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meters are considered. Maximum likelihood and Bayesian estimation methods are extended
to this model, respectively the Stochastic Approximation EM and the Gibbs sampler algo-
rithms. They are based on the Euler-Maruyama approximation of the diffusion, achieved
using latent auxiliary data introduced to complete the diffusion process between each pair
of measurement instants. A tuned hybrid Gibbs algorithm based on conditional Brownian
bridges simulations of the unobserved process paths is included in these two algorithms.
Their convergence is proved. Errors induced on the likelihood and the posterior distribution
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Estimation paramétrique à partir d’observations bruitées

et à temps discrets d’un processus de diffusion

Résumé : Nous considérons des processus de diffusion (solution d’une SDE) observés à
temps discrets avec bruit de mesure, et dont les paramètres de la fonction de drift sont
aléatoires. Des méthodes d’estimation standard par maximum de vraisemblance et par
approche bayésienne (respectivement une version stochastique de l’algorithme EM et un
échantillonneur de Gibbs) sont développées pour ces modèles. Elles sont basées sur une
approximation de la diffusion par la méthode d’Euler-Maruyama, approximation obtenue
en introduisant des temps auxiliaires entre les instants de mesure. La convergence de ces
algorithmes est démontrée. Les erreurs induites par l’approximation d’Euler-Maruyama sur
la vraisemblance et la distribution a posteriori des paramètres sont controlées par le pas de
la discrétisation. La précision de la méthode d’estimation par maximum de vraisemblance
est illustrée par une étude sur données simulées à partir d’un modèle non-linéaire à effets
mixtes issu de la pharmacocinétique. L’analyse du jeu de données réelles Theophyllin illustre
la pertinence de l’approche par SDE par rapport à l’approche déterministe (par ODE).

Mots-clés : Algorithme de Gibbs, Algorithme SAEM, Approximation de Euler-Maruyama,
Estimation Bayésienne, Estimation par maximum de vraisemblance, Modèle à données in-
complètes, Modèle non linéaire à effets mixtes, Pont Brownien, Processus de Diffusion,
Equation différentielle stochastique



Estimation for discretely observed noisy diffusion processes 3

1 Introduction

Time-dependent dynamic processes that follow the laws of finance, physics, physiology or

biology are usually described by differential systems. For example, stock price dynamics or

short-term interest rates can be described using a wide class of financial differential systems.

As another example, in biology, pharmacokinetics consists in the study of the evolution of

a drug in an organism. It is described through dynamic systems, the human body being as-

similated to a set of compartments within which the drug flows. In these contexts, diffusion

models described by stochastic differential equations (SDEs) are natural extensions to the

corresponding deterministic models (defined by ordinary differential equations, ODEs) to

account for time-dependent or serial correlated residual errors and to handle real life varia-

tions in model parameters occurring over time. This variability in the model parameters is

most often not predictable, not fully understood or too complex to be modeled deterministi-

cally. Thus the SDEs consider errors associated with misspecifications and approximations

in the dynamic system.

The parametric estimation of such diffusion processes is a key issue. Estimation of con-

tinuously observed diffusion processes is widely studied (see for instance Kutoyants, 1984;

Prakasa Rao, 1999). However, for obvious practical purposes, real longitudinal data are

always gathered at discrete points in time (for example stock prices collected once a day,

drug concentration measured every hour in patient blood, etc.). Within this framework,

statistical inference of discretely observed diffusion processes is a critical question for both

maximum likelihood and Bayesian approaches. When the transition probability of the dif-

fusion process is explicitly known, Dacunha-Castelle and Florens-Zmirou (1986) propose

a consistent maximum likelihood estimator. Classical Bayesian algorithm such as Gibbs

sampling can also be directly applied in this particular case.

However, this transition density has generally no closed form and the estimation methods

have to sidestep this difficulty. A short summary of such estimation methods is provided

below (see Prakasa Rao, 1999; Sørensen, 2004, for complete reviews). Analytical methods

include those of Bibby and Sørensen (1995), Sørensen (2000) – using estimating functions

–, Poulsen (1999) – using a numerical solution of the Kolmogorov equation – or Aït-Sahalia

(2002) – based on an analytical non-Gaussian approximation of the likelihood function.

Other methods approximate the transition density via simulation. They consider the un-

observed paths as missing data and introduce a set of auxiliary latent data points between

every pair of observations. Along these auxiliary latent data points, the process can be
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4 Donnet & Samson

finely sampled using the Gaussian Euler-Maruyama approximation to evaluate the likeli-

hood function via numerical integration as proposed by Pedersen (1995) and Elerian et al.

(2001), or to evaluate the posterior distribution in a Bayesian analysis again via numerical

integration, as discussed by Eraker (2001) and Roberts and Stramer (2001). In this con-

text and for both maximum likelihood and Bayesian estimations, standard Markov Chain

Monte-Carlo (MCMC) methods are used to sample the process with the conditional dis-

tributions. However, the convergence rate of these estimation methods decreases with the

increase in number of latent data points. Different solutions are proposed to overcome this

difficulty: Eraker (2001) suggests the sampling of only one element at a time, while Elerian

et al. (2001) propose to sample block-wise with an importance sampling algorithm. Roberts

and Stramer (2001) take a slightly different approach as they sample transformations of

the diffusion process. To sidestep the Euler-Maruyama approximation, Beskos et al. (2005)

develop an exact simulation method of the diffusion process, applicable even without any

analytical form of the transition density. This algorithm can be included in a Monte-Carlo

procedure to approximate the likelihood function for a classical estimation and in a Gibbs

algorithm for a Bayesian inference. However, this exact simulation method is only adapted

for time-homogeneous SDEs, which is frequently not the case when studying biological dy-

namical systems for example. Furthermore, even under the conditions defined by Beskos

et al. (2005), this exact method requires the inclusion of accept-reject algorithms, which

are difficult to implement in the general case of non-linear SDEs and often require a large

computational time. Therefore an Euler-Maruyama approximation approach is considered

in this paper.

The above-cited papers do not take into account the observation noise on the collected

data, which is non-realistic in many cases. For example in the financial context, the daily

evolution of an asset price depends on the price fluctuations within each business day. In

the biological context, endpoints such as drug concentrations are generally measured with a

certain variability due to experimental limits. To reflect this observation noise, we consider

the following regression statistical model M: the observed data y = (y1, . . . , yJ) are a

realization of a random variable Y deduced from a scalar diffusion process Z, as stated by

the following equation:

Yj = Z(tj) + εj , (M)

where (εj)j=1,...,J is a sequence of i.i.d Gaussian random variables of variance σ2, represent-

ing the measurement errors. The diffusion process Z is defined as the solution of the SDE

describing the observed dynamic process:

dZ(t) = F (Z, t, φ)dt+ γdB(t),

driven by a Brownian motion {Bt, t0 ≤ t ≤ T}, a drift function F depending on a parameter

φ and a volatility coefficient γ. If the volatility coefficient γ is null, the SDE is an ODE, the

SDE model parameter φ being evidently equivalent to the parameter of the corresponding

ODE system, and therefore being interpreted in the same way. In such models, two funda-

mentally different types of noise have to be distinguished: the dynamic noise γ, reflecting

the real random fluctuations around the corresponding theoretical dynamic model, and the

measurement noise σ representing the uncorrelated part of the residual variability associated

with assay, dosing and sampling errors, for instance, in a biological context. The problem of

the parameter estimation of discretely observed diffusion processes with additive measure-

ment noise is evoked in few papers and is not completely solved. In the particular case of

INRIA



Estimation for discretely observed noisy diffusion processes 5

linear SDEs, the Kalman filter (Schweppe, 1965) or the EM algorithms (Singer, 1993) can

be used. When the observed process is a Gaussian martingale, Jensen and Petersen (1999)

and Gloter and Jacod (2001) exhibit estimators and study their theoretical properties. Un-

fortunately, these explicit forms of maximum likelihood estimates are limited to the linear

SDEs case.

