, these examples confirm the theoretical analysis
of Theorem 5. The determinants of the first four upper left submatrices of HgJ at these
solutions, as presented in Tab. 2, support the convergence analysis of the CC-CMA for the
case 0 < a < 1. From Tab. 2, we can see that A; always takes positive values and Ay
is shown to be negative except for the solution 3. As for As and Ag, there always exist
3 solutions for system ([4) including S which make them negative. Hence, if 0 < « < 1,
each solution for system (4] will make at least one of principal minors of Hessian matrix
negative.

Then, we consider a communication system with two users transmitting MPSK signals.
These source signals are received by three receivers. On the receiver side, additive white
Gaussian noise of SNR=20 dB is added to each of the three received signals. The following
weight update function is used in all simulations

wi(n + 1) = wi(n) — 1Vsy, J (n) (35)
where p is the step size and Vy,J(n) is the gradient vector of J w.r.t w;, which can be
expressed as follows

K
Vw,J(n) = 2E[(|ly;]* — 1)y; x] + o Z Ely;yjlEly;x]. (36)
j=15#i

In our simulations, the step size yu takes 0.0001.
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The first simulation is to illustrate the existence of undesired stationary points when
a = 1. We consider a simple case of 3 x 2 matrix channel chosen as

0.6831 + 0.01647 0.6124 4 0.0576)
A =] 0.0928 +0.19017 0.6085+ 0.36767
0.0353 + 0.56897 0.0158 4+ 0.63157

The CC-CMA was run with the following initial separating matrix

W { 0.7176 + 0.4544) 0.6927 + 0.44187 0.0841 + 0.3533 ]

0.1536 + 0.72757 0.6756 + 0.47845 0.6992 + 0.5548
The CC-CMA reaches the following setting after it converges

G- —0.9116 — 0.10713 —0.1292 4 0.0865)
| —0.7173 — 0.5448y —0.0160 — 0.1787y |~

Clearly, the separation of sources was not achieved by the CC-CMA in this case.

The second simulation is to investigate the convergence performance of CC-CMA if
a # 1. In this simulation, the performance is first evaluated by the interference-signal ratio
(ISR) of ith source at the kth output, which is defined as follows

|12
1= 1, |9k

where g, = wi a;, a; is the [th col in matrix A. The ISR index is estimated by averaging 50
runs with 5000 symbols. In each independent experiment, the channel and initial separating
matrix are randomly chosen from a complex Gaussian matrix with distribution of zero mean
and unit variance. From Fig.1, we can easily find that the ISR can be significantly suppressed
by the CC-CMA if o # 1, which confirms the expecting convergent behavior.

7 Conclusion

We have introduced a new method for global convergence analysis of the CC-CMA. By
solving semi-algebraic sets, we proved, when the CC-CMA is utilized to separate the MPSK
sources, it can converge globally if the mixing parameter is not selected as 1. The most
appealing feature of our approach is that it provides a general frame for convergence analysis
of a family of stochastic gradient algorithm since the proposed approach does not exploit the
structural properties of the CC-CMA. Hence, it can be extended to convergence analysis of
other stochastic gradient algorithms. Another advantage of our approach is the computation
efficiency. Based on diriment variety, we proposed an optimal algorithm to solve semi-
algebraic sets, which only yields the necessary information for the studied problem.

RR n° 5830



22 Gu & Lazard € Rouillier & Xiang

References

[1] J. Bochnak M. Coste, and M. F. Roy, “Géomeétrie algébrique réelle”, Ergebnisse der
Mathematik , Berlin: Springer-Verlag, 1987.

[2] S. Basu, R. Pollack, and M. F. Roy, “Algorithms in real algebraic geometry”, Algorithms
and Computations in Mathematics, New York:Springer-Verlag, 2003.

[3] B. Buchberger, “Grobner bases : an algorithmic method in polynomial ideal theory”,
in “Recent trends in multidimensional systems theory”, editored by N. K. Bose, Reidel
Publishing Company, 1985.

[4] T. Becker and V. Weispfenning,“Groebner bases: a computational approach to com-
mutative algebra”, Graduate Texts in Mathematics: readings in mathematics, New
York:Springer-Verlag, 1993.

[5] A. M. Bronstein, M. M. Bronstein, M. Zibulevsky, “Relative optimization for blind de-
convolution Bronstein”, IEEE Trans. Signal Processing, vol. 53, no. 6, pp. 2018-2026,
June. 2005.

[6] L. Castedo, C. J. Escudero, and A. Dapena, “ A Blind Signal Separation Method for
Multiuser Communications ”, IEEE Trans. Signal Processing, vol. 45, no. 5, pp. 1343-
1348, May. 1997.

[7] G. E. Collins, “Quantifier elimination for real closed fields by cylindrical algebraic de-
composition”, Springer Lecture Notes in Computer Science ,vol. 33, pp. 515-532, 1975.

