E. Bécache, P. Joly, and J. Rodríguez, Space???time mesh refinement for elastodynamics. Numerical results, Computer Methods in Applied Mechanics and Engineering, vol.194, issue.2-5, pp.355-366, 2005.
DOI : 10.1016/j.cma.2004.02.023

N. Canouet, L. Fezoui, and S. Piperno, A New Discontinuous Galerkin Method for 3D Maxwell???s Equation on Non-conforming Grids, WAVES 2003 The Sixth International Conference on Mathematical and Numerical Aspects of Wave Propagation, pp.389-394, 2003.
DOI : 10.1007/978-3-642-55856-6_62

J. Cioni, L. Fezoui, L. Anne, and F. Poupaud, A parallel FVTD Maxwell solver using 3d unstructured meshes, 13th annual review of progress in applied computational electromagnetics, 1997.

A. Elmkies and P. Joly, ??l??ments finis d'ar??te et condensation de masse pour les ??quations de Maxwell: le cas de dimension 3, Comptes Rendus de l'Acad??mie des Sciences - Series I - Mathematics, vol.325, issue.11, pp.3251217-1222, 1997.
DOI : 10.1016/S0764-4442(97)83557-4

L. Fezoui, S. Lanteri, S. Lohrengel, and S. Piperno, Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes, ESAIM: Mathematical Modelling and Numerical Analysis, vol.39, issue.6
DOI : 10.1051/m2an:2005049

URL : https://hal.archives-ouvertes.fr/hal-00210500

T. Fouquet, Raffinement de maillage spatio-temporel pour les équations de Maxwell, 2000.

D. J. Hardy, D. I. Okunbor, and R. D. Skeel, Symplectic variable step size integration for N-body problems, Applied Numerical Mathematics, vol.29, issue.1, pp.19-30, 1999.
DOI : 10.1016/S0168-9274(98)00031-2

J. Hesthaven and C. Teng, Stable Spectral Methods on Tetrahedral Elements, SIAM Journal on Scientific Computing, vol.21, issue.6, pp.2352-2380, 2000.
DOI : 10.1137/S1064827598343723

J. Hesthaven and T. Warburton, Nodal High-Order Methods on Unstructured Grids, Journal of Computational Physics, vol.181, issue.1, pp.186-221, 2002.
DOI : 10.1006/jcph.2002.7118

J. S. Hesthaven and T. Warburton, Nodal High-Order Methods on Unstructured Grids, Journal of Computational Physics, vol.181, issue.1, pp.186-221, 2002.
DOI : 10.1006/jcph.2002.7118

T. Hirono, W. W. Lui, and K. Yokoyama, Time-domain simulation of electromagnetic field using a symplectic integrator, IEEE Microwave and Guided Wave Letters, vol.7, issue.9, pp.279-281, 1997.
DOI : 10.1109/75.622539

T. Hirono, W. W. Lui, K. Yokoyama, and S. Seki, Stability and numerical dispersion of symplectic fourth-order time-domain schemes for optical field simulation, Journal of Lightwave Technology, vol.16, issue.10, pp.1915-1920, 1998.
DOI : 10.1109/50.721080

T. Holder, B. Leimkuhler, and S. Reich, Explicit variable step-size and time-reversible integration, Applied Numerical Mathematics, vol.39, issue.3-4, pp.367-377, 2001.
DOI : 10.1016/S0168-9274(01)00089-7

W. Huang and B. Leimkuhler, The Adaptive Verlet Method, SIAM Journal on Scientific Computing, vol.18, issue.1, pp.239-256, 1997.
DOI : 10.1137/S1064827595284658

J. M. Hyman and M. Shashkov, Mimetic Discretizations for Maxwell's Equations, Journal of Computational Physics, vol.151, issue.2, pp.881-909, 1999.
DOI : 10.1006/jcph.1999.6225

P. Joly and C. Poirier, A new second order 3d edge element on tetrahedra for time dependent Maxwell's equations, Fifth International Conference on Mathematical and Numerical Aspects of Wave Propagation, pp.842-847, 2000.

D. A. Kopriva, S. L. Woodruff, and M. Y. Hussaini, Discontinuous Spectral Element Approximation of Maxwell???s Equations, Lecture Notes in Computational Science and Engineering, vol.11, pp.355-362, 2000.
DOI : 10.1007/978-3-642-59721-3_33

X. Lu and R. Schmide, Symplectic discretization for Maxwell's equations, J. of Math. and Computing, vol.25, 2001.

S. Piperno, Symplectic local time-stepping in non-dissipative DGTD methods applied to wave propagation problems, ESAIM: Mathematical Modelling and Numerical Analysis, vol.40, issue.5
DOI : 10.1051/m2an:2006035

URL : https://hal.archives-ouvertes.fr/hal-00607709

S. Piperno, Schémas en éléments finis discontinus localement raffinés en espace et en temps pour les équations de maxwell 1d, 2003.

S. Piperno, Symplectic local time-stepping in non-dissipative DGTD methods applied to wave propagation problems, ESAIM: Mathematical Modelling and Numerical Analysis, vol.40, issue.5, 2005.
DOI : 10.1051/m2an:2006035

URL : https://hal.archives-ouvertes.fr/hal-00607709

M. Remaki, A new finite volume scheme for solving Maxwell???s system, COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol.19, issue.3, pp.913-931, 2000.
DOI : 10.1108/03321640010334677

R. Rieben, D. White, and G. Rodrigue, High-Order Symplectic Integration Methods for Finite Element Solutions to Time Dependent Maxwell Equations, IEEE Transactions on Antennas and Propagation, vol.52, issue.8, pp.2190-2195, 2004.
DOI : 10.1109/TAP.2004.832356

J. M. Sanz-serna and M. P. Calvo, Numerical Hamiltonian Problems, 1994.
DOI : 10.1007/978-1-4899-3093-4

J. S. Shang and R. M. Fithen, A Comparative Study of Characteristic-Based Algorithms for the Maxwell Equations, Journal of Computational Physics, vol.125, issue.2, pp.378-394, 1996.
DOI : 10.1006/jcph.1996.0100

T. Warburton, Application of the Discontinuous Galerkin Method to Maxwell???s Equations Using Unstructured Polymorphic hp-Finite Elements, Lecture Notes in Computational Science and Engineering, vol.11, pp.451-458, 2000.
DOI : 10.1007/978-3-642-59721-3_47

T. Warburton, Spurious solutions and the discontinuous galerkin method on nonconforming meshes, WAVES 2005, The Seventh International Conference on Mathematical and Numerical Aspects of Wave Propagation, pp.405-407, 2005.

K. S. Yee, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Trans. Antennas and Propagation, pp.16302-307, 1966.

. Unité-de-recherche-inria-sophia and . Antipolis, route des Lucioles -BP 93 -06902 Sophia Antipolis Cedex (France) Unité de recherche INRIA Futurs : Parc Club Orsay Université -ZAC des Vignes 4, 2004.

I. Unité-de-recherche and . Lorraine, Technopôle de Nancy-Brabois -Campus scientifique 615, rue du Jardin Botanique -BP 101 -54602 Villers-lès-Nancy Cedex (France) Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu -35042 Rennes Cedex (France) Unité de recherche INRIA Rhône-Alpes : 655, avenue de l'Europe -38334 Montbonnot Saint-Ismier (France) Unité de recherche INRIA Rocquencourt, Domaine de Voluceau -Rocquencourt -BP 105 -78153 Le Chesnay Cedex

I. De-voluceau-rocquencourt, BP 105 -78153 Le Chesnay Cedex (France) http://www.inria.fr ISSN, pp.249-6399