In this paper, we assume in addition that the parameter φ is a realization of a random

variable Φ distributed with a probability π depending on a parameter β. This is the case

for example in drug pharmacokinetics studies of which use will be detailed below. Basically,

in order to estimate drug pharmacokinetic parameters, the drug concentration is sampled

repeatedly among several individuals, the parameter φ being assumed different between the

subjects and thus considered as individual non-observed random data.

The main objective of this paper is to develop methods to estimate the parameters

vector θ = (β, γ2, σ2) in the general case of non-linear SDEs. Such a method is proposed

by Overgaard et al. (2005) and Tornøe et al. (2005) in the particular case of non-linear

mixed effects models. They combine an extended Kalman filter of the diffusion process

with an approximated maximum likelihood estimation algorithm based on a linearization

of the model. However, the convergence properties of this estimation algorithm based on

linearization are not proved. A different point of view can be taken for the parameters

estimation, the random quantities Z and Φ being considered as non-observed random data.

In that case, the model M belongs to the framework of incomplete data models, for which

several estimation methods are developed for both classical and Bayesian approaches. For

classical inference, the Expectation-Maximization (EM) algorithm proposed by Dempster

et al. (1977) is a broadly applied approach taking advantage of the incomplete data model

structure. When the E-step has no closed form, Celeux and Diebolt (1985), Wei and Tanner

(1990) and Delyon et al. (1999) propose different stochastic versions of this algorithm. These

methods require the simulation of the non-observed data using Markov Chain Monte-Carlo

(MCMC) algorithms, as proposed by Kuhn and Lavielle (2004). For the Bayesian approach,

tuned Gibbs algorithms are developed to estimate the posterior distribution pθ|Y (·|y) of θ, a

specified prior distribution pθ(·) for θ being given. When the simulation under the posterior

distribution cannot be done in a closed form, hybrid Gibbs sampling algorithms are proposed

in the literature, including Metropolis-Hastings procedures (Wakefield et al., 1994; Bennet

et al., 1996). To our knowledge, these estimation methods are not yet extended to noisy

discretely observed diffusion processes models considered in this paper.

Our objective is thus to propose efficient estimation methods of the vector of parameters

θ for the model M, together with theoretical convergence results for both classical and

Bayesian inference. We consider an approximate statistical model, of which the regression

term is the Euler-Maruyama discretized approximate diffusion process of the SDE. The

parameter inference is then performed on this new model, using a stochastic version of the

EM algorithm for the classical estimation approach, or using a hybrid version of the Gibbs

sampling algorithm for the Bayesian approach.

Section 2 describes the setup of the problem which is considered in this paper, detailing

the diffusion process and its Euler-Maruyama approximation. The estimation algorithms

for the maximum likelihood and the Bayesian approaches are respectively presented in Sec-

tions 3 and 4. These sections detail a tuned MCMC procedure supplying both theoretical

and computational convergence properties to these algorithms. The error on the estima-

tion induced by the Euler-Maruyama scheme is quantified in Section 5. In Section 6, the
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6 Donnet & Samson

maximum likelihood algorithm is applied to a non-linear mixed effects model issued from

pharmacokinetics. Section 7 concludes with some discussion.

2 Data and Model

2.1 Incomplete data model defined by SDEs

Let y = (yj)j=0..J denote the vector of the observations measured at times t0 ≤ t1 ≤ . . . ≤
tJ ≤ T . We consider that y is a realization of the random variable Y defined through the

following statistical model M:

Yj = Z(tj) + εj , 0 ≤ j ≤ J
εj ∼i.i.d N (0, σ2),

dZ(t) = F (Z, t,Φ) dt+ γdB(t) , Z(t0,Φ) = Z0(Φ), (1)
Φ ∼ π(·, β)





(M)

where ε = (ε1, . . . , εJ) represents the measurement error, with a residual variance σ2.

The regression term is a realization of the diffusion process Z : R −→ R defined by the

equation (2.1), with B a one-dimensional Brownian motion, γ is the volatility coefficient

and the function F : R × [t0, T ] × R
d −→ R is the known measurable drift function, non-

linearly depending on the non-observed parameter Φ ∈ R
d. We assume that Φ is a random

variable, distributed with the density π, depending on the parameter β ∈ R
p. The initial

condition Z0 of this process is a deterministic known function of the random parameter Φ

(this deterministic function can be a constant).

Our objective is to propose a classical and a Bayesian estimation methods of the pa-

rameters vector θ, where θ = (β, γ2, σ2) belongs to some open subset Θ of the Euclidean

space R
p+2. As the random parameter Φ and the random trajectory Z are not observed,

this statistical problem can be viewed as an incomplete data model. The observable vector

Y is thus consider as part of a so-called complete vector (Y, Z,Φ).

Remark 1 • This work can be extended to a statistical model with a regression function

being equal to g(Z(t)), with g a linear or non-linear function, i.e.

Yj = g(Z(tj)) + εj , 0 ≤ j ≤ J .

However, for the simplicity’s sake, we only consider the case g(Z(t)) = Z(t) in this

paper.

• The identifiability of this model is a complex problem which is beyond the scope of this

paper. However, for simple examples such as linear SDEs the parameters identifiability

can be proved.

2.2 Diffusion model

The diffusion process (2.1) is defined on a filtered probability space (Ω,F ,Ft,P). Statistical

inference makes sense only if the existence and uniqueness of a solution of the SDE (2.1)

for all Z(t0), Φ and γ is ensured. Sufficient conditions of existence and uniqueness are the

following globally Lipschitz, linear growth and boundedness conditions:

Assumption (A0):

1. For all φ ∈ R
d, for all 0 < R < ∞, there exists 0 < KR < ∞ such that for all

t0 ≤ t ≤ T , for all x, x′ ∈ R with |x| ≤ R, |x′| ≤ R

|F (x, t, φ) − F (x′, t, φ)| ≤ KR|x− x′|.

INRIA



Estimation for discretely observed noisy diffusion processes 7

2. For all φ ∈ R
d, for all 0 < T < ∞, there exists a constant 0 < CT < ∞ such that for

all t0 ≤ t ≤ T , for all x ∈ R

γ + |F (x, t, φ)| ≤ CT (1 + |x|).

Under this assumption, for any t0 < t < T , the distribution of Z(t) conditioned by the

filtration Ft− is absolutely continuous with respect to the Lebesgue measure on R (Ft−

being the filtration generated by {Z(s), s < t}). This distribution is denoted pZ|Φ(·|φ; γ2)

in the following. As a consequence, both Y and (Y, Z,Φ) have density functions, denoted

respectively pY (y; θ) and pY,Z,Φ(y, z, φ; θ) depending on the parameter θ.

2.3 Introduction of an approximate statistical model

For common SDEs, the diffusion density pZ|Φ has generally no closed form. Consequently

neither the likelihood of the observed data pY (y; θ) nor the likelihood of the complete data

pY,Z,Φ(y, z, φ; θ) have analytical forms, which further complicates the parameters estimation.

