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Abstract: We consider an uplink power control problem where each mobile wishes to
maximize its throughput (which depends on the transmission powers of all mobiles) but
has a constraint on the average power consumption. A finite number of power levels are
available to each mobile. The decision of a mobile to select a particular power level may
depend on its channel state. We consider two frameworks concerning the state information
of the channels of other mobiles: (i) the case of full state information and (ii) the case of local
state information. We consider both cooperative as well as non-cooperative power control.
We manage to characterize the structure of equilibria policies and, more generally, of best-
response policies in the non-cooperative case. We present an algorithm to compute equilibria
policies in the case of two non-cooperative players. Finally, we study the case where a
malicious mobile, which also has average power constraints, tries to jam the communication
of another mobile. Our results are illustrated and validated through various numerical
examples.
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Contrôle discret dynamique de puissances dans les

réseaux cellulaires

Résumé : Nous considérons un lien montant où chaque nœud mobile, sous la contrainte
d’une puissance moyenne à utiliser, cherche à maximiser son débit, lequel dépend des puis-
sances de transmission de tous les autres nœuds mobiles. Tout nœud mobile dispose d’un
nombre fini de niveaux de puissance de transmission. Le choix d’une certaine puissance de
transmission peut être affecté par l’état du canal radio autour du nœud mobile concerné.
Concernant l’état du canal radio autour des autres nœuds mobiles, deux cas sont étudiés :
(i) le cas où toute l’information est disponible et (ii) celui où seule une information locale
est disponible. Nous étudions dans cet article deux contrôles de puissance, le premier étant
coopératif et le second non-coopératif. Tout d’abord, nous caractérisons la structure des
politiques d’équilibre, et plus généralement, celle des politiques de meilleure réponse dans
le cas non-coopératif. Ensuite, nous présentons un algorithme pour calculer l’équilibre dans
le cas de deux nœuds mobiles non-coopératifs. Finalement, nous étudions le cas où l’un des
nœuds (ayant également des contraintes sur la puissance moyenne) est malicieu et il essaye
de broyer les communications de l’autre mobile. Nos résultats sont illustrés et validés à
l’aide de plusieurs examples numériques.

Mots-clés : Réseaux cellulaires, contrôle de puissances, approches coopératif et non-
coopératif



Uplink dynamic discrete power control in cellular networks 3

1 Introduction

The multiple access nature of wireless networks represents a fundamentally different resource
allocation problem as compared to wired networks which provide a dedicated channel for
each user. The shared nature of the wireless channel implies that the rate obtained by
a user depends not only on its own transmit power level but also on the transmit power
levels of the other users. A user who transmits at a relatively high power level, though may
increase its own rate, will interfere with the transmissions of the other users and prompt
them to increase their own transmission power. Such a situation is undesirable in wireless
networks where mobile devices are usually equipped with limited-lifetime batteries which
require judicious utilization. It is, therefore, in the interests of the users to control their
transmit powers levels so as to increase the information transfer rate and the lifetime of the
devices. Power control also has the added benefit of allowing the spatial reuse of channels,
i.e., the same channel can be concurrently used by mobiles at locations where interference
is sufficiently low.

In this paper, we consider dynamic uplink power control in cellular networks: mobiles
choose their transmission power level from a discrete set in a dynamic way, i.e., the transmis-
sion power level is chosen based on the available channel state information. By controlling
the power one can improve connectivity and coverage, spend less battery energy of termi-
nals, increase device lifetime, and maximize the throughput. In terms of decision making,
we consider two cases:

• Decentralized case: Each mobile chooses its own power level based on the condition
of its own radio channel to the base station.

• Centralized case: The transmission power levels for all the mobiles are chosen by
the base station that has full information on all channel states.

We assume that there are upper bound constraints on the average power that a mobile can
use. Thus in very bad channel conditions, one can expect a mobile to avoid transmission
and save its power for more favorable channel conditions.

Applications that can mostly benefit from our proposed decentralized power control are
ad-hoc and sensor networks with no predefined base stations. In such networks, mobiles
may have to act temporarily as base stations [1, 2, 3], which can involve a heavy burden in
terms of energy. The limited processing capacity and battery lifetime of devices precludes
the use of centralised schemes, thereby making decentralized approaches for power control
more appropriate in such networks. We note that the design of decentralized power control
has for long interested the networking community even before ad-hoc and sensors networks
have been introduced (see [4, 5] and references therein).

We obtain results for both the cooperative setting in which the mobiles’ objective is to
maximize the global throughput, as well as the non-cooperative case in which the objective
of each mobile is to maximize its own transmission rate.

We identify the structure of equilibria policies for the decentralized non-cooperative case.
We show that the following structure holds for any mobile i, given any set of policies u−i
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4 E. Altman, K. Avrachenkov, G. Miller & B. Prabhu

chosen by mobiles other than i. Any best response policy (i.e. an optimal policy for player
i for a given policy u−i other mobiles) has the following properties:

(i) It needs randomization between at most two adjacent power levels,

(ii) the optimal power levels are non-decreasing functions of the channel state, and

(iii) if two power levels are both optimal at a given channel state then they cannot be
jointly optimal for another channel state.

We present an algorithm to compute equilibria policies in the case of two non-cooperative
players.

For the cooperative centralized problem with two mobiles, we obtain insight on the
structure of optimal policies through a numerical study. An interesting property that we
obtain is the fact that the optimal policy has a TDMA structure: in each combined state
(x1, x2) there is only one mobile that will transmit information. This will of course eliminate
the interference. We also show that unlike the decentralized case, the average power level
constraints may hold with strict inequality when using the optimal policy.

We finally study the case where a malicious mobile, which also has average power con-
straints, tries to jam the communications of another mobile. Our results are illustrated and
validated through various numerical examples.

1.1 Related work

There has been an intensive research effort on non-cooperative power control in cellular
networks [6,7,8,4,9,10,11,12,13]. In all these work, however, the set of available transmission
powers has been assumed to be a whole interval or the whole set of nonnegative real numbers.
In this paper we consider the case of a discrete set of available power levels, which is in line
with standardized cellular technologies. Very little work on power control has been done on
discrete power control. Some examples are [14] who considered the problem of minimizing
the sum of powers subject to constraints on the signal to noise ratio, [15] who studied joint
power and rate control, and [8] (which we describe in more detail below).

The mathematical formulation of the power control problem shows much similarity with a
well studied problem of assigning transmission powers to parallel channels between a mobile
and a base station with a constraint on the sum of assigned powers, see e.g. [16, p. 161]. This
problem is often known as the “water filling” (which is in fact the structure of the optimal
policy). The difference between the models is that in our case we split powers over time,
whereas in the water filling problem the powers are split over space. Our results are therefore
quite relevant to the water filling problem as well. Some work on water filling games can
be found in [9] where not only mobiles take decisions, but also the base station does, with
the goal of maximizing a weighted sum of the individual rates. In [17], the non-cooperative
water filling game is studied in the context of the interference channel; two mobiles and two
corresponding base stations.