[8] G. E. Collins and H. Hong, “Partial cylindrical algebraic decomposition”, Journal of
Symbolic Computation, vol. 12, no. 3, pp. 299-328, June. 1991.

[9] D. Cox, J. Little and D. O’Shea, “Ideals, varieties, and algorithms an introduction to com-
putational algebraic geometry and commutative algebra”, New York: Springer-Verlag,

1992.

[10] A. Dapena and L. Castedo, “Stochastic gradient adaptive algorithms for blind source
separation”, Signal Processing, vol. 75, no. 1, pp. 11-27, Jan. 1999.

[11] C. J. Escudero, L. Castedo, U. Mitra, “A modified CMA equalizer for the removal of
length dependent local minima in AR channels”, IEEE  Trans. Signal Processing, vol.
47, no. 2, pp. 540-544, Feb. 1999.

[12] J. C. Faugere, “A New Efficient Algorithm for Computing Grébner bases (Fy)”, Journal
of Pure and Applied Algebra, vol. 139, no. 1-3, pp. 61-88, 1999.

[13] D. Z. Feng, X. D. Zhang, D. X. Chang, and W. X. Zheng, “A fast recursive total least
squares algorithm for adaptive FIR filtering” , IEEE Trans. Signal Processing , vol. 52,
no. 10, pp. 2729-2737, Oct. 2004.

INRIA



Sur la détermination des paramétres de mélange de lalgorithme CC-CMA par l’étude d’ensembles semi-algébriques23

[14] D. N. Godard, “Self-recovering equalization and carrier tracking in two-dimensional
data communication systems”, IEEE Trans. Commun., vol. 28, no. 11, pp. 1867-1875,
Nov. 1980.

[15] S. Haykin, “Adaptive Filter Theory” (4th ed.), New York: Prentice Hall, 2001.

[16] S. Lambotharan and J. Chambers, “On the surface characteristics of a mixed constant
modulus and cross-correlation criterion for the blind equalization of a MIMO channel”,
Signal Processing, vol. 74, no. 2, pp. 209-216, Apr. 1999.

[17] D. Lazard and F. Rouillier, “Solving Parametric Polynomial Systems”, accepted by
Jounal of Symb. Compu. with minor revision.

[18] Y. Luo, J. Chambers, and S. Lambotharan, “Global convergence and mixing parameter
selection in the cross-correlation constant modulus algorithm for the multi-user environ-
ment”, IEE Proc.-Vis. Image Signul Process, vol. 148, no. 1. pp. 9-20, Feb. 2001.

[19] R. K. Martin, J. Balakrishnan, W. A. Sethares, and C. R. Johnson, “A blind adaptive
TEQ for multicarrier systems ”, IEEE Signal Processing Lett., vol. 9, no. 11, pp.341-343,
Nov. 2002.

[20] D. Mumford, “Algebraic Geometry I, Complex Projective Varieties”, New York:
Springer-Verlag, 1976.

[21] C. B. Papadias and A. Paulraj, “A space-time constant modulus algorithm for SDMA
systems”, Proc. IEEE/VTS 46th Veh. Technol. Conf. (VTC-96), pp. 86-90, Atlanta, GA,
Apr. 1996.

[22] C. B. Papdiaus and C. Paulraj, “A constant modulus algorithm for multi-user signal
separation in presence of delay spread using antenna arrays”, IEEE Signal Process. Lett.,
vol. 4, no. 6, pp. 178-181, Jun. 1997.

[23] C. B. Papadias, “Globally convergent blind source separation based on a multiuser
kurtosis maximization criterion”, IEEE Trans. Signal Processing, vol. 48, no. 12, pp.
3508-3519, Dec. 2000.

[24] J. M. Paez Borrallo, F. L. Speranzini, “Convergence analysis of decision-directed adap-
tive echo cancellers for baseband data transmission”, IEEE Trans. on Commun., vol.
43, no. 234, pp. 503-513, Feb. 1995.

[25] A. J. Paulraj and C. B. Papadias, “Space-time processing for wireless communications”,
IEEE Signal Processing Mag., vol. 14, no. 6, pp. 49-83, Nov. 1999.

[26] F. Rouillier, “Solving zero-dimensional systems through the rational univariate repre-
sentation”, Journal of Appl. Algebr. Eng. Comm., vol. 9 no. 5, pp. 433-461, May. 1999.

[27] N. Revol and F. Rouillier, “Motivations for an arbitrary precision interval arithmetic
and the MPFI library”, Reliable Computing, vol. 11, pp. 1-16, 2005.

RR n° 5830



24 Gu & Lazard € Rouillier & Xiang

[28] F. Rouillier and P. Zimmermann, “Efficient Isolation of Polynomial Real Roots”, J.
Comput. Appl. Math, vol. 162, no. 1, pp. 33-50, 2003.