To overcome this difficulty, an approximate statistical model, based on the Euler-Maruyama

approximation of the diffusion process is introduced.

2.3.1 Euler-Maruyama approximation of the diffusion process

The Euler-Maruyama scheme is one of the simplest discrete-time approximation of a dif-

fusion process leading to Gaussian approximations of the transition densities. If the time

intervals between the observation instants are too great to obtain a good approximation of

the transition density, a natural approach is to introduce a set of auxiliary latent data points

between every pair of observations, as first proposed by Pedersen (1995). Let t0 = τ0 < τ1 <

. . . < τn < . . . < τN = tJ denote the deduced discretization of the time interval [t0, tJ ]. Let

us assume that, for all j = 0 . . . J , there exists an integer nj verifying tj = τnj
, with n0 = 0

by definition. Let (hn)1≤n≤N be the sequence of the step sizes defined as hn = τn − τn−1.

Let h = max1≤n≤N hn be the maximal step size.

Then the diffusion process denoted W and supplied by the Euler-Maruyama approxima-

tion of the SDE is described by the following iterative scheme: for a fixed φ, W0 = Z0(φ),

and for n = 1 . . .N ,

hn = τn − τn−1 ,

Wn = Wn−1 + hn F (Wn−1, τn−1, φ) + γ
√
hn ξn ,

ξn ∼i.i.d N (0, 1).

Consequently, (wn0
, . . . , wnJ

) is an approximation of the original diffusion process at

observations instants (z(t0), . . . , z(tJ)). In the following, let w = (wn)n=0···N denote a

realization vector of the process W at the discrete times (τn)n=0···N .

2.3.2 Approximate statistical model

Using this approximation of the diffusion process provided by the Euler-Maruyama scheme

of step size h, an approximate statistical model denoted model Mh is defined as:

RR n° 5809



8 Donnet & Samson

Yj = Wnj
+ εj , 0 ≤ j ≤ J ,

εj ∼i.i.d N (0, σ2) ,
hn = τn − τn−1 ,
Wn = Wn−1 + hn F (Wn−1, τn−1,Φ) + γ

√
hn ξn , 1 ≤ n ≤ N,

ξn ∼i.i.d N (0, 1) ,
Φ ∼ π(·;β) ,





(Mh)

with W0 = Z0(Φ). On this model Mh, Y results from the partial observation of the

complete data (Y,W,Φ) where W is the process at the discrete times (τn)n=0···N .

Remark 2 In this data augmentation framework, the choice of the discretization grid (τn)0≤n≤N

is a central issue to guarantee the fast convergence of the estimation algorithms. Indeed, on

the one hand, a small step size h ensures a fine Gaussian diffusion approximation. However,

on the other hand, it increases the volume of missing data (W,Φ), which can lead to arbi-

trarily poor convergence properties of the algorithms when the missing data volume widely

exceeds the volume of actually observed data Y . Furthermore, the time intervals between

two observations can be strongly different. Therefore, for practical purposes and to prevent

unbalanced volumes of missing data, we propose to adjust the step sizes for each single time

interval.

In the following, the distributions referring to the model Mh are denoted q while those

referring to the model M are denoted p. On Mh, the observation vector y is distributed

with density distribution qY (y; θ), which has no closed form because of the SDE non-linearity

with respect to φ. But by enriching the observed data with the missing data, and by the

Markov property of the diffusion process, the complete data likelihood is analytically known:

qY,W,Φ(y, w, φ; θ) = qY |W (y|w;σ2)

N∏

n=1

qW |Φ(wn|wn−1, φ; γ2) π(φ;β)

= qY |W (y|w;σ2)
N∏

n=1

d(wn; wn−1 + hn F (wn−1, τn−1, φ), γ2hn) π(φ;β),

where d(.;m, v) denotes the Gaussian density with mean m and variance v. As a conse-

quence, the estimation of θ can be performed on the model Mh, using a stochastic version

of the EM algorithm for a Maximum Likelihood approach or a Gibbs algorithm for a Bayesian

approach.

3 Maximum Likelihood Estimation on the model Mh

In this section we propose a maximum likelihood estimation method, the vector of parame-

ters θ being thus estimated as the maximizing value of the likelihood qY (. ; θ).

3.1 Stochastic versions of the EM algorithm

The Expectation Maximization (EM) algorithm proposed by Dempster et al. (1977) takes

advantage of the incomplete data model structure. We consider that the observed data

Y are the partial observations of the complete data (Y,X) with X the vector of the non-

observed data. The EM algorithm is useful in situations where the direct maximization of

θ → qY (. ; θ) is more complex than the maximization of θ → Q(θ|θ′), with:

Q(θ|θ′) = EX|Y [log pY,X(y, x; θ)|y; θ′] .

INRIA



Estimation for discretely observed noisy diffusion processes 9

The EM algorithm is an iterative procedure: at the k-th iteration, the E-step is the

evaluation of Qk(θ) = Q(θ | θk−1) while the M-step updates θk−1 by maximizing Qk(θ).

For cases where the E-step has no closed form, Delyon et al. (1999) propose the Stochastic

Approximation EM algorithm (SAEM) replacing the E-step by a stochastic approximation

of Qk(θ). The E-step is thus divided into a simulation step (S-step) of the non-observed

data x(k) with the conditional distribution pX|Y (. |y; θk−1) and a stochastic approximation

step (SA-step):

Qk(θ) = Qk−1(θ) + αk

[
log

(
pY,X(y, x(k); θk−1)

)
−Qk−1(θ)

]
,

where (αk)k∈N is a sequence of positive numbers decreasing to zero.

The distribution pX|Y (.|y; θk−1) is likely to be a complex distribution, as for the model

Mh, resulting in the impossibility of a direct simulation of the non-observed data x. For

such cases, Kuhn and Lavielle (2004) suggest a MCMC scheme by constructing a Markov

chain with an unique stationary distribution pX|Y (·|y; θk−1) at the k-th iteration. They

prove the convergence of the estimates sequence provided by this SAEM algorithm towards

a maximum of the likelihood under general conditions and in the case where pY,X belongs

to a regular curved exponential family.

3.2 Extension of the SAEM algorithm to the model Mh

In the particular case of the model Mh, the non-observed data vector is equal toX = (W,Φ).

As the simulation under the conditional distribution qW,Φ|Y can not be performed directly,

the SAEM algorithm combined with a MCMC procedure is applied to the model Mh to

estimate the model parameter θ. To ensure the convergence of the SAEM algorithm, the

model Mh is assumed to fulfill some regular conditions:

Assumption (A1):

1. π(. ;β) is such that qY,W,Φ belongs to the exponential family:

log qY,W,Φ(y, w, φ; θ) = −ψ(θ) + 〈S(y, w, φ), ν(θ)〉 ,

where ψ and ν are two functions of θ, S(y, w, φ) is known as the minimal sufficient

statistics of the complete model, taking its value in a subset S̃ of R
m and 〈·, ·〉 is the

scalar product on R
m.

2. β 7−→ π(φ;β) is of class Cm for all φ ∈ R
d.

Under the assumption (A1), the SA-step of the SAEM algorithm reduces to the approx-

imation of E [S(y, w, φ)|y; θ′]. The k-th iteration of the SAEM algorithm is thus

• S-Step: a realization of the non-observed data (w(k), φ(k)) is generated through the

succession of M iterations of a MCMC procedure providing an uniformly ergodic

Markov chain with qW,Φ|Y (·|y; θk−1) as unique stationary distribution,

• SA-Step: sk−1 is updated using the following stochastic approximation scheme:

sk = sk−1 + αk(S(y, w(k), φ(k)) − sk−1),

• M-Step: θk−1 is updated to maximize the complete log-likelihood:

θ̂k = arg max
θ

(−ψ(θ) + 〈sk, ν(θ)〉) .