Game theoretic formulations for non cooperative power control with finite actions (power
levels) and states (channel attenuations) have been proposed in [8]. An ε equlibrium is
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Uplink dynamic discrete power control in cellular networks 5

obtained there for the case of a large number of players. The cost to be minimized by a
player i in [8] is the quadratic difference between the desired and the actual SINR (Signal
to Interference plus Noise Ratio) of that player. In contrast, in the model we introduce in
this paper, the choice of the transmission power is done in the purpose of maximizing its
own throughput subject to a limit on the average power. Our setting is different also in
the following. In our model, in a given channel state, each mobile can either choose a fixed
power level or can make randomized decisions, i.e. it can make the choice of power levels in
a state based on some (state dependent) randomization.

1.2 Organization of the paper

The structure of the paper is as follows. We first present the model (Section 2) as well as
the mathematical formulation of both the case of centralized information (Section 3) as well
as the one of decentralized information (Section 4). In Section 5 we identify the structure
of best-response policies and thus of equilibria for the decentralized case. Power control in
the presence of a malicious mobile is studied in Section 6. In Section 7 we present numerical
examples that illustrate the structural properties that we had obtained and which allow
us further to obtain insight in cases for which the question about the structure of optimal
policies remains open. After a concluding section we present a computation methodology
for computing equilibria in the game of two players.

2 The model

2.1 Preliminaries

Consider a set of N mobiles and a single base station. As in several standard wireless
networks (e.g., UMTS and IEEE 802.11), we assume that time is slotted. In each time
slot t, each mobile i transmits data with power level Ai(t) chosen from a finite set Ai =
(1, 2, 3, . . . , αi) containing αi power levels. The actual power corresponding to the ath power

level where a ∈ Ai is given by hi(a). Denote A =
∏N

i=1
Ai.

The channel state model: We assume that the channel between mobile i and the
base station can be modelled as an ergodic finite Markov chain Xi(t) taking values in a
set Xi = (1, 2, . . . , mi) of mi states with transition probabilities P

i
xy. The Markov chains

Xi(t), i = 1 . . .N , are assumed to be independent. Let πi be the row vector of steady state
probabilities of Markov chain Xi(t); let πi(x) be its entry corresponding to the state x ∈ Xi.
It is the unique solution of

πiP
i = πi, πi(x) ≥ 0, ∀x ∈ Xi,

∑

x∈Xi

πi(x) = 1.

We also denote by π(x) the probability of state x = (x1, . . . , xN ). Since the Markov chains

that describe the channel states are independent, π(x) =
∏N

i=1
πi(xi).

RR n° 5818



6 E. Altman, K. Avrachenkov, G. Miller & B. Prabhu

The power received at the base station from mobile i is given by gi(t)hi(Ai(t)) where the
attenuation gi(t) = gi(Xi(t)) is a function of the channel state Xi(t). We shall denote the

global state space of the system by X =
∏N

i=1
Xi.

Performance measures: The signal to interference plus noise ratio SINRi at the base
station related to mobile i when the power level choices of the mobiles are a = (a1, . . . , aN )
and the channel states are x = (x1, . . . , xN ) is given by

SINRi(x, a) =
gi(xi)hi(ai)

No +
∑

j 6=i

gj(xj)hj(aj)
.

We consider the following instantaneous utility of mobile i:

ri(x, a) = log2 (1 + SINRi(x, a)) . (1)

ri(x, a) is known as the Shannon capacity and can thus be interpreted as the throughput
that mobile i can achieve at the uplink when the channel conditions are given by x and the
power levels used by all mobiles are a.

Notation: In the rest of the paper, we shall use the following notation. We shall
denote an element of the set X by x. The ith component of x will be denoted by xi,
i.e., x = (x1, x2, . . . , xN ), where xi ∈ Xi for i = 1, 2, . . . , N . We define a and ai in a
similar manner. Let X

−i and A
−i denote the set of channel states and the set of actions,

respectively, corresponding to all the players other than player i. For an element x
−i ∈ X

−i,
let x−i

j denote the jth component of x
−i. We define a

−i and a−i
j in a similar way.

2.2 Policy types

A mobile’s choice of successive transmission power levels is made based on the information
it has. The latter could be local, in which case the policy is said to be distributed. We shall
also consider centralized policies in which all decisions are taken at the base station. We
have the following definitions.

• A Centralized policy, u(a |x), is the probability that the base station assigns the
transmission power levels a = (a1, . . . , aN ) to the mobiles if the current channel’s
states are given by the vector x = (x1, . . . , xN ). This is equivalent to the situation
where all system information is available to all mobiles, and moreover, all mobiles can
coordinate their actions. This situation describes central decision making by the base
station. The class of centralized policies is denoted by Uce.

• A Decentralized policy, ui(a |x), is the probability that player i chooses the trans-
mission power level a ∈ Ai if its channel state is x ∈ Xi. Thus, only local information
is available to each mobile, and there is no coordination in the random actions. This
situation describes individual decision making by each mobile without any involvement
of the base station. The class of decentralized policies for player i is denoted by U i

dc.

Define Udc =
∏N

i=1
U i

dc.

INRIA



Uplink dynamic discrete power control in cellular networks 7

Along with policies we shall use also the occupation measures. For a given x ∈ X and
a ∈ A, the global occupation measure, ρu(x, a), will be used in the context of a centralized

policy, u ∈ Uce, it is defined as

ρu(x, a) =

N
∏

i=1

πi(xi)u(a |x).

Note that given a global occupation measure, ρu, the corresponding u can be obtained by

u(a |x) =
ρu(x, a)

∑

b∈A

ρu(x,b)
(2)

(it is chosen arbitrarily if the denominator is zero). For a given x ∈ Xi and a ∈ Ai, the local
occupation measure, ρui

i (x, a), is defined with respect to a decentralized policy, ui ∈ U i
dc,

and is given by
ρui

i (x, a) = πi(x)ui(a|x).

For a given local occupation measure, ρui

i , the corresponding ui can be obtained by

ui(a |x) =
ρui

i (x, a)
∑

b∈Ai

ρui

i (x, b)
(3)

(it is chosen arbitrarily if the denominator is zero). In case of decentralized decision
making, we define ρu(x, a) as

ρu(x, a) =

N
∏

i=1

ρui

i (xi, ai), (4)

for a given (u1, u2, . . . , uN).