[29] R. Schober, W. H. Gerstacker, and J. B. Huber, “Adaptive noncoherent linear minimum
ISI equalization for MDPSK and MDAPSK signals”, IEEE Trans. Signal Processing,
vol. 49, no. 9, pp. 2018-2030, Sept. 2001.

[30] A. Touzni,I. Fijalkow, M. G. Larimore, and J. R. Treichler, “A globally convergent
approach for blind MIMO adaptive deconvolution”, IEEE Trans. Signal Processing, vol.
49, no. 6, pp. 1166-1178, Jun. 2001.

[31] J. R. Treichler and B. G. Agee, “A new approach to multipath correction of constant
modulus signals”, IEEE Trans. Signal Processing, vol.31, no.2, pp. 459-472, Feb. 1983.

[32] V. Weispfenning, “Comprehensive Grobner base”, J. Symb. Comput., vol. 14, no. 1, pp.
1-29, Jan. 1992.

[33] V. Weispfenning, “Cannoical Comprehensive Grobner bases”, Proc. 2002 International
symposium on symbolic and algebraic compuation, pp. 270-276, 2002.

[34] C. Xu, G. Feng, and K. S. Kwak, “A modified constrained constant modulus approach
to blind adaptive multiuser detection”, IEFE Trans. Commun, vol. 49, no. 9, pp. 1642-
1648, Sept. 2001.

INRIA



Sur la détermination des paramétres de mélange de l’algorithme CC-CMA par ’étude d’ensembles semi-algébriques25

Tab 1. Root Distribution of System ([4)

Solution 1 Solution 2 Solution 3 Solution 4 Solution 5
lg11] | 0.2883959547 | 0.7263007579 | 0.8558321519 | 0.1534046182 | 0.5773502692 | «
lg12] | 0.7263007579 | 0.2883959547 | 0.1534046182 | 0.8558321519 | 0.5773502692 | =
lg21] | 0.1534046182 | 0.8558321519 | 0.7263007579 | 0.2883959547 | 0.5773502692 | 0.9
|g22| | 0.8558321519 | 0.1534046182 | 0.2883959547 | 0.7263007579 | 0.5773502692
lg11] | 0.6488184703 | 0.4297639180 | 0.0792841748 | 0.9423648905 | 0.5773502692 | «
lg12] | 0.4297639180 | 0.6488184703 | 0.9423648905 | 0.0792841748 | 0.5773502692 | =
|g21] | 0.9423648905 | 0.0792841748 | 0.4297639180 | 0.6488184703 | 0.5773502692 | 0.5
|g22| | 0.0792841748 | 0.9423648905 | 0.6488184703 | 0.4297639180 | 0.5773502692
lg11] | 0.6198037839 | 0.4980680376 | 0.0481030782 | 0.9695407645 | 0.5773502692 | «
lg12] | 0.4900884980 | 0.6198037839 | 0.9695407645 | 0.0481030782 | 0.5773502692 | =
|g21] | 0.9695407645 | 0.0481030782 | 0.4900884980 | 0.6198037839 | 0.5773502692 | 0.3
|g22| | 0.0481030782 | 0.9695407645 | 0.6198037839 | 0.4900884980 | 0.5773502692

Tab 2. Principals of Hessian matrix (@) at the solutions of (I4)

Solution 1 Solution 2 Solution 3 Solution 4 Solution 5
A7 | 0.46391974970 | 1.10194387600 | 1.498688108 | 1.09878160100 | 0.9666666667 | «
Ao | -0.0067388132 | -0.0067388132 | 1.533405480 | 0.37324157820 | -0.133333333 =
As | -0.3049293306 | -0.1353577117 | 1.393055746 | 0.05482432938 | -0.1288888886 | 0.9
Ay | -0.8538287786 | -0.4153607486 | -1.02525789 | -0.2622629445 | 0.2311111107
A1 | 0.8666755242 | 0.4257927209 | 1.669698781 1.787832973 0.8333333334 | «
As | -0.7930550411 | -0.7930550412 | 2.959721706 2.959721706 | -0.6666666662 | —
Az | -1.453332679 | -1.396385996 | 1.111241877 | 2.425976796 | -0.5555555552 | 0.5
Ay | -2.415443657 | -4.604926883 | -5.230389673 | -3.040906446 1.037037037
A1 | 0.7793766539 | 0.4980680376 | 1.841348821 1.884539820 0.7666666667 | «
Ag | -1.054322777 | -1.054322777 | 3.460989443 3.460989443 -0.933333333 | =
Az | -2.001855297 | -1.964757303 | 1.667272025 2.642173906 -0.715555555 | 0.3
Ay | -3.666556336 | -6.669475768 | -6.97651700 -3.97359757 1.368888889
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