RR n° 5809



10 Donnet & Samson

For example, the sufficient statistics corresponding to σ2 and γ2 are:

S(1)(y, w, φ) =
1

J + 1

J∑

j=0

(yj − wnj
)2,

S(2)(y, w, φ) =
1

N

N∑

n=1

(wn − hnF (wn−1, τn−1, φ))
2

hn

,

and the M-step for σ2 and γ2 at iteration k reduces to σ̂2
k = s

(1)
k and γ̂2

k = s
(2)
k . The

sufficient statistics for β depend on the distribution π(. ;β).

3.3 Convergence of the SAEM algorithm on the model Mh

Let denote Πθ the transition probability of the Markov chain generated by the MCMC

algorithm. Following Kuhn and Lavielle (2004), the convergence of the SAEM algorithm

combined with MCMC is ensured under the following additional assumption:

Assumption (A2):

1. The chain (w(k), φ(k))k≥0 takes its values in a compact set E of R
N × R

d.

2. For any compact subset V of Θ, there exists a real constant L such that for any (θ, θ′)

in V 2

sup
{(w,φ),(w′,φ′)}∈E

|Πθ (w′, φ′|w, φ) − Πθ′ (w′, φ′|w, φ)| ≤ L‖θ − θ′‖Rp+2

3. The transition probability Πθ supplies an uniformly ergodic chain of which invariant

probability is the conditional distribution qW,Φ|Y (· ; θ), i.e.

∃Kθ ∈ R
+, ∃ρθ ∈]0, 1[ | ∀k ∈ N ‖Πk

θ(·|w, φ) − qW,Φ|Y (·; θ)‖TV ≤ Kθρ
k
θ

where ‖ · ‖TV is the total variation norm. Furthermore,

K = sup
θ∈Θ

Kθ <∞ and ρ = sup
θ∈Θ

ρθ < 1

4. The function Sh is bounded on E .

Theorem 1 Let assumptions (A0-A1-A2) hold. Let qW,Φ|Y have finite moments of order

1 and 2. Let (αk) be a sequence of positive numbers decreasing to 0 such that for all k in N,

αk ∈ [0, 1],
∑∞

k=1 αk = ∞ and
∑∞

k=1 α
2
k <∞.

Assuming the sequence (sk)k≥1 takes its values in a compact set, the sequence (θ̂k)k≥1

obtained by the SAEM algorithm on the model Mh converges almost surely towards a (local)

maximum of the likelihood qY .

Proof: Assuming (A1-A2) and the existence of finite moments for qW,Φ|Y , the assump-

tions of Kuhn and Lavielle (2004) are fulfilled and ensure the convergence of the estimates

towards a local maximum of the likelihood function.

Remark 3 If the compactness on (sk)k≥0 is not checked or difficult to check, the algorithm

can be stabilized using the method of dynamic bounds proposed by Chen et al. (1988) and

used by Delyon et al. (1999).

A MCMC procedure fulfilling the assumption (A2) is proposed in the following part 3.4.
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3.4 Simulation of the non-observed data using a MCMC procedure

At the k-th iteration of the SAEM algorithm, given en estimate θ̂k−1, a realization of the

non-observed data (w(k), φ(k)) is generated through the succession of M iterations of a

MCMC procedure. MCMC procedures construct a Markov chain with qW,Φ|Y (.|y ; θ̂k−1)

as the invariant distribution, by proposing candidates (φc, wc) with any proposal density

Q. However, sampling all the missing data at the same time can lead to poor convergence

properties. Therefore, a hybrid Gibbs algorithm is implemented and realized successively

M times, the m-th iteration being written as:

1. generation of φ(m), using a Metropolis-Hastings (M-H) procedure with Q1 as proposal

density and such that qΦ|Y,W (. |y, w(m−1); θ̂k−1) is the invariant distribution.

2. generation of w(m), using a M-H procedure with Q2 as proposal distribution and such

that qW |Y,Φ(. |y, φ(m); θ̂k−1) is the invariant distribution.

A careful choice of the proposal densities Q1 and Q2 will help the algorithm to quickly

explore the parameters space. In the following, some proposal densities of which efficiency

is proved on numerical examples are detailed. To simplify the notation, the parameter θ̂k−1

is omitted since this simulation is performed for a fixed θ̂k−1.

3.4.1 Proposal distributions

1. Simulation of the candidate φc can be carried out with the prior density π which allows

an efficient exploration of the space of parameters. This leads to an independent M-H

algorithm. An alternative consists in generating a candidate in a neighborhood of

φ(m−1), φc = φ(m−1) +η with η ∼ N (0, δ) and where δ is a scaling parameter on which

the algorithm convergence depends. This results in the so-called random-walk M-H

algorithm (see for example Bennet et al., 1996).

2. A trajectory candidate wc can be generated using the Euler-Maruyama scheme which

corresponds to the prior distribution. An alternative to simulate wc consists in splitting

the vector w into two parts (wn0
, · · · , wnJ

) and waux, the former being the process

observed at times (tj)j=0···J and the latter being the process observed at the auxiliary

latent times excluding the observation times. The simulation of (wc
n0
, · · · , wc

nJ
) can be

performed with random walk distributions: wc
nj

= w
(m−1)
nj +η′ where η′ ∼ N (0, δ′) and

δ′ is a scaling parameter chosen to ensure good convergence properties. As proposed

by Pedersen (1995), the trajectory at the auxiliary times wc
aux can be generated using

an unconditioned distribution but it would have poor convergence properties. A more

appropriate strategy consists in generating a candidate wc
aux using Brownian bridges,

conditioning the proposed bridge on the events (wc
nj

)j=0···J , as suggested by Eraker

(2001) or Roberts and Stramer (2001). More precisely, for nj−1 < n < nj , wτn
is

simulated with:

wc
τn

= wc
nj−1

+
wc

nj
− wc

nj−1

tj − tj−1
(τn − tj−1) +Bτn

where B is a standard Brownian bridge on [0, 1] equal to zero for t = 0 and t = 1,

which can be easily simulated.
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12 Donnet & Samson

3.4.2 Uniform ergodicity of the MCMC procedure

For checking assumption (A2-3), it is possible to verify some minoration condition or Doe-

blin’s condition for the transition probability Πθ (see Chap. 16 of Meyn and Tweedie, 1993).

Otherwise, each case has to be considered individually.

For the independent M-H algorithm, its uniform ergodicity is ensured as soon as the

proposal distribution verifies:

∃λ ∈ R
+ | ∀(w, φ) ∈ E , Q(w, φ) ≥ λqW,Φ|Y (w, φ|y),

(see Th 2.1 in Tierney (1994) for more details). The proposal distribution equal to the prior

distribution Q(w, φ) = qW,Φ(w, φ) fulfills this condition.

Moreover, in case of a cyclic combination, the uniform ergodicity of the Markov Chain is

ensured if one of the proposal distributions satisfies a minoration condition (Prop. 3 and 4

of Tierney (1994)). Thus the introduction of the prior distribution as proposal distribution

is sufficient to ensure the uniform ergodicity of the Markov Chain.