2.3 Problem formulation: objectives and constraints

For any given policy1, u, and the corresponding occupation measure, ρu(x, a)2, we now
define the utility function, the constraints, and the optimization problem.
The utility functions: We define the utility for player i as

Ri(u) :=
∑

x∈X

∑

a∈A

ri(x, a)ρu(x, a). (5)

1With slight abuse of notation, we shall denote both centralized and decentralized policies by u. In the
centralized case, u(a|x) will denote a probability measure over a for a given x. In the decentralized

case, u will denote the vector u = (u1, u2, . . . , uN ), where ui is the decentralized policy for player i, for
i = 1, 2, . . . , N .

2 For the decentralized case, we note that ρu(x,a) is given by (4).
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8 E. Altman, K. Avrachenkov, G. Miller & B. Prabhu

Power constraints: In the centralized case, player i is assumed to have the following
average power constraint

∑

x∈X

∑

a∈A

ρ(x, a)hi(ai) ≤ Vi, (6)

whereas in the decentralized case the corresponding constraint is

∑

x∈Xi

∑

a∈Ai

ρui

i (x, a)hi(a) ≤ Vi. (7)

Note that in the decentralized case the state-action frequencies of a particular mobile
are independent of decisions of the other mobiles (see equation (4)). Consequently, in the
decentralized case, the average power constraint of a mobile does not depend on the de-
cision of the others. However, in the centralized case, the decisions of all the mobiles are
interdependent.

2.3.1 Cooperative optimization

We consider here the problem of maximizing a common objective subject to individual side
constraints. Namely, we define for any policy u

Rγ(u) :=

N
∑

i=1

γiRi(u), (8)

where γi are some nonnegative constants. For an arbitrary set of policies U we consider the
problem:

COOP(U) : max
u∈U

Rγ(u), s.t. (7), ∀i = 1, . . . , N. (9)

2.3.2 Non-cooperative optimization

Here each mobile is considered as a selfish individual non-cooperative decision maker, which
we then call “player”. It is interested in maximizing its own average throughput (5). In the
non-cooperative it is natural to consider only decentralized policies Udc.

For a policy u = (u1, . . . , uN) ∈ Udc we define u−i to be the set of components of u other
than the ith component. For a policy vi ∈ U i

dc we then define the policy [vi, u
−i] as one in

which player j 6= i uses the element uj of u whereas player i uses vi.

Definition 1 We say that u∗ ∈ Udc is a constrained Nash equilibrium [18] if it satisfies (7)
for all players, and if

Ri(u
∗) ≥ Ri([vi, (u

∗)−i])

for any i and any vi ∈ Udc such that (7) holds for the policy [vi, (u
∗)−i].

INRIA



Uplink dynamic discrete power control in cellular networks 9

3 Centralized cooperative optimization

When the cooperative optimization is considered over the set of centralized policies, then
the problem is in fact of a single controller (the base station) which has all the information.

Let rγ(x, a) :=
∑N

i=1
γiri(x, a), γi ≥ 0, i = 1, 2, . . . , N , denote the common instantaneous

utility when power level a is chosen in channel state x. The next Theorem states the
existence of an optimal strategy if the constraint set is not empty. The optimal strategy can
be obtained by means of provided Linear Program.

Theorem 1 Consider the cooperative optimization problem COOP(Uce) over the set of
centralized policies. Assume that there exists a policy u under which the power constraints
(7) hold for all the mobiles. Then,

(i) there exists an optimal centralized policy u∗ ∈ Uce. The policy u∗ can be obtained from
the solution of the following Linear Program by formula (2)

maximize over ρ Rγ(u) :=
∑

x∈X

∑

a∈A

ρ(x, a)rγ(x, a) (10)

s.t.
∑

x∈X

∑

a∈A

ρ(x, a)hi(ai) ≤ Vi, i = 1, . . . , N ;

∑

a∈A

ρ(x, a) = π(x) =
N
∏

i=1

πi(xi), ∀x ∈ X;

ρ(x, a) ≥ 0, ∀x ∈ X, ∀a ∈ A;
∑

x∈X

∑

a∈A

ρ(x, a) = 1.

(11)

(ii) An optimal policy u∗ can be chosen with no more than N randomizations.

Proof. The problem is a special case of constrained MDPs (Markov Decision Processes).
Indeed, there is only one decision maker, the base station, which assigns power levels a ∈ A

to mobiles. It has all the information about the state of the system x ∈ X, which is
combined state of all channels. Since the Markov chains Xi(t) are independent, the steady
state probabilities of Markov chain corresponding to a global system state are equal to
π(x) =

∏N

i=1
πi(xi). Thus, we have a constrained MDP with states x ∈ X, actions a ∈ A,

steady state probabilities π(x), and constraints (7)–(14). Now we can apply the classical
results on constrained Markov Decision Processes: statements in (i) follow from Theorem
4.3 of [19]. Statement (ii) follows from the fact, that the Linear Program (10)–(11) has
∏N

i=1
mi + N + 1 constraints. At the same time the number of independent constraints is

upper-bounded by
∏N

i=1
mi + N , because the first

∏N

i=1
mi equality constraints of (11) are

dependent. The latter means that the optimal solution can be chosen with no more then
∏N

i=1
mi + N non-zero elements. For each particular x there should be at least one nonzero

ρ(x, a), if π(x) > 0. Consequently we are left only with other N possible nonzero ρ(x, a),
which corresponds to N randomizations of the strategy. If π(x) = 0 for some x we can
simply reduce the state space.

RR n° 5818



10 E. Altman, K. Avrachenkov, G. Miller & B. Prabhu

Remark 1 We note that there could be several optimal solutions to the Linear Program
(10). Some of these soultions could correspond to policies with randomization at more than
N points. However, one can always select an optimal solution of (10) which corresponds to a
policy with no more than N randomizations. See also the discussion and numerical example
in subsection 7.2.

Note that in the centralized framework it does not make sense to speak about a non-
cooperative game, since there is a single decision maker.

4 Decentralized Information

4.1 Non-cooperative equilibrium

Here we consider the case when the players optimize their own objective (5) subject to the
constraints (7) given the local information only. For this case we show the existence of the
constrained Nash equilibrium.

Theorem 2 Under the assumptions on the objective functions Ri(u), constraints (7), and
the set of decentralized policies Udc made above, there exists a policy u∗ ∈ Udc satisfying
Definition 1.

Proof. The set of policies for a player i can be identified by a set of mi probability
measures over the Ai. The subset of policies of mobile i that furthermore meet the power

constraints can thus be identified by the set
(

ui(a|x)
)

, x ∈ Xi, a ∈ Ai, satisfying

∑

x∈Xi

∑

a∈Ai

πi(x)ui(a|x)hi(a) ≤ Vi,

ui(a|x) ≥ 0, ∀a ∈ Ai, ∀x ∈ Xi,
∑

a∈Ai

ui(a|x) = 1, ∀x ∈ Xi.