4 Bayesian estimation of the model Mh

For a fully Bayesian treatment of the estimation problem, we shall fix prior distributions

on all unknown parameters (β, γ2, σ2). We assume that β, γ2 and σ2 have continuous prior

densities pβ(·), pγ(·), pσ(·) respectively on R
p, R and R. The Bayesian approach consists in

the evaluation of the posterior distribution pθ|Y . According to the arguments developed in

Section 2, the estimation procedure is applied to the model Mh.

A simplistic approach would be to consider a basic Gibbs algorithm which simulates the

non-observed data (φ,w) and then updates the parameter θ. However, as emphasized and

illustrated by Roberts and Stramer (2001), the quadratic variation of the diffusion process

satisfies, for almost surely all observation times tj and tj+1:

lim
h→0

nj+1−1∑

n=nj

(wn+1 − wn)2 = (tj+1 − tj)γ
2. (2)

Therefore, conditional on any process satisfying (2), the posterior distribution of the volatil-

ity q(γ2|y, φ, w, σ2, β) ∝ qW |Φ(w|φ; γ2)pγ(γ2) is just a point mass at γ2. Consequently this

data augmentation scheme is reducible. Roberts and Stramer (2001) propose a reparame-

terization to avoid this problem and consider the following transformation:

ẇn =
wn

γ
and Ḟ (x, t, φ) =

F (γx, t, φ)

γ
.

Consequently, Bayesian inference is performed on the approximate model Ṁh deduced from

the model Mh using the same reparameterization:

Yj = γ Ẇnj
+ εj , 0 ≤ j ≤ J ,

εj ∼i.i.d N (0, σ2) ,
hn = τn − τn−1 ,

Ẇn = Ẇn−1 + hn Ḟ (Ẇn−1, τn−1,Φ) +
√
hn ξn , 1 ≤ n ≤ N,

ξn ∼i.i.d N (0, 1) ,
Φ ∼ π(·;β) .





(Ṁh)

A Gibbs algorithm based on this reparameterization is described below. The posterior

distributions can be written as:
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• qΦ,Ẇ |Y,θ(φ, ẇ|y, θ) ∝ qY |Ẇ (y|ẇ; γ, σ2)qẆ |Φ(ẇ|φ, γ2)p(φ;β),

• q(σ2|y, φ, ẇ, β, γ2) ∝ qY |Ẇ (y|ẇ; γ2, σ2)pσ(σ2),

• q(γ2|y, φ, ẇ, σ2, β) ∝ qY |Ẇ (y|ẇ; γ2, σ2)qẆ |Φ(ẇ|φ, γ2)pγ(γ2),

• q(β|y, φ, ẇ, σ2, γ2) ∝ p(φ;β)pβ(β).

These conditional distributions provide the basis for the algorithm, alternating between

updating (φ, ẇ), β, γ2 and σ2 according to their conditional posterior distributions. Updat-

ing β, γ2 and σ2 can be carried out using standard M-H algorithms and is not discussed

in detail here. Updating (φ, ẇ) is less straightforward and is detailed in Section 3.4 in the

case of the basic data augmentation. This procedure is easily adjustable to the reparame-

terization case by using the conditional distributions detailed previously. For a practical

implementation, we recommend the paper of Roberts and Stramer (2001) which can be

adapted to the model Ṁh.

The convergence of this Gibbs algorithm is proved in the following theorem:

Theorem 2 Let pθ and qθ|Y be respectively the prior and the posterior distributions of θ on

the model Mh.

Assuming the proposal distributions specified above, the hybrid Gibbs algorithm detailed

previously converges and provides an ergodic Markov Chain generated with the posterior

distribution qθ|Y .

Proof: As previously detailed in Section 3.4, the ergodicity of the Markov Chain is

ensured if one of the proposal distributions of the cyclic combination fulfills a minoration

condition detailed in Tierney (1994), which is the case with the proposal distributions used

to generate (φ, ẇ).

It is well known that prior distributions must be properly defined and that their choice

may have a considerable impact on the posterior distribution evaluation. Classically, stan-

dard non-informative prior distributions are assumed. Following Gilks et al. (1996), Gamma

distributions can be chosen for σ and γ, and a multivariate Gaussian distribution for β.

5 Survey of the error induced by the Euler-Maruyama

approximation

Both estimation methods proposed in this paper, respectively the maximum likelihood and

the Bayesian schemes, generate two distinct types of errors on the parameter estimates that

have to be controlled.

The first type of error is induced by the estimation method itself. For the maximum like-

lihood approach, the estimation algorithm produces a sequence (θ̂k)k≥0 of estimates which

converges towards θ∗h, the maximum of the Mh-likelihood qY (y; ·) function. Delyon et al.

(1999) prove an asymptotic normal result of convergence of an averaged SAEM procedure.

The variance of this estimate θ̂k is classically controlled by the standard error evaluated

through the Fisher information matrix of the estimates. Kuhn and Lavielle (2004) propose

to estimate this Fisher information matrix by using the stochastic approximation procedure

and the Louis’ missing information principle (Louis, 1982). For the Bayesian approach, the

equivalent of the problem of obtaining the standard errors is to obtain estimated variances

for the posterior mean E(θ|y). Gilks et al. (1996) propose MCMC convergence diagnostics
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14 Donnet & Samson

tools in their book, the simplest and more generally used one is independent parallel sim-

ulations mixed in together. Different variance estimates are proposed such as the effective

sample size estimate or the batching approach, that provide 95% confidence interval for

E(θ|y) (see Carlin and Louis, 2000, for a review of such methods). Because this type of

error is not specific to the situation exposed in this paper, it is not further discussed here.

A second type of error is induced on the estimates by the Euler-Maruyama scheme.

Indeed, for the reasons evoked in Section 2, the estimation algorithms are applied to the

model Mh instead of to the model M. In the maximum likelihood approach, the algorithm

maximizes the Mh-likelihood function qY instead of the M-likelihood function pY ; in the

Bayesian framework, the parameters are generated under the posterior distribution qθ|Y

instead of the posterior distribution pθ|Y .

The aim of this section is to study this second type of error induced by the Euler-

Maruyama scheme on the conditional distribution qW,Φ|Y , on the likelihood function qY and

on the posterior distribution qθ|Y . In Theorem 3 we propose bounds of these three errors as

functions of the maximal step size of the Euler-Maruyama scheme h. In the following, some

additional assumptions hold:

Assumption (A3):

The function F : R × [t0, T ] × R
d −→ R is infinitely differentiable in the variable space

and its partial derivatives of any order are uniformly bounded with respect to x and φ.

Assumption (A4):

The assumption (UH) of Bally and Talay (1996) is satisfied. More precisely, let A0

and A1 denote the vector fields defined respectively by A0 = F (·)∂z and A1 = γ∂z. For

multiindices a = (a1, . . . , a`) ∈ {0, 1}`, let the vector fields Aa
1 be defined by induction:

A�
1 := A1 and for j = 0 or 1 A

(a,j)
1 := [Aj

1, A
a
1 ] where [·, ·] denotes the Lie bracket. For

L ≤ 1, let define the quadratic form VL(ξ, η) :=
∑

|a|≤L−1 〈Aa
1(ξ), η〉2. We assume that

VL(ξ) := 1 ∧ inf
‖η‖=1

VL(ξ, η) ≥ 0

Theorem 3 Let the assumptions (A0-A4) hold.

1. Let Z and W be the diffusion processes of the models M and Mh respectively, at the

observation times: Z = (Z(t0), · · · , Z(tJ)) and W = (W (t0), · · · ,W (tJ )).