This is a closed convex set for each player. Moreover, for each mobile i, the utility Ri(u)
is concave in ui and continuous in uj , j 6= i. We conclude from Theorem 1 of [18] that a
constrained Nash equilibrium exists.

4.2 The cooperative case

Here we discuss the situation where, even though there is a common goal that is optimized,
the power level choices are not done by the base station but by the mobiles themselves
who have only their local information available to take decisions. Coordination is thus not
possible.

Considering the decentralized framework, we make the following observation concerning
the relation between the cooperative and the non-cooperative cases.

INRIA



Uplink dynamic discrete power control in cellular networks 11

Theorem 3 Any policy u that maximizes the common objective Rγ(u) while satisfying the
constraints is necessarily a constrained Nash equilibrium in the game where each mobile
maximizes the common objective Rγ(u).

Proof. Let v be a globally-optimal policy among the decentralized policies. Assume
that it is not an equilibrium. Then there is some mobile, say i, that can deviate from vi to
some ui such that (7) holds and such that its utility, which coincides with the other mobile’s
utility, satisfies Rγ((v−i, ui)) > Rγ(v). Moreover, for all other players j 6= i as well, the
constraint (7) still holds since it does not depend on mobile i’s policy. But this implies that
v is not a globally optimal policy which is a contradiction. So we conclude that v is indeed
a constrained Nash equilibrium.

Now we show in Theorem 4 that there exists an optimal decentralized policy.

Theorem 4 Let all the players have the common objective function Rγ(u) defined by (8).
Under the assumptions on constraints (7) and the set of decentralized policies Udc made
above, there exists a solution u∗ ∈ Udc to the problem COOP(Udc) (9).

Proof. Consider the non-cooperative setting but with the common objective Rγ(u)
to all mobiles. There exists at least one such equilibrium due to Theorem 2. If there
is a dominating constrained equilibrium (which is the case when there are finitely many
constrained equilibria) then it is a globally optimal policy due to Theorem 3. Assume next
that there is a set U

∗ of infinitely many constrained equilibria. Let R∗
γ = supu∈U∗ Rγ(u) and

let un ∈ U
∗ be a sequence of constrained equilibria such that limn→∞ Rγ(un) = R∗

γ . Then
it follows (from an adaptation of [20] and [21]) that there exists a constrained equilibrium
u∗ such that Rγ(u∗) = R∗

γ . It is thus a dominating equilibrium and hence a globally optimal
policy.

5 Structure of non-cooperative equilibrium

In this section we identify the structure of equilibria policies for the decentralized non-
cooperative case. To that end we first study the structure of best response policies of any
given user when the policies of the other users are fixed. Using the results on the structure
of the best response we then establish the structure of the equilibrium policies.

We fix throughout the policy v−i of players other than player i, where

v−i(a−i |x−i) =
∏

j 6=i

vj(a
−i
j |x−i

j )

is the probability that each mobile j 6= i chooses aj when its local state is xj . The product
form here is due to the decentralized nature of the problem and to the fact that there is no
coordination between the mobiles is possible.

We shall make the following assumption on the properties of gi, hi, and πi.

Assumption 1 (i) The function gi has an increasing interpolation in x.

RR n° 5818



12 E. Altman, K. Avrachenkov, G. Miller & B. Prabhu

(ii) The function hi has a strictly convex and increasing interpolation in a.

(iii) The probability measure πi(x) has a non-decreasing interpolation in x.

Let us discuss why the above assumptions are non-restrictive. Assumption 1.i can be
satisfied by enumerating the states so that the quality of the associated channel state in-
creases with the index of the state. In 3G wireless networks the mobile terminals typically
select transmit power levels in steps of 1 or 2 dB [22, 23]. This linear interpolation in the
logarithmic scale translates to a strictly convex interpolation in the absolute scale, which
is used in our formulation. Thus, Assumption 1.ii is naturally satisfied. Assumption 1.iii
means that we expect the channel to be more often in better states.

We shall establish the following main result on the structure of any best response policy:

Theorem 5 Consider the decentralized non-cooperative case. Under Assumption 1, the
following holds:

(i) In each channel state xi, the best response policy consists of either the choice of a
single action, or in a randomized choice between at most two adjacent power levels.

(ii) The optimal power levels are non-decreasing functions of the channel state.

(iii) If two power levels are jointly optimal for a given channel state then they cannot be
jointly optimal for another channel state.

The proof of this result follows the following steps. We first formulate the problem of
obtaining a best response as a linear program. Using Lagrange relaxation we are able to
decouple the problem to several simpler ones: in each one of the latter, the channel state is
fixed. Then we prove the statement (i) by establishing the concavity of the best response
value function corresponding to a fixed channel state. To prove statements (ii) and (iii) we
first show that the value function is supermodular.

Definition 2 ν(x, a) is said to be strictly supermodular in (x, a) if

ν(x + 1, a + 1) − ν(x + 1, a) > ν(x, a + 1) − ν(x, a) (12)

for all x = (1, 2, 3, . . . , mi − 1) and all a = (1, 2, . . . , αi − 1).

This property implies that the maximizer with respect to the i-th variable is increasing in
the other variables. There has been much research on supermodular functions due to the
above appealing property (see [24] and references therein).

We shell also use the following result on the strong monotonicity of the argmax of su-
permodular functions.

Lemma 1 Assume that ν(x, a) is supermodular. Let Ax be the set Ax = argmaxaν(x, a).
Let ax be the largest element of Ax and let ax be the smallest one. Then for any x < mi,
we have ax ≤ ax+1.
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Proof. The proof is a special case of [19, Theorem 7.1].

Proof of Theorem 5. First we formulate the problem of obtaining a best response as a
linear program.

With ri(x, a) as defined in (1), denote

rv
i (x, a) =

∑

x−i∈X−i

∑

a−i∈A−i

∏

j 6=i

πj(x
−i
j )v(a−i

j |x−i
j )ri

(

(x−i, x), (a−i, a)
)

.

For the fixed v−i, player i is faced with the problem

maximize over ui ∈ Ui Rv
i (ui) := Ri(v

−i, ui) =
=

∑

x∈Xi

∑

a∈Ai

πi(x)ui(a |x)rv
i (x, a) (13)

s.t. Di(ui) :=
∑

x∈Xi

∑

a∈Ai

πi(x)ui(a |x)hi(a) ≤ Vi. (14)

Consider the following relaxed problem parameterized by some finite real λi ≤ 0:

maximize over ui ∈ Ui Jv
i (λi, ui) = Rv

i (ui) + λi(Di(ui) − Vi) =

=
∑

x ∈ Xi

a ∈ Ai

πi(x)ui(a |x)
(

rv
i (x, a) + λihi(a)

)

− λiVi, (15)

J∗
i (λi, v) = max

ui

Jv
i (λi, ui).

Problem (13) faced by player i can be viewed as a special degenerate case of constrained
Markov decision processes (it is degenerate since the transition probabilities of the radio
channel of mobile i are not influenced by the actions. The latter only have an impact on
the immediate payoff rv

i and on hi). We know from [19] that a policy u∗
i is optimal for (13)

only if it is optimal for the relaxed problem (15) for some finite λi. By characterizing the
structure of the policies that are optimal for (15) we shall obtain the structure of optimal
policies for (13). In the sequel, we shall omit the constant −λiVi from the objective function
in (15) since it has no influence on the structure of the optimal policies .
Observation. We now make the following key observation on (15). The relaxed problem can
be solved separately for each channel state x ∈ Xi. A policy ui = {ui(a |x)}a∈Ai, x∈Xi

is
optimal for (15) if and only if for each fixed x ∈ Xi, ui(· |x) maximizes

Jv
i (x, λi, ui) :=

∑

a∈Ai

πi(x)ui(a |x)
(

rv
i (x, a) + λihi(a)

)

. (16)

Due to linearity, for each x ∈ Xi there is a non-randomized decision a ∈ Ai such that

J∗
i (v, x, λi) = max

ui

Jv
i (x, λi, ui) = max

a∈Ai

ν(x, a),
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where ν(x, a) := πi(x)(rv
i (x, a) + λihi(a)).

For a fixed x, assume that there is an interpolation of ν(x, a) which is concave in a.
In our case ri is already concave for a ∈ [0,∞) when using the definition in (1), and hi

has a convex interpolation by Assumption 1.ii. Thus, in our case, ν(x, a) has a concave
interpolation in a for a fixed x. This means that

1. either there is only one action, say a, which has a non-zero probability to be used by
any optimal policy, or

2. except for two adjacent actions, say a and a + 1, all other actions are not used by any
policy which is optimal.

The above structure holds not only for the relaxed problem (15) but also for the original
problem (13). This follows since any optimal policy for (13) is necessarily optimal for the
relaxed problem (15) for some λi, and since we just saw that any optimal policy for the
relaxed problem has this structure. The statement (i) is proved.

To prove statements (ii) and (iii) it is sufficient to show that under Assumption 1, the
function ν(x, a) is strictly supermodular.

The function ν has the form of a convex combinations of terms νk = πi(x) log(1 +
gi(x)hi(a)/Nk). For each k we have

νk(x + 1, a + 1) − νk(x + 1, a) =

= πi(x + 1) log

(

Nk + gi(x + 1)hi(a + 1)
Nk + gi(x + 1)hi(a)

)

=

= πi(x + 1) log



1 +
gi(x + 1)

(

hi(a + 1) − hi(a)
)

Nk + gi(x + 1)hi(a)



 .

Similarly,
νk(x, a + 1) − νk(x, a) =

= πi(x) log



1 +
gi(x)

(

hi(a + 1) − hi(a)
)

Nk + gi(x)hi(a)



 .

It is now easily seen that when gi and hi are strictly increasing, and πi is non-decreasing
then (12) indeed holds for νk which then implies that νk and, hence, ν are supermodular.

Now the statements (ii) and (iii) follow directly from Definition 2 and Lemma 1.

Now, using Theorem 5 we can establish the structure of the constrained Nash equilibria.

Corollary 1 Consider the decentralized non-cooperative case. For each mobile i, assume
that hi, gi, and πi satisfy Assumption 1. Then there exists at least one equilibrium. More-
over, at any equilibrium u∗

i the following hold for each mobile i:

(i) In each channel state x ∈ Xi, u∗
i (·|x) consists of either a choice of a single power level,

or in a randomized choice between at most two adjacent power levels.
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(ii) The power levels used in u∗
i are non-decreasing functions of the channel state.

(iii) If two power levels are used at a state x by mobile i with positive probability (i.e.
u∗

i (aj |x) > 0 and u∗
i (ak|x) > 0 for ak 6= aj) then under u∗

i , not more than one of them
is used with positive probability at any other channel state.

Proof. The structure of best response policies characterizes in particular the structure
of the constrained Nash equilibria policies since at equilibrium, each mobile uses a best
response policy. Therefore, the structure we derived for the best response policies holds for
any Nash equilibrium u∗

i for any of the mobiles.

6 Power control in the presence of a malicious mobile

In recent years, there has been a growing interest in identifying and studying the behavior
of potential intruders to networks or of malicious users, and in studying how to best detect
these or to best protect the network from their actions (see e.g. [25, 26, 27] and references
therein).

We consider in this section a scenario where a malicious player attempts to jam the
communications of a mobile to the base station. We consider the distributed case and
restrict for simplicity to two mobiles and a base station.

The first mobile (player 1) seeks to maximize the rate of information that it transmits
to the base station. In other words it wishes to maximize R1(u) defined in (5) where r1 is
given in (1).

The second mobile (player 2) has an antagonistic objective: to prevent or to jam the
transmissions of the first mobile, with the objective of minimizing the throughput of infor-
mation that mobile 1 transmits to the base station. It thus seeks to minimize R1(u). We
assume that the interference of the second mobile is presented as a Gaussian white noise.

Except for the objective of the jamming mobile, the model, including the average power
constraints, defined in Section 2 holds. In particular, we conclude that Theorem 5 applies
to player 1 at equilibrium.

We now specify the objective of the players and some properties of the equilibrium.
Denote U i

c the set of policies for player i, (where i takes the values 1 and 2) that satisfy
player i’s power constraints, i.e., ui ∈ U i

c if it satisfies Di(ui) ≤ Vi. Player 1 seeks to obtain
an optimal policy, i.e. a policy u∗

1 ∈ U1
c such that for any other u1 ∈ U1

c ,

inf
u2∈U2

c

R1(u
∗
1, u2) ≥ inf

u2∈U2
c

R1(u1, u2).

We call this the jamming problem. It consists of identifying a policy for player 1 that
guarantees the largest throughput under the worst possible strategy of player 2. In fact,
we shall be able not only to identify the optimal policy for player 1 but also the “optimal”
policy for player 2 (which is the worst for player 1).
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A policy u∗ = (u∗
1, u

∗
2) is said to be a saddle point if

sup
u1∈Uc

1

inf
u2∈Uc

2

R1(u1, u2)

= inf
u2∈Uc

2

R1(u
∗
1, u2) = R1(u

∗
1, u

∗
2)

= sup
u1∈Uc

1

R1(u1, u
∗
2) = inf

u2∈Uc

2

sup
u1∈Uc

1

R1(u1, u2),

and u∗
1 and u∗

2 are called saddle point policies or optimal policies.
Unlike all the decentralized problems we considered previously, deriving both u∗

1 as well
as u∗

2 is possible using a linear program. The computation is not included here, but it can
be found in [28]. Below we derive the properties of the optimal policies.