Let pZ,Φ|Y and qW,Φ|Y be the conditional distributions on the models M and Mh

respectively. There exists a constant C(y) such that, for any 0 < h < H0,

∥∥pZ,Φ|Y − qW,Φ|Y

∥∥
TV

≤ C(y)h,

where ‖·‖TV denotes the total variation distance.

2. Let pY and qY be the likelihoods of the models M and Mh respectively. There exists

a constant C2(y) such that for all 0 < h < H0

sup
{θ=(β,γ2,σ2),σ2>σ2

0
,γ2>γ2

0
}

|pY (y; θ) − qY (y; θ)| ≤ C2(y)h.

3. In the Bayesian approach, let pθ denote the prior distribution. Let pθ|Y and qθ|Y be the

posterior distributions of the models M and Mh respectively. There exists a constant

C3(y) such that for all 0 < h < H0

∥∥qθ|Y − pθ|Y

∥∥
TV

≤ C3(y)h.
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Theorem 3 is proved in Appendix A. These results are based on the convergence rate of

the transition densities proposed by Bally and Talay (1996).

Remark 4 Assumption (A3) requires only the derivatives of the function F to be bounded

and not F itself. Assumption (A4) is easily satisfied for linear drift functions F : F (x, t, φ) =

A(φ, t) + xB(φ, t).

6 Theophyllin pharmacokinetic example

The maximum likelihood estimation method developed in Section 3 is applied below to a

pharmacokinetics example.

6.1 Pharmacokinetics and Non-linear mixed effects models

Pharmacokinetics (PK) studies the time course of drug substances in the organism. This

can be described through dynamic systems, the human body being assimilated to a set of

compartments within which the drug evolves with time. In general, these systems are con-

sidered in their deterministic version. However, in a recent book on PK modeling, Krishna

(2004) claims that the fluctuations around the theoretical pharmacokinetic dynamic model

may be appropriately modeled by using SDEs rather than ODEs. Overgaard et al. (2005)

suggest the introduction of SDEs to consider serial correlated residual errors due for exam-

ple to erroneous dosing, sampling history or structural model misspecification. This new

variability is distinct from the standard measurement noise representing the experimental

uncertainty such as assay error.

Generally, several patients are followed up in a clinical trial, their drug concentration

being measured along time repeatedly. Longitudinal data are thus gathered at discrete

times and classically analyzed using non-linear mixed-effects models. Indeed, the mixed-

effects models are a means to discriminate the intra-subject variability from the inter-subject

variability, the parameter φ being a random parameter proper to each subject. The non-

linear mixed-effects model can be written as follows:

yij = Z(tij , φi) + εij

εij ∼ N (0, σ2)
φi ∼ N (µ,Ω)



 (Mmix)

where yij is the observation for subject i, i = 1, . . . , I at time tij , j = 1, . . . , Ji and φi is

the vector of individual and non-observed parameters of subject i.

In a deterministic approach, the regression function Z is defined as the solution of a PK

ordinary differential system: dZ(t)/dt = F (Z(t), t, φ) with Z(t0) = Z0, each component of

the vector φ having a PK meaning. For example, a classic one compartment PK model

with first order absorption and first order elimination is described by the following dynamic

equation: Z0 = Dose and

dZ(t, φ)

dt
=
Dose ·KaKe

Cl
e−Kat −KeZ(t, φ), (3)

where Z is the drug concentration, Dose is the known drug oral dose received by the subject,

Ke is the elimination rate constant,Ka is the absorption rate constant and Cl is the clearance

of the drug. A stochastic differential system can be deduced from the ODE:

dZ(t, φ) =

(
Dose ·KaKe

Cl
e−Kat −KeZ(t, φ)

)
dt+ γdBt (4)
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where Bt is a Brownian motion and γ is the volatility coefficient of the SDE.

In its SDE version, the non-linear mixed-effects model (Mmix) is a particular case of

the model M previously presented i.e. a diffusion process is observed at discrete times with

noise measurement and its drift function parameters are random.

6.2 Simulation study

The aim of this simulation study is to illustrate the accuracy (bias and root mean square

errors) of the extended SAEM algorithm developed in Section 3.2 on a PK application.

We use the previous PK model to mimic the Theophyllin drug pharmacokinetic. To

prevent the parameters from taking unrealistic negative values, the vector φ ∈ R
3 is clas-

sically composed of the log parameters φ = (log(Ke), log(Ka), log(Cl)). The individ-

ual parameters φ are thus simulated with Gaussian distributions N (µ,Ω), with µ equal

to (−2.52, 0.40,−3.22) as proposed by Pinheiro and Bates (1995). A diagonal variance-

covariance matrix Ω is assumed for the Gaussian distribution of φ. Let ω2 = (ω2
1 , ω

2
2 , ω

2
3)

denote the vector of these variances. The inter-subject variability is set equal for the three

parameters: ω2
1 = ω2

2 = ω2
3 = 0.01, corresponding to a variation coefficient of 10%. We

set a volatility coefficient equal to γ2 = 0.2 and an additive Gaussian measurement error

σ2 = 0.1. We generate 100 datasets with I = 36 subjects and with nine blood samples per

patient (J = 8), taken at 15 minutes, 30 minutes, 1, 2, 3.5, 5, 7, 9, 12 hours after dosing.

The drug oral dose (Dose) received by the subject is chosen arbitrarily between 3 and 6 mg.

To evaluate the accuracy of the estimates of θ = (µ, ω2, γ2, σ2) produced by the SAEM

algorithm, the estimation of the parameters is performed on the 100 simulated datasets

using the extension of the SAEM algorithm presented in Section 3.2.

The Euler-Maruyama scheme included in the SAEM algorithm is implemented on a grid

with auxiliary latent data points introduced between each pair of observation instants as

detailed in Section 2.3.1. The number of auxiliary points has to be chosen carefully because

a volume of missing data too large can induce arbitrarily poor convergence properties of

the Gibbs algorithm. In this example, we divide each time interval [ti,j , ti,j+1] into 20

sub-intervals of equal length. This choice supplies a reasonable volume of missing data,

avoids unbalance between the observation-time intervals and proves its numerical efficiency

in accurately approximating the solution of the SDE.

The implementation of the Gibbs procedure included in the SAEM algorithm requires

subtle tuning in practice. In particular, the simulation of the diffusion process w on the

auxiliary grid is highly critical. An unconditioned trajectory simulation with q(wnj
|wnj−1

; θ)

as proposed by Pedersen (1995) provides poor numerical results in the case of this example.

Indeed, a great number of these simulated trajectories produce large jumps (wτnj
−wτnj

−1).

The probability of such trajectories being close to zero, it induces too low an acceptance

rate. As suggested by Eraker (2001) or Roberts and Stramer (2001) and detailed in Section

3.4, a conditioned trajectory simulation through Brownian bridge distributions is preferred.

Moreover, we update the missing trajectories at once for each subject, as recommended by

Elerian et al. (2001) to avoid a high level of rejection. In this example, we obtain acceptance

rates in the neighborhood of 25%.

The implementation of the SAEM algorithm requires initial values and the choice of

the stochastic approximation sequence (αk)k≥0. The initial values of the parameters are

chosen arbitrarily and set to θ0 = (−3, 1,−3, 0.1, 0.1, 0.1, 2, 1). The step of the stochastic

approximation scheme is chosen as recommended by Kuhn and Lavielle (2005): αk = 1
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Figure 1: Evolution of the SAEM parameter estimates function of the iteration number in
a logarithmic scale

during the first iterations 1 ≤ k ≤ K1, and αk = (k−K1)
−1 during the subsequent iterations.