Theorem 6 (i) There exists a saddle point policy u∗ in the above game.

(ii) Under Assumption 1, any optimal policy for player 1 (the transmitter) has the structure
identified in Theorem 5.

For the proof of (i) we refer to [28]. Part (ii) is a direct result of Theorem 5.
For player 1, from Theorem 6 we can infer that the relaxed objective function has a

structure similar to that of (15).
We now identify a structural property of the optimal policy of player 2, i.e., of the

jammer. Let h2 have a convex interpolation in a, and g2 have an increasing interpolation in
x. Therefore, for a given x, the relaxed objective function would have a convex interpolation
in a. This means that

(i) there is only one action, say a, which has a non-zero probability to be used by any
optimal policy, or

(ii) except for two adjacent actions, say a and a + 1, all other actions are not used by any
policy which is optimal.

Using arguments similar to those in Theorem 5 proof, we can conclude that the above
structure holds not only for the relaxed problem but also for the original problem.

We finally note that the monotonicity property enjoyed by the saddle point policy of
mobile 1, need not hold for mobile 2. This will be illustrated in Section 7.3 (see Figure 6).

7 Numerical Examples

In this section we provide examples of power control problem for two mobiles that interact
with the same base station. The decentralized policies are provided both for the cooperative
and non-cooperative cases. Moreover, the single controller problem for centralized coopera-
tive framework is also solved. All three problems are considered in the same settings, so one
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has an opportunity to compare the obtained strategies and the objective value functions for
different approaches.

Let us discuss the numerical procedures for all the cases (decentralized cooperative/noncooperative,
centralized cooperative and jamming).

For the decentralized cooperative case we need to solve the problem of maximization of
the polynomial objective subject to linear constraints. There are special methods to solve
this kind of problems [29, 30], and in two player case this problem reduces to a well known
quadratic program.

For the decentralized non-cooperative equilibrium computation we propose to use the
iterative best response policy computation. We fix the policy of all mobiles except one
given and compute its optimal response. Then we iterate according to a round robin order.
Whenever this method converges to some u∗, then u∗ is indeed an equilibrium strategy since
u∗ is an equilibrium if and only if for each mobile i, the policy u∗

i is a best response against
the other policies (u∗)−i. Unfortunately, we do not have any proof of the convergence of this
method. Nevertheless, for the case of two mobiles this algorithm worked extremely well in
different parameter settings (convergence in about three iterations). Furthermore, for the
case of two mobiles we propose the adaptation of Lemke method for Linear Complementarity
Problem [31]. In Appendix 9.1 we show that this algorithm converges for the considered
class of problems.

The centralized cooperative optimization is equivalent to a classical MDP formulation
which leads to a Linear Programming formulation. The LP can be solved for example by
efficient interior point method in polynomial time.

The jamming case also leads to Linear Programming formulations, for details see [28].
We assume, that the radio channel between mobile i = 1, 2 and the base station is

characterized by a Markov chain Xi with states xi ∈ Xi = {1, . . . , M}, M = 11, and
a uniform vector of steady state probabilities. One of the transition probability matrices

which has a uniform steady state probability vector is given by P
i
xy = 1

M .
The power attenuation for each state of the Markov chain Xi is defined by the following:

xi 1 2 3 . . . 11
gi(xi) 0.0 0.1 0.2 . . . 1.0.

Let mobile i’s action set Ai be given by Ai = (0, . . . , 11). The actual power corresponding
to the aith power level, where ai ∈ Ai, is

ai 0 1 2 . . . 11
hi(ai) 0 0 dB 1 dB . . . 10 dB

where the level of 0 dB corresponds to some base value of power W0. We assume that the
background noise power at the base station, N0, is equal to 0 dB. Since (1) depends only
on the ratio between the power of signal received from a certain mobile and the total power
received from other mobiles and the thermal noise power at the receiver, we do not specify
the exact value of the base power W0.

We note that, with the above definitions, gi, hi and πi satisfy the properties in Assump-
tion 1.
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The power consumption constraints for players are the following:

D1(u1) ≤ 2.7W0,
D2(u2) ≤ 5.1W0.

where Di(ui) is defined by (14). Note, that both right and left hand sides of these constraints
have the multiplier W0, which can be cancelled.

The proposed model is quite simple, we chose it so as to avoid technical difficulties
related to Markov chains with infinite state space. Thus we assume that a finite Markov
chain can approximate well randomness due to fading, shadowing, mobility, as well as time
correlation phenomena which are often ignored. Nevertheless, the main goal of the example
is to validate the structure that we obtain rather than to propose a reliable model that could
include mobility, handovers, shadowing, fading, interference from other cells etc. Further
research including these features is planned.

7.1 Decentralized policies

First we consider the decentralized problems that arise in cooperative and non-cooperative
case. Both problems are formulated in terms of occupation measures ρi(xi, ai). In order to
compute the strategies one can use (3).

7.1.1 Cooperative optimization

Let x = (x1, x2) and a = (a1, a2). Here we consider the following cost function

r(x, a) = r1(x, a) + r2(x, a), (17)

where ri(x, a) are defined by (1).
Consider the following bilinear problem

maximize over ρ1, ρ2

∑

x1 ∈ X1

a1 ∈ A1

∑

x2 ∈ X2

a2 ∈ A2

ρ1(x1, a1)r(x, a)ρ2(x2, a2),
(18)

where
∑

xi ∈ Xi

ai ∈ Ai

ρi(xi, ai)hi(ai) ≤ Vi, (19)

and
∑

xi ∈ Xi

ai ∈ Ai

ρi(xi, ai)(δ(xi, yi) −P
i
xiyi

) = 0, ∀yi ∈ Xi,

∑

xi ∈ Xi

ai ∈ Ai

ρi(xi, ai) = 1,

ρi(xi, ai) ≥ 0, ∀xi ∈ Xi, ai ∈ Ai.

(20)
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Here P
i is the transition matrix of the Markov chain, which describes the radio channel

between the mobile i and the base station, and δ(x, y) is equal to one if x = y and is zero
otherwise.

The problem (18) could be solved using the quadratic programming technique.
In Fig. 1, the supports of the optimal policies for both players are shown as a function

of the channel state.
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Figure 1: Supports of the optimal policies in cooperative case.

As one can see, the mobile 1 has a pure strategy at all the points but one, where
g1(x1) = 0.8. The mobile 2 also has only one randomization point g2(x2) = 0.6. The
exact values of the policies ui(hi(ai) | gi(xi)) at those points are as follows:

u1(0 | 0.8) = 0.0293, u1(9 dB | 0.8) = 0.0036, u1(10 dB | 0.8) = 0.9671,

u2(8 dB | 0.6) = 0.5596, u2(9 dB | 0.6) = 0.4404.

The value of the objective function in this problem is R(u∗) = 1.9225.
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7.1.2 Non-cooperative equilibrium

Now, in the same setting as in the cooperative case, we consider an example of non-
cooperative optimization. Each mobile needs to maximize its own objective function:

max
ρ1,ρ2

∑

x1 ∈ X1

a1 ∈ A1

∑

x2 ∈ X2

a2 ∈ A2

ρ1(x1, a1)r1(x, a)ρ2(x2, a2),

max
ρ1,ρ2

∑

x1 ∈ X1

a1 ∈ A1

∑

x2 ∈ X2

a2 ∈ A2

ρ1(x1, a1)r2(x, a)ρ2(x2, a2),

subject to the constraints (25)-(28) (in the Appendix 9.1).
By means of the linear complementarity problem (33) one can obtain the optimal strate-

gies depicted on Fig. 2. The exact values of the policies at the randomization points are as
follows:

u1(7 dB | 1.0) = 0.5803, u1(8 dB | 1.0) = 0.4197,

u2(8 dB | 0.6) = 0.1089, u2(9 dB | 0.6) = 0.8911.

We note that the structure obtained in Theorem 5 holds for both the players.
The values of the objective functions in this problem are R1(u

∗) = 0.6484, R2(u
∗) =

1.1584. As it was expected, the total throughput value R(u∗) = R1(u
∗) + R2(u

∗) = 1.8067
is smaller than in cooperative case.

7.2 Centralized optimization

Now let us consider the single controller problem, that arises in the case of centralized
optimization. As in the decentralized framework, we operate here in terms of occupation
measures. Thus, the problem (10) for the case of two players can be rewritten as follows:

max
ρ

∑

x∈X

∑

a∈A

ρ(x, a)r(x, a), (21)

where r(x, a) is defined by (17). The maximization is performed subject to the following
constraints:

∑

x∈X

∑

a∈A

ρ(x, a)hi(ai) ≤ Vi, i = 1, 2; (22)

∑

a∈A

ρ(x, a) = π(x) = π1(x1)π2(x2);

ρ(x, a) ≥ 0, ∀x ∈ X, ∀a ∈ A;

∑

x∈X

∑

a∈A

ρ(x, a) = 1.
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Figure 2: Supports of the optimal policies in non-cooperative case.

Once the occupation measures are obtained, the strategies can be computed by means of
(2).

Define the following sets:

• Ψ1: pairs (x1, x2): ∃a∗
1 such that h1(a

∗
1) > 0 and u(a∗

1, a2 |x1, x2) > 0 for some
a2 ∈ A2;

• Ψ2: pairs (x1, x2): ∃a∗
2 such that h2(a

∗
2) > 0 and u(a1, a

∗
2 |x1, x2) > 0 for some

a1 ∈ A1.

Note, that the set Ψi is the set of states in which ith player should transmit with nonzero
probability according to the optimal strategy.

In Fig. 3 these sets are provided for the centralized optimization problem (21). The set
Ψ1 is depicted by circles, and the set Ψ2 — by stars. One can see, that the sets have no
mutual points. It means, that the mobiles never transmit at the same time.

In Fig. 4 one can see the supports of the optimal strategies.
A circle on the place (g1(x

∗
1), h1(a

∗
1)) means that the first mobile should transmit with

the power level h1(a
∗
1) with nonzero probability in all states (x∗

1, x2) ∈ Ψ1.
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Figure 3: The sets Ψ1 and Ψ2.

A star on the place (g2(x
∗
2), h2(a

∗
2)) means that the second mobile should transmit with

the power level h2(a
∗
2) with nonzero probability in all states (x1, x

∗
2) ∈ Ψ2.

If there are two or more power levels hi(a
∗
i ) for some particular state gi(x

∗
i ), then the

player should randomize. In other case (single power level hi(a
∗
i ) for the state gi(x

∗
i )), the

player should always transmit with power level hi(a
∗
i ).

One can see that for both players there are states of randomization. We provide here
the strategies u(h1(a1), h1(a2) | g1(x1), g2(x2)) for these states:

u(8 dB, 0 | 0.8, 0.6) = 0.3694 u(9 dB, 0 | 0.8, 0.6) = 0.6306
u(8 dB, 0 | 0.8, 0.5) = 0.6098 u(9 dB, 0 | 0.8, 0.5) = 0.3902
u(8 dB, 0 | 0.8, 0.4) = 0.4475 u(9 dB, 0 | 0.8, 0.4) = 0.5525
u(8 dB, 0 | 0.8, 0.3) = 0.4595 u(9 dB, 0 | 0.8, 0.3) = 0.5405
u(8 dB, 0 | 0.8, 0.2) = 0.4369 u(9 dB, 0 | 0.8, 0.2) = 0.5631
u(8 dB, 0 | 0.8, 0.1) = 0.4312 u(9 dB, 0 | 0.8, 0.1) = 0.5688
u(8 dB, 0 | 0.8, 0.0) = 0.4169 u(9 dB, 0 | 0.8, 0.0) = 0.5831
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Figure 4: Supports of the optimal policies in cooperative case.

u(0, 8 dB | 0.3, 0.3) = 0.9982 u(0, 9 dB | 0.3, 0.3) = 0.0018
u(0, 8 dB | 0.2, 0.3) = 0.9946 u(0, 9 dB | 0.2, 0.3) = 0.0054
u(0, 8 dB | 0.1, 0.3) = 0.9983 u(0, 9 dB | 0.1, 0.3) = 0.0017
u(0, 8 dB | 0.0, 0.3) = 0.9984 u(0, 9 dB | 0.0, 0.3) = 0.0016

As one can see, the number of randomizations in the obtained policy exceeds the number
of constraints N = 2. Nevertheless, due to Theorem 1 the optimal policy can be chosen
with no more then N randomization points. It is easy to check, that the policy with the
same sets Ψ1 and Ψ2 (Fig. 3), supports depicted on Fig. 5, and one randomization point
(23) delivers the same value to the cost function.

u(8 dB, 0 | 0.8, 0.6) = 1 u(9 dB, 0 | 0.8, 0.6) = 0
u(8 dB, 0 | 0.8, 0.5) = 1 u(9 dB, 0 | 0.8, 0.5) = 0
u(8 dB, 0 | 0.8, 0.4) = 1 u(9 dB, 0 | 0.8, 0.4) = 0
u(8 dB, 0 | 0.8, 0.3) = 0.1622 u(9 dB, 0 | 0.8, 0.3) = 0.8378
u(8 dB, 0 | 0.8, 0.2) = 0 u(9 dB, 0 | 0.8, 0.2) = 1
u(8 dB, 0 | 0.8, 0.1) = 0 u(9 dB, 0 | 0.8, 0.1) = 1
u(8 dB, 0 | 0.8, 0.0) = 0 u(9 dB, 0 | 0.8, 0.0) = 1

(23)
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Figure 5: Supports of the optimal policies in cooperative case (one randomization point).