Indeed, the initial guess θ0 might be far from the maximum likelihood value and the first

iterations with αk = 1 allow the sequence of estimates to converge to a neighborhood of the

maximum likelihood estimate. Subsequently, smaller step sizes during K −K1 additional

iterations ensure the almost sure convergence of the algorithm to the maximum likelihood

estimate. We implement the extended SAEM algorithm with K1 = 200 and K = 500

iterations. Figure 1 illustrates the convergence of the parameter estimates provided by

the extended SAEM algorithm as a function of the iteration number in a logarithmic scale.

During the first iterations of SAEM, the parameter estimates fluctuate, reflecting the Markov

chain construction. After 200 iterations, the curves smooth out but still continue to converge

towards a neighborhood of the likelihood maximum. Convergence is obtained after 500

iterations.

The relative bias and relative root mean square error (RMSE) for each component of θ

are computed and presented in Table 1.

The estimates of the mean parameter µ have very low bias (<5%). The variance parame-

ters have small bias (<9%) except γ2, this variance parameter being slightly over-estimated

(13%). The RMSE are very satisfactory for the mean parameter (<9%). The RMSE for

the variance parameters are greater but still satisfactory (≤40%) in comparison to the small

number of subjects (I = 36). The RMSE of σ2 is particularly satisfactory (<20%) consid-

ering the complexity of the variability model.

In conclusion, even if this simulation study is performed on a complex model, the conver-

gence of the extended SAEM algorithm towards the maximum likelihood neighborhood is
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Table 1: Relative bias (%) and relative root mean square error (RMSE) (%) of the estimated
parameters evaluated by the SAEM algorithm from 100 simulated trials with I = 36 subjects.

Parameters Bias (%) RMSE (%)
log Ke 0.42 -3.19
log Ka 4.14 8.95
log Cl -0.23 -2.27
ω2

1 3.83 40.03
ω2

2 8.49 36.76
ω2

3 -8.81 37.52
γ2 13.02 21.31
σ2 -4.44 18.79

0 5 10 15 20 25
0

2

4

6

8

10

12

time (hour)

co
nc

en
tr

at
io

n 
(m

g/
m

L)

Figure 2: Individual concentrations for the pharmacokinetics of Theophyllin for 12 subjects.

computationally efficient. In addition despite the fact that the number of subjects is small,

the extended SAEM algorithm all in all supplies accurate estimations of the parameters.

Furthermore, the accuracy is comparable to that obtained with the classic SAEM algorithm

for an ODE version of a mixed model (Mmix) i.e. for a model with one less variability level.

6.3 A real data example

The extended SAEM algorithm is used to estimate the PK parameters of the Theophyllin

drug PK real dataset. This new analysis of the Theophyllin dataset aims at illustrating the

advantage of the SDE approach over the ODE approach.

In this clinical trial, twelve subjects received a single oral dose of 3 to 6 mg of Theo-

phyllin. Ten blood samples were taken 15 minutes, 30 minutes, 1, 2, 3.5, 5, 7, 9, 12 and

24 hours after dosing. The individual data are displayed in Figure 2. The Theophyllin PK

is classically described by the one compartment model with first order absorption and first

order elimination presented previously. We fit the Theophyllin data with the regression term

successively defined as the solution (3) and then as that of the SDE (4).

INRIA



Estimation for discretely observed noisy diffusion processes 19

0 5 10 15 20 25
0

2

4

6

8

Subject 3

Time (hr)

C
on

ce
nt

ra
tio

n 
(m

g/
L)

0 5 10 15 20 25
0

2

4

6

8

Subject 4

Time (hr)

C
on

ce
nt

ra
tio

n 
(m

g/
L)

0 5 10 15 20 25
0

1

2

3

4

5

6

7
Subject 6

Time (hr)

C
on

ce
nt

ra
tio

n 
(m

g/
L)

0 5 10 15 20 25
0

2

4

6

8
Subject 8

Time (hr)

C
on

ce
nt

ra
tio

n 
(m

g/
L)

0 5 10 15 20 25
0

2

4

6

8

10

Subject 10

Time (hr)

C
on

ce
nt

ra
tio

n 
(m

g/
L)

0 5 10 15 20 25
0

2

4

6

8

Subject 11

Time (hr)

C
on

ce
nt

ra
tio

n 
(m

g/
L)

Figure 3: Six individual concentration cruves predictec by SAEM with the ODE approach
(dotted line) and the SDE approach (plain line) overlaid on the data points for the pharma-
cokinetic of Theophyllin

In the ODE approach, the differential equation (3) has an explicit solution. Thus, the

parameters estimates are obtained using the SAEM algorithm combined with a MCMC

procedure proposed by Kuhn and Lavielle (2004). The individual concentration profiles are

predicted by Ẑij = Z(tij , φ̂i) for all i and j where Z is the solution of (3) and φ̂i is the

posterior mean evaluated during the last iterations of the SAEM algorithm. In the SDE

approach, the same implementation of the extended SAEM algorithm as the one detailed

for the simulation study is used. The individual concentration predictions E(Z(tij , φi)|yi; θ̂)

for all i and j are evaluated by Ẑij = 1/100
∑K

k=K−99 Z
(k)(tij , φ

(k)
i ) where Z(k)(tij , φ

(k)
i ) is

simulated under the conditional distribution qW,Φ|Y ( . |yi; θ̂) during the 100 last iterations

of the extended SAEM algorithm.

The ODE and SDE predictions are overlaid on the data in Figure 3 for six typical

subjects. Both ODE and SDE predicted curves for the other six subjects are satisfactory

and thus not presented here. For these six subjects, the ODE predicted curves miss some

of the observed data, particularly the last one or the initial concentration peak. The SDE

predicted curves improve almost all of these individual profiles.

In conclusion, in this real dataset case study, the individual predictions supplied by the

SDE model fit the data better than those obtained by the ODE model. Consequently, in

this case, the SDE approach has to be preferred to the ODE approach.

7 Discussion

This paper proposes estimation methods for models defined by a discretely observed diffusion

process including additive measurement noise and with random drift function parameters.

To that end, an approximate model Mh is introduced, of which the regression term is

evaluated using a Gaussian Euler-Maruyama approximation of maximal step size h. A Gibbs
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sampler based on the reparameterization of the model suggested by Roberts and Stramer

(2001) in the Bayesian framework and the SAEM algorithm in the Maximum Likelihood

approach are extended to this model. These two estimation algorithms require the simulation

of the missing data (w, φ) with the conditional distribution qW,Φ|Y . The choice of the

proposal distributions governs the convergence properties of the algorithm and thus is a key

issue. A tuned MCMC procedure to perform this simulation is thus proposed, combining a

hybrid Gibbs algorithm with independent or random walk Metropolis-Hastings schemes.

Moreover, the error induced by the Euler-Maruyama Gaussian approximation of the

diffusion process on the conditional distribution, the likelihood and the posterior distribution

of the model Mh are controlled by the step size h of the numerical scheme. This error is

distinct from the error on the estimates induced by the estimation algorithms.

In the maximum likelihood approach, the stochastic version of the EM algorithm SAEM

proposed by Kuhn and Lavielle (2004) is preferred to the Monte-Carlo EM (MCEM) de-

veloped by Wei and Tanner (1990) or Wu (2004) because of its computational properties.