Note, that the centralized power management provides better throughput in comparison
with other considered controls, the value of the cost function is R(u∗) = 2.5614.

Another interesting point that we want to discuss is the attainability of the power con-
straints.

Consider the problem (21) without power constraints. The optimal policies for this
problem are as follows:

• Player 1 should transmit at the top power level if g1(x1) ≥ g2(x2);

• Player 2 should transmit at the top power level if g2(x2) ≥ g1(x1).

The value of the objective function for this policy is R(u∗) = 2.8560. The experiments show,
that at the optimal point for problem with constraints (22), where the bounds Vi are both
greater then 7 dB, the power constraints are not attained, and the optimal strategy and the
value of the objective function are the same as in unconstrained case.

7.3 Jamming

The average power bounds are the same as in all previous examples: for the transmitter
V1 = 2.9, and for the jammer V2 = 5.2.
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The supports of the optimal strategies in this problem are depicted in Fig. 6. We note
that the structure obtained in Theorem 5 holds for player 1, whereas the structure obtained
in Section 6 holds for player 2. Both players have optimal strategies that are randomized
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Figure 6: Supports of the optimal policies in case of jamming.

only at one point:

u1(6 dB | 0.7) = 0.3623, u1(7 dB | 0.7) = 0.6377,

u2(7 dB | 0.8) = 0.9656, u2(8 dB | 0.8) = 0.0344.

The value of the objective function is R1(u
∗) = 0.6237 which is less then the same value

for the decentralized non-cooperative case.

8 Conclusion and further work

We have studied power control in both cooperative and non-cooperative setting. Both
centralized and decentralized information patterns have been considered. We have derived
the structure of optimal decentralized policies of selfish mobiles having discrete power levels.
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We further studied the structure of power control policies when a malicious mobiles tries
to jam the communication of another mobile. We have illustrated these results via several
numerical examples, which also allowed us to get insight into the structure in the cooperative
framework.

The modelling and results open many exciting research problems. Our setting, which
could be viewed as a temporal scheduling problem, is quite similar to the “space scheduling”
(i.e. the water-filling) problems discussed in Introduction, for which the context of discrete
power levels along with the non-cooperative setting have not yet been explored. It is in-
teresting not only to study the water-filling problem in the discrete noncooperative context
but also to study the combined space and temporal scheduling problem, where we can split
the transmission power both in time and in space (different parallel channels).

From both a game theoretic point of view as well as from the wireless engineering point
of view, it is interesting to study possibilities for coordination between mobiles in the de-
centralized case (in both cooperative as well as non-cooperative contexts). This can be
done using the concepts from correlated equilibria [32, 33, 34, 35], which is known to allow
for better performance even in the selfish non-cooperative cases. We note however, that
existing literature on correlated equilibria do not include side constraints, which makes the
investigation novel also in terms of fundamentals of game theory.

9 Appendix

9.1 Linear complementarity approach for the decentralized case

In this section we show how the non-cooperative equilibrium can be obtained in the case
of two players by means of linear complementarity problem (LCP). Consider the following
problem, where each player wants to maximize his own payoff Ri:

maximize over ρ1, ρ2 Ri(u) :=
∑

x1 ∈ X1

a1 ∈ A1

∑

x2 ∈ X2

a2 ∈ A2

ρ1(x1, a1)ri(x1, a1, x2, a2)ρ2(x2, a2), (24)

where i = 1, 2 and
ρi(xi, ai) ≥ 0, ∀xi ∈ Xi, ai ∈ Ai, (25)

∑

xi ∈ Xi

ai ∈ Ai

ρi(xi, ai) = 1, (26)

∑

ai∈Ai

ρi(xi, ai) = πi, ∀xi ∈ Xi, (27)

∑

xi ∈ Xi

ai ∈ Ai

ρi(xi, ai)hi(ai) ≤ Vi, i = 1, 2. (28)
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Here ρi: Xi ×Ai −→ [0, 1] is the occupation measure for player i = 1, 2.
First, assume, that at the equilibrium point the power consumption constraints (28) are

active:
∑

xi ∈ Xi

ai ∈ Ai

ρi(xi, ai)hi(ai) = Vi, i = 1, 2. (29)

This assumption is not restrictive, because if one or both of these constraints are not active,
they can be omitted. So we suggest first to solve the problem without constraints (28),
then calculate the values of cost functions in RHS of (28). If both calculated values are less
then Vi, then the constraints (28) are satisfied and the solution of (24)—(27) is a solution of
(24)—(28) as well. If one of the constraints (28) is violated, the problem should be solved
again subject to the corresponding constraint of equality type form (29). If in the obtained
equilibrium point the second constraint is still violated, then the problem should be solved
again subject to both constraints of (29).

Now let ξ be the vector, containing all the ρ1(x1, a1), ∀x1 ∈ X1, a1 ∈ A1, and ζ — the
same vector for ρ2(x2, a2).

Indeed, the problem (24) with constraints (25), (26), (27) and (29) can be represented
in the form of the bimatrix game with linear constraints:

max
ξ,ζ

ξ∗Aζ,

max
ξ,ζ

ξ∗Bζ,
(30)

s.t.
ξ ≥ 0, ζ ≥ 0; (31)

and
C∗ξ = c,
D∗ζ = d.

(32)

Following [36] we introduce the linear complementarity problem whose solution charac-
terizes the equilibrium point of (30), (31), (32):

z = (ξ, ζ, z1, z2, z3, z4)
∗ ≥ 0,

q + Mz ≥ 0,
z∗(q + Mz) = 0,

(33)

where

M =

















−A C∗ −C∗

−B∗ D∗ −D∗

−C
C

−D
D

















,

q = (0, 0, c∗,−c∗, d∗,−d∗)
∗
.
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It is also shown in [36], that under the conditions A ≤ 0 and B ≤ 0 Lemke’s algorithm [37]
computes a solution of the LCP (33).

It should be noted, that in order to satisfy the conditions A ≤ 0, B ≤ 0 we can always
replace cost matrices A and B with A − kE and B − kE, where E is a matrix of unities,
and k is the maximal positive entry of A and B.

Once the solution of LCP (33) (ξo, ζo) is found, the equilibrium point (ξ′, ζ ′) of the
bimatrix game (30) could be computed using the following formulas:

ξ′ =
ξo

e∗1ξo
,

ζ ′ =
ζo

e∗2ζo
,

(34)

where e1 and e2 are vectors of appropriate dimension, whose components are all ones.
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