Indeed, SAEM requires the generation of only one realization of the non-observed data at

each iteration. In a context where the missing data have to be simulated by a MCMC

method, decreasing the size of these missing data is a key issue to ensure acceptable com-

putational times.

The accuracy of the extended SAEM algorithm is illustrated on a pharmacokinetic sim-

ulation study using a non-linear mixed effect model defined by SDEs. The relevance of the

SDEs approach with respect to the deterministic one is exemplified on a real dataset.

The estimation of such models is mentioned in few papers and is not completely solved.

In the general case of non-linear SDE, the only method proposed is exclusively adapted to

the particular case of mixed models and for a maximum likelihood approach (Overgaard

et al., 2005). Furthermore, this method relies on the linearization of the model and its

convergence is not established. In this paper, we propose estimation methods not only for

classic but also Bayesian inference that are adapted to more general missing data models.

In addition, the convergence of the proposed algorithms is demonstrated.
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A Proof of theorem 3

1. The aim is to bound

∥∥pZ,Φ|Y − qW,Φ|Y

∥∥
TV

=

∫ ∣∣pZ,Φ|Y (x, φ|y; θ) − qW,Φ|Y (x, φ|y; θ)
∣∣ dxdφ,

Using the fact that the conditional distributions pY |Z(x;σ2) and qY |W (x;σ2) are equal,

the Bayes theorem application provides:

∣∣pZ,Φ|Y (x, φ|y; θ) − qW,Φ|Y (x, φ|y; θ)
∣∣ ≤

pY |Z(x;σ2)π(φ;β)

pY (y; θ)

[∣∣pZ|Φ(x|φ; γ2) − qW |Φ(x|φ; γ2)
∣∣ +

qW |Φ(x|φ; γ2)

qY (y; θ)
|pY (y; θ) − qY (y; θ)|

]

As a consequence, the total variation distance is bounded by:

∥∥pZ,Φ|Y − qW,Φ|Y

∥∥
TV

≤
∫
pY |Z(x;σ2)π(φ;β)dxdφ

pY (y; θ)

[
sup
x,φ

∣∣pZ|Φ(x|φ; γ2) − qW |Φ(x|φ; γ2)
∣∣

+
|pY (y; θ) − qY (y; θ)|

qY (y; θ)
sup
x,φ

qW |Φ(x|φ; γ2)

]
(5)

(a) The quantity supx,φ

∣∣pZ|Φ(x|φ; γ2) − qW |Φ(x|φ; γ2)
∣∣ is bounded using a result demon-

strated by Bally and Talay (1995). This result, based on the Malliavin Calculus,

controls the density convergence rate in the case of the Euler-Maruyama scheme.

• By the assumption (A3) and because the volatility function is constant, the

Hörmander’s condition detailed in Bally and Talay (1995) is verified. Thus,

there exists a constant C(φ, γ2, tj − tj−1) independent of h, xj and xj−1 such

that

|pZ|Φ

(
xj |xj−1, φ; γ2

)
− qW |Φ

(
xj |xj−1, φ; γ2

)
| ≤ C(φ, γ2, tj − tj−1)h.

The constant depends on the bounds of the derivatives of the drift function,

independent of φ under assumption (A3). Besides, if γ2 is contained in

[γ0,Γ0], there exists C1 independent of γ2 such that, for all j = 1 · · ·J ,

|pZ|Φ

(
xj |xj−1, φ; γ2

)
− qW |Φ

(
xj |xj−1, φ; γ2

)
| ≤ C1h (6)

• Under the assumption (A4) and using a result of Kusuoka and Stroock (1985)

based on the Malliavin calculus (corollary 3.25), for all j = 1 · · ·J , there exists

a constant C2(φ, γ
2, tj − tj−1) such that

pZ|Φ

(
xj |xj−1, φ; γ2

)
≤ C2(φ, γ

2, tj − tj−1)

By the same arguments as before, this constant is bounded independently of

φ and γ2. Hence, there exists C2 such that, for all j = 1 · · ·J ,

pZ|Φ

(
xj |xj−1, φ; γ2

)
≤ C2 (7)

• In addition, we can write:

|qW |Φ

(
xj |xj−1, φ; γ2

)
|

≤ |qW |Φ

(
xj |xj−1, φ; γ2

)
− pZ|Φ

(
xj |xj−1, φ; γ2

)
| + |pZ|Φ

(
xj |xj−1, φ; γ2

)
|

≤ hC1 + C2. (8)
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• Finally, the Markov property provides:

∣∣pZ|Φ(x|φ; γ2) − qW |Φ(x|φ; γ2)
∣∣ =

∣∣∣∣∣∣

J∏

j=1

pZ|Φ

(
xj |xj−1, φ; γ2

)
−

J∏

j=1

qW |Φ

(
xj |xj−1, φ; γ2

)
∣∣∣∣∣∣

(9)

for any j = 1 · · ·J . So, by combining the (9), (6), (7) and (8), there exists a

bound C3 independent of h, j and γ2 such that

sup
x,φ

∣∣pZ|Φ(x|φ; γ2) − qW |Φ(x|φ; γ2)
∣∣ ≤ C3h (10)

(b) By the Markov decomposition of the probability qW |Φ(x|φ; γ2), and using the

inequality (8), there exists C4 such that

sup
x,φ

qW |Φ(x|φ; γ2) ≤ C4 (11)

By integration and using the inequality (10), we have:

|pY (y; θ) − qY (y; θ)| ≤ C3h

∫
pY |Z(x;σ2)π(φ;β)dxdφ = C3h (12)

(c) The quantity qW |Φ(x|φ; γ2) can be down-bounded. Indeed,

qY (y; θ) ≥ pY (y; θ) − |pY (y; θ) − qY (y; θ)|
≥ pY (y; θ) − C3h following the inequality (12)

≥ pY (y; θ) − C3H0 for h < H0 and H0 small enough.

Hence there exists C5(y) such that

qY (y; θ) ≥ C5(y) (13)

(d) Finally, the inequalities (5) , (11), (12) and (13) provide the final result:

∥∥pZ,Φ|Y − qW,Φ|Y

∥∥
TV

≤ 1

pY (y; θ)

[
C3h+

C3h

C5(y)
C4

]

�

2. The proof of the part 2 of Theorem 3 directly derives from (12).

3. By Bayes theorem, we have:

pθ|Y (θ|y) =
py|θ(y|θ)p(θ)

pY (y)

where pY (y) =
∫
py|θ(y|θ)p(θ)dθ. From (12), there exists a constant C3, independent

of θ such that |py|θ(y|θ)− qY |θ(y|θ)| ≤ hC3. Consequently |pY (y)− qY (y)| ≤ C3 h and

|pθ|Y (θ|y) − qθ|Y (θ|y)| ≤ p(θ)

pY (y)

∣∣∣∣|py|θ(y|θ) − qY |θ(y|θ)| +
qY |θ(y)

qY (y)
|qY (y) − pY (y)|

∣∣∣∣

≤ C3h

pY (y)
p(θ)

∣∣∣∣1 +
qY |θ(y|θ)
pY (y)

∣∣∣∣ = C6(y) h
[
p(θ) + qθ|Y (θ|y)

]
.

The final result can be directly deduced:

∥∥qθ|Y − pθ|Y

∥∥
TV

=

∫
|pθ|Y (θ|y) − qθ|Y (θ|y)|dθ

≤ C6(y) h

∫
(p(θ) + qθ|Y (θ|y))dθ ≤ 2 C6(y) h

